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UNIQUENESS FOR CERTAIN SURFACES
OF PRESCRIBED MEAN CURVATURE

THOMAS I. VOGEL

The classical problem of liquid in a capillary tube concerns finding
the minimum of a certain energy function, which leads to a surface
of prescribed mean curvature. This paper weakens the hypotheses by
considering local minima of the functional. It is shown that no new
surfaces result.

1. Introduction. Although the theorems in this paper have fairly
general hypotheses, they are motivated by the theory of capillary sur-
faces. The classical capillary problem is to study the shape of the sur-
face formed by capillary action when a tube of general cross-section
Ω c Rn is placed into an infinite reservoir. The assumption that has
customarily been made is that the surface is energy minimizing over
compact perturbations. It is natural to ask whether a surface can exist
which is a local minimum for the functional but not a global mini-
mum. In other words, is it possible, in the classical problem, for an
"exotic" capillary surface to exist which is stable with respect to small
compact perturbations, but unstable with respect to a large compact
perturbation? The paper proves that under fairly weak assumptions,
the answer is "no".

Certainly there are other problems in capillarity with non-trivial
local minima. The energy functional for the pendent drop (e.g. Wente
[10]) has no minimum if arbitrarily large perturbations are allowed,
since by falling to —oo a drop looses an infinite amount of potential
energy. Another such situation is that of a drop trapped between
two planes (Vogel [8]). For some values of the separation, the (stable)
connected drop bridging the planes has a larger energy than a spherical
cap on one plane.

The reason the assumption that the surface is energy minimizing
over all perturbations has been made in the classical problem is that a
result of Miranda [5] then implies that the surface is a graph. The idea
of the proof is that replacing the set U occupied by the liquid by the
set Us = {(x, t): t < /0°° φu{x> τ) dτ) will reduce perimeter and hence
the relevant energy functional. Here t = 0 is chosen to lie below the

197



198 THOMAS I. VOGEL

free surface, x eRn, and φu is the characteristic function of U. If we
restrict our attention to "small" compact perturbations, we no longer
have this result, since the perturbation from U to Us may be large.

A notational pitfall must be avoided here. The term "local mini-
mum" is often used in BV theory (the theory of functions of bounded
variation) to describe a set U such that &(U) < %{V) for all sets V
with ί / Δ F ( = ( I / - K ) u ( K - t / ) ) a precompact set. In the calcu-
lus of variations, a local minimum is a minimum over perturbations
which are sufficiently small in some sense. For example, the pertur-
bation U -> Us referred to before is a compact perturbation of the
set if the free boundary is bounded, but is not necessarily a "small"
perturbation. To avoid confusion we will restrict the term "local min-
imum" to the sense used in the calculus of variations, and for "local
minimum" in the sense of BV theory we will use "minimum under
compact perturbations".

Since U —• Us may be a large perturbation, in seeking surfaces
which are local minima we may no longer restrict ourselves to surfaces
which are graphs. Indeed, if a local minimum exists which is not a
global minimum, we would expect it not to be a graph, since otherwise
uniqueness results apply.

This paper approaches the problem from two different points of
view. In §2 we will use BV theory to show that a local minimum is a
graph, to which we can apply uniqueness theorems to conclude that it
must be the classical solution. In §3 the problem is approached geo-
metrically. We assume the surface satisfies the Euler-Lagrange equa-
tions for the energy functional, so that it might not be a local mini-
mum, but just a stationary point. The conclusion is the same, however,
that the surface will be a graph and hence the classical solution to the
problem.

2. Local minima. We will deal with local minima for the capillary
problem in terms of BV theory. The standard reference for BV theory
is Giusti [3], and its use in capillary problems is shown in Finn [2]. The
regularity results in Giusti are stated for minimal surfaces, however
they also apply to capillary surfaces. Assume that Ω is an open set in
Rn with a piecewise differentiate boundary and let Q = Ω x R be the
capillary tube. Define the energy functional IP by

(1) r(K)= / \Dφv\ + n ί H(x,ήφv(x,ήdxdt- f β(s)φvdsdt.
JQ JQ JdQ

In the second integral x E Rn and ί e R . H(x, t) is a Lipschitz
continuous function which is non-decreasing in t. (For the classical
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problem, H(x,t) = κt> and β(s) is the cosine of the contact angle).
Following Finn [2], §7.3, we will minimize this in the following sense:
for T>0 define

Qτ = Ωx[-T,T],

δQτ = dΩx[-T,T],

and

(2) r Γ (K)= / \Dφv\ + n ί H(x,t)φv{x,t)dxdt- [ βφydsdt.
JQT JQT JSQr

Then U is a minimum for g7 under compact perturbations if for all
T> 0, ZT{U) < r Γ ( K ) for any F with C/ΔK C Qτ.

