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INVARIANT SUBSPACES OF
FOR MULTIPLY CONNECTED REGIONS

H. L. ROYDEN

To David Lowdenslager, in memoriam

A closed linear subspace oi^p(G) is said to be invariant if zf(z)
is in Jt for all f(z) € Jt. It is said to be fully invariant if r(z)/(z) is
in */# for all / € ^ and all rational functions r(z) with poles in the
complement of G. This paper investigates those invariant subspaces
of *3ΓP(G), for a multiply connected G, which are invariant but not
fully invariant. We show that an invariant subspace ^ # fails to be
fully invariant if and only if there is one bounded component G, of
the complement of G such that the ratio of any two functions in ^ # has
a pseudo-continuation to a meromorphic function in the Nevanlinna
class of G, . This allows us to give a complete characterization of
those invariant subspaces of βfp(G) which contain the constants.

0. Introduction. Let G be a finitely connected bounded domain in
C with smooth boundary contours. It is the purpose of this paper to
study the closed linear subspaces of β?p(G) which are invariant un-
der multiplication by z, that is, those subspaces Jt such that zf(z)
is in Jt whenever f(z) is. The study of such spaces was initiated
by Beurling [1] who gave a complete characterization of the invariant
subspaces of ^ 2 ( Δ ) , where Δ is the unit disk. Shortly thereafter Hel-
son and Lowdenslager also investigated further problems of invariant
subspaces using Beurling's methods.

Beurling's characterization is not difficult to extend to general sim-
ply connected domains, but the problem of characterizing the invari-
ant subspaces for multiply connected domains is more complicated.
A subspace Jt of JΓp(G) is said to be fully invariant if it is invariant
under multiplication by rational functions whose poles are in the com-
plement of G. For simply connected domains all invariant subspaces
are fully invariant, but this is no longer true for multiply connected
G.

It is possible to give a characterization similar to Beurling's for
the fully invariant subspaces of &P(G). This was carried out for the
annulus by Sarason [12] and for more general domains by Hasumi [5]
and Voichick [13], [14].
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Our results here depend on the notion of analytic (or meromorphic)
pseudo-continuation. Two functions f\ and fι of the Nevanlinna class
N in abutting domains are said to be pseudo-continuations of each
other across a smooth arc C in the boundary of both domains if the
non-tangential limits of f\ and fι are the same almost everywhere. In
particular we show (Theorem 3) that if a closed invariant subspace Jt
of ^P{G) is not fully invariant then there is some bounded component
Gy of the complement of G such that for any two functions / , g in
Jf the function f/g has an analytic pseudo-continuation to G y .

This allows us to give a characterization of those closed invariant
subspaces of <%*P(G) which contain the constants. We also show that
each closed invariant subspace of ^P(G) satisfying a restrictive hy-
pothesis H is of the form

where φ is an inner function on G, χ a measurable function on the
inner boundary contours of G whose modulus is constant on each of
them, and J?χ = {/ e βfp(G): fχ extends to a function of class &p in
each bounded component of the complement of G}. Simple examples
show that not all invariant subspaces are of this form, and that the
zeros (and possibly infinities) on the inner boundaries of G play a role
in the characterization of invariant subspaces. It seems reasonable to
suppose, however, that all invariant subspaces are of the form

where h e β?p{G) is a function whose outer part is continuous and
non-vanishing on the outer boundary of G.

This paper is a revision (with simplified proofs of Theorems 2 and
4) of an unpublished preprint of mine from fifteen years ago. I had
wanted to settle the conjecture above before publication, but I have
been unable to do so. It appears to be difficult. Recently, Daniel Hitt
[6] has established the truth of the conjecture for <^2(A), where A is
the annulus. This seems to me to lend credence to the conjecture.
He shows also that in this case the function χ can be taken to be
the boundary values of an inner function in X°°(Δ), Δ being the disk
inside the annulus A.

The next two sections contain some general results on &p(G)9 and
in §3 we give a brief proof of the Hasumi-Sarason-Voichick char-
acterization of fully invariant subspaces. In §5 we characterize the
closed subspaces of β?p(G) which are invariant under the backward
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shift. This characterization is related to work of Douglas, Shapiro and
Shields [2] on the backward shift on the disk. They also make use of
analytic pseudo-continuation.

1. Inner functions and the Nevanlinna class. Let G be a finitely
connected bounded domain in C with smooth (i.e., C2) boundary Γ.
In this section we reformulate the concepts of Blaschke product and
inner functions in a manner suitable for function theory on a multi-
ply connected domain G with smooth boundaries so that the classical
factorization and divisibility theorems of Beurling remain. In the
treatment here only single-valued holomorphic functions are used. In
order to accomplish this, we shall often need to insert a harmonic mea-
sure into our formulae. This will mean that inner functions, etc., are
only required to have moduli which are constant almost everywhere
on each boundary contour of G, rather than having those which are
one almost everywhere on the boundary of G. Sarason [12], Hasumi
[5], and Voichick [14] take a different approach, and allow their func-
tions to have multivalued arguments, but restrict inner functions, etc.,
to those whose boundary values are one almost everywhere.

By a harmonic measure on G we mean a harmonic function h whose
boundary values are constant on each component of Γ. A bounded
analytic function U on G is called a unit if log 11/1 is a harmonic
measure. Equivalently, a bounded analytic function U is a unit if \U\
is constant on each boundary contour. The units of G form a finitely
generated group under multiplication.

A bounded analytic function Φ in G is called a (generalized) Blasch-
ke product if

(1) log|Φ(z)| = £ > ( * , * , , ) + Λ(*)
V

where g(z, ζ) is the Green's function for G and h is a harmonic mea-
sure.

We list below some standard properties of bounded analytic func-
tions and Blaschke products. These are easily established using classi-
cal techniques (cf. [3], [4], and [7]).

LEMMA 1. A bounded analytic function in G has non-tangential
boundary values almost everywhere in Γ. If these boundary values van-
ish on a set of positive measure, so does the function.
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LEMMA 2. If{au} is the sequence of the zeros of a bounded analytic
function f in G, repeated according to multiplicity, then

„ Γ) < oo