We will want to restrict our attentions to perturbations which are
not only contained in some compact set but are also "small". Thus U
is a local minimum for ί? under compact perturbations if there exists
an ε* > 0 independent of T such that WT{JJ) <%τ{V) for all V with
U Δ V C Q Γ and d F within ε* of dU.

Given a Borel set E C Rw + 1, we may change it by a set of measure
zero so that

0<\EnB(y,p)\<ωn+ιP

n+ι

for all y EdE and p > 0, where 2?(y, /?) is the ball of radius p centered
at y and ωπ+i is the measure of the unit ball in RΛ + 1 (Giusti [3],
Proposition 3.1). We will assume that all sets we deal with in this
paper have been so normalized.

1. LEMMA. Suppose U, V are open set in RΛ + 1 with Hn+χ(dU) = 0,
and that V cϋ. Then VCU.

Proof. Consider a point q G dU. By our normalization, for any
P>09

0<\UcΓ)B(q,p)\.

(Here Uc is the complement of U.) Since Hn+\(dU) = 0, there must
be points in (U)c contained in B (q, p). Therefore qφV.

2. THEOREM. Assume that U is an open set which is a local min-
imum for W under compact perturbations, that H(x, t) is a Lipschitz
continuous function which is non-decreasing in t, and that U satisfies:

I. (dU)πQ is connected.
II. There exists anεo>O such that for all ε e (0, e0), ( I / - (0, ε)) - U

is uniformly contained in a compact set K. Here U - (0, ε) is the
translation ofU downward by ε units.
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III. For some (x0, t0) £ dU and some ε\ > 0, (x0, t) e Ufor to-εχ <
t < ί0. We may assume that εx < min(ε0, ε*/2,1).

Then there exists a function u(x): Ω -> [-00,00] such that U =

Proof. We will denote U - (0, ε) by Uε. For any ε and Γ > 0, C/ε is
a local minimum under compact perturbations for:

gJ(K)= / \Dφv\ + nί H{x,t + ε)φv{x,t)dxdt
JQT JQT

- ί β{s)φv{s,t)dsdt.
JόQτ

Choose Γ large enough so that K cΩx [-Γ + 1, Γ - 1]. For any
ε G (0, βi), we have that outside of Qτ> Uε c [/, so that

(3)

and

(4)

since the free boundary of Uε is within ε*/2 of that of U. By an
argument essentially the same as the proof of Theorem 5 of Vogel [7],

rβ(t/β nu) + &τ{uε uu)<

It follows that (3) and (4) are equalities. From this we see that Uε n
U is a local minimum for ^ under compact perturbations, since a
perturbation of Uε Π U which moves the free boundary by less than βi
will have its free boundary within ε* of that Uε. Similarly Uε U U is a
local minimum under compact perturbations for gj*.

We will now see that if (xΪ91{) e U, then (xh t) e U for t e (t\ -
e\,t\]. In other words, we want to show that Uε c U for all ε e [0, βi].
By assumption III, (dUε)ΠU is non-empty for ε e [0, βi]. Suppose that
there is a point q € Q-U which is contained in C/ε for some positive
ε less that ε\. If Hn+\(dU) = 0, we may assume, by Lemma 1, that
q eQ-U. However, since U is a local minimum for ί? under compact
perturbations, we may apply regularity results. The reduced boundary
of U has dimension n, and the singular part of dU has dimension
n - 7, so that, indeed, Hn+\(dU) = 0. Let 62 > 0 be the infimum of
the set of ε's such that q eUε. Clearly q edUε2.

We may decompose (dUe2) Π Q into three parts: (dUe2) Π U, (dUε2) Π
( β — C/), and a third set which we will call A. A is contained in
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(dUe2) Π dU, but it only includes points where the two boundaries
actually cross. Since U and Q - V are both open and (dUB2) n U
and [dUe2) n (β -17) are non-trivial, both of the latter two sets have
Hausdorff dimension n. We wish to conclude that A has Hausdorff
dimension of at least n - 1, despite possible singularities on dUεi.
A similar result is given by Bombieri [1] in the proof of the Strong
Sobolev inequality for minimal hypersurfaces. Since the argument
depends on blow-up sequences, it will work for the surfaces considered
in the present paper as well.

The singular sets for dUε2ΠQ, dUnQ, and d (UuUε2) have Hausdorff
dimension of at most n - 7 . Since A is in each of these hypersurfaces,
there is a point w e A which is regular for all three hypersurfaces.
There then exists a ball B centered at w such that all three surfaces
are regular inside B, and moreover

Hn(dUε2nd{Uuu€2)πB)>o

and
Hn(dU n(du uUe2)nB) > o.

These last two inequalities hold since dU and dUεi actually cross at
w.

Both dU and d(U U Uεi) may be expressed in B as graphs of C2

solutions vi and v2 of the elliptic differential equation of prescribed
mean curvature

div Tv = H(x, v),

where the tildes are due to the fact that the coordinate system may be
rotated. Even so, H will be Lipschitz continuous since H is. However,
since the graphs of vi and v2 coincide on a set of Hausdorff dimension
n, the strong unique continuation property (see Miranda [4]) implies
that the graphs of vi and v2 are identical in B. This contradicts dU
and dϋεi crossing at w, which came from assuming that Uε-U was
non-empty for some e e [0, ε\]. Thus Uε C U for all e € [0, ε\].

It now follows that Uε c U for any ε > 0. Indeed, given ε > 0 we
find n so that ε/n < ε\. Then

UDUε/nDU2ε/nD. DUε

by a simple induction. We may therefore define u(x) by

ί) ( * Ό € U}.( ) (
t

U will be the subgraph of u{x), since for fixed x, {(x, t): {x, t) e U}
is a half-open interval extending to -oo.
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3. REMARK. TWO conditions that will imply conditions II and III
are:

IV. Ω x (-00, Tx] c U c Ω x (-oo, T2] for some numbers Tx and

τ2.
Or more generally,

V. (Ω x (-oo, T\])πU is the subgraph of some function defined
on Ω, and so is (Ω x (-oo, T2]) u U, for some numbers T\ and T2.

Essentially, condition IV is saying that dU n Q is bounded, and
condition V requires that outside of a compact set, dU n Q is a graph
over Ω.

4. REMARK. Condition III will be true if dU lies above U in any
neighborhood. This will certainly occur if the outward pointing nor-
mal at some regular point of dU has a positive t component. Some
condition such as this is necessary, since for H = 0, β = 0, the set
U lying above a horizontal plane is a local minimum under compact
perturbations. This is a supergraph, not a subgraph.

5. REMARK. The method of Theorem 2 also may be used to show
that two sets U and V which are local minima under compact per-
turbations and satisfy condition IV cannot have free boundaries that
cross. The method of proof is to lower V until it is just contained in
U9 and then raise it by ε*/2. A contradiction is arrived at by looking
atUuV and UnV as before.

6. Note. Thus far, we have not needed the assumption that dΩ is
piecewise differentiate. We only needed enough regularity to make
the last integral in equation (1) meaningful.

At this point, however, we want to show that a local minimum under
compact perturbations is the same as the variational solution (see Finn
[2], Chapter 7). Obviously we will need to impose enough conditions
on the problem to ensure the existence of a variational solution.

7. LEMMA. Let U = {(x,t)\t < u(x)} be α local minimum for ί?
under compact perturbations. Iflimt-+ooH(x, t) = oo uniformly in x,
then the set P = {JC|M(JC) = oo} has measure zero. If lim^-oo H(x, t) =
-oo uniformly in x, then N = {x\u(x) = -oo} has measure zero.

Proof. The argument is essentially the same as that of Miranda for
minima over compact perturbations (see Finn [2], §7.5). I claim that
P is a local minimum of

Φ[Ω*] = | Γ | - / βds-
JΣ*
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where Γ = dΩ* - <9Ω, Σ* = dΩ* n dΩ, and Hoo = lim,-^/f (x, ί).
Once this is established, the proof is done, since H^ = oo.

We now prove the claim. The translations U - (0, M) approach
P x R uniformly as M goes to oo. Suppose that P is not a local
minimum of Φ. Fix T > 0. For M sufficiently large, a perturbation
P of P which will reduce Φ may be used construct a perturbation JJ
ofU- (0, M) with U Δ (U - (0, Λf)) C Qτ and which has a smaller
energy. The details are essentially the same as the proof of Theorem
13 of Vogel [9] and are omitted. The proof that N has measure zero
uses upward translations but is otherwise identical.

Now we use the argument which proves Proposition 16.7 in Giusti
[3] to conclude that u is locally bounded. In adapting this proof the
assumption that ε* is independent of T in the definition of a local
minimum is used. It now follows, as in Giusti [3], that the function
u(x) for which U is a subgraph is real analytic in Ω and satisfies

(5) div ( . Vu I = H(x, u)
V/1 + IVUIV

there.

8. THEOREM. Let each point p e dΩ satisfy the hypotheses of The-
orem 7.5 in Finn [2]. Then there is only one set U which satisfies the
hypotheses of Theorem 1 and it is in fact a minimum over compact
perturbations.

Proof. From Lemma 7, U is the subgraph of a function u: Ω —>
(-oo, oo) satisfying (5). We must verify that u is a variational solu-
tion in the sense of Definition 7.1 of Finn [2]. What that involves
is showing that the arguments in §7.5 of Finn [2] still work for lo-
cal minima, i.e. if we require perturbations to be small. But this is
straight-forward to check.

Now that we know that u is a variational solution, we may apply
Finn's Theorem 7.6 for uniqueness. Of course a minimum for the
functional over compact perturbations is known to exist.

3. Surfaces of prescribed mean curvature, without assumptions on
the energy functional* We will now consider a somewhat different sit-
uation. For the open set U, assume that dU Π Q is a smooth surface
S whose mean curvature at a point (JC, t) € S is H(x, ί), with H(x, t)
either constant or a Lipschitz continuous function which is strictly in-
creasing in t. We are not assuming that U is even a local minimum
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for g7. By the regularity results for capillary surfaces [3], for n < 7 this
is a weaker assumption on the free surface than that of the previous
section. The weaker assumption on the free surface is balanced by
stronger assumptions on the boundary conditions.

9. THEOREM. Suppose thatdΩ is differentiable and that U c Q sat-
isfies the condition that Utι Q U for some t\ > 0, where Ut = U - (0, t)
is the downward translation ofUbyt units. We make the following
assumptions on S = dU ΠQ:

(i) The curvature ofS at (x, t) is H{x, t), where either H(x, t) is
strictly increasing in t or H is constant

(ii) S is a bounded set, and if H is constant, S is assumed to be
connected. __

(iii) The contact curve SπdQ is C2, and S may be continued differ-
entiably for a small distance outside ofQ.

(iv) The angle between the outer normal to S and the outer normal
to dQ at a point (s, t) is γ(s).

Then there is a function u(x): Ω —> (—oo, oo) such that U = {(x, t):
t <

Proof. I first claim that for some T, U C (-oo, T] x Ω. Suppose that
this is not the case. Let T\ be the supremum of the t coordinates of
points in S. Since U is assumed not to be contained in (—oo, T\] x Ω,
there must be points of U lying above the plane t = T\. But since
Q contains no boundary points of S above t = Tu it follows that
(Γi, oo) xΩ c U. We now use the assumption that Uu c U to conclude
that {T\ -1\, oo) x Ω C U. But then there can be no points of S above
t = T\ - tu a contradiction. Hence U C (-oo, Tγ] x Ω.

Let W = {t\Ut c U}. Observe that W c [0, oo). Indeed, if Ut c U
for a negative value of t, this corresponds to an upward translation
of U. But this will take points of U near t = T\ above that plane, a
contradiction. Now, let Wo be the connected component of W con-
taining t\9 so that Wo is a point or a line segment, and let to = inf WQ.
We will see that to is zero. The first observation is that to G W and
hence in WQ. Indeed, if this were not the case, there would be a ball
of radius p > 0 contained in Uto - U, so that Uk+δ would also not be
contained in U for δ G [0, p). This contradicts the choice of to. We
also have V^ <£ U, since if Sto and S do not intersect, the distance be-
tween these two sets is positive. We obtain a contradiction as before.
This argument uses the boundedness of the free surface.

Now let p = (JC*, Γ) G S n Sto. There are two cases to consider.
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Case 1. p e Q. Then p e S n Sίo. The mean curvature of Sto at p
is H{x\ t* + t0), and that of S is H(x*, t*). We must verify that the
outward pointing normals to U and Uto coincide at p. That S and Sto

are tangent at p is clear, hence the normals must point in the same
or opposite directions, but since Uto Q £/, the former must hold. Call
this normal vector ft.

If H is strictly increasing in /, we obtain a contradiction through an
elementary argument. Consider n perpendicular planes Πi, IΊ2,..., Tίn

through p containing ft. Let Cι

9 C/o be the intersections of S and Sίo

with Π, , / = 1,..., n. The curvatures of Cι at p with respect to ft must
sum to nH(x*, t*) and those of C/o sum to nH(x*, t* + ί0) (it is not
necessary to assume that these are the principal curvatures. See Finn
[2], §1.1). If ô > 0, this will mean that the curvature of C}0 is larger
than that of Cz for some /. This contradicts the fact that Uto c U.

If H is constant, then the contradiction comes from the touching
principle resulting from the Hopf maximum principle (see Wente [10],
§2).

Case 2. p e dQ. We must again prove that the outer normals
coincide at /?. Then tangent spaces to S and Sto at p cannot cross in
Q, thus the projections of ft and ftto into the tangent space to dQ at
p must be parallel. In fact, they must be equal, since the trace of Uto

on dQ is contained in the trace of U. Pick a coordinate system of
R n + 1 at p with ϋ, the normal to dQ at /?, as one of the coordinate
vectors. The other coordinates of ft and Hto are already known to be
equal. The components of ft and ftίo along ϋ are equal by the contact
angle condition, thus ft and ftto coincide.

Now pick n orthogonal unit vectors ?i,..., vn in the tangent space
to S (and Sίo) at p. The argument proceeds as in Case 1, letting IP
contain ft and flβ We obtain curves Cι which end at py but the same
contradiction is reached. Hence /Q = 0.

Now let Ϊ2 = sup (WQ). If tι is finite we obtain a contradiction
as before. Therefore W — Wo — [0,00). The theorem now follows,
since if (JCQ, a) φ U and (JC0, b) e U with a < b, it would follow that
b-a£ W. For fixed x, {t\{xo, t) € U} is an interval extending to —00,
and we may therefore define u(x) = sup{t\(x, t) e U}.
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10. Note. Although we have shown that S is the graph of u(x), it
does not immediately follow that u(x) is a classical solution to

u) in Ω,

if ί = j = cosy(s) on dΩ.

where if is the outer normal. The problem is that at this point we
do not know whether Vw is bounded in Ω, i.e. whether S can become
vertical. If, however, we assume that H(x, t) is a C1 function, the
argument in the proof of Theorem 14.10 of Giusti [3] may be adapted
to eliminate vertical points.

11. REMARK. We may replace hypotheses (iii)_and (iv) of Theo-
rem 9 by the assumption that the contact curve 5 Π dQ is a graph.
Then Case 2 of Theorem 9 cannot occur, so that no other boundary
conditions are needed. For H = constant, this was proven by Serrin
[6].

12. REMARK. The ideas in this section may be used to strengthen
a theorem of the author's on asymmetric liquid bridges (Theorem 3.7
of [7]). The theorem is that if a flat object F satisfying an internal
sphere condition of radius R is withdrawn a sufficiently small distance
h < h(R) from an infinite pool of liquid, the bridge surface formed
will be a graph. In the paper cited, however, the additional assumption
that the bridge surface is known to be a graph sufficiently far from F
is made. This may be replaced by the more natural assumption that
the height of the bridge surface approaches zero at infinity.

The proof follows the same lines as that of Theorem 9. From [7],
Theorem 3.4, the point of first contact between S and Sίo cannot be
made at the boundary of either surface, and by the assumption on the
free surface, the first contact cannot occur at infinity. Thus, we may
argue as in Case 1 of Theorem 9 to obtain a contradiction.

13. REMARK. The conditions on the contact angle may be weakened
in both §§2 and 3 with no substantive change in the proofs. In §2, β(s)
may be replaced by β(s, t), a non-increasing function of t. In §3, γ(s)
may be similarly replaced by γ(s, t), a non-decreasing function of t.
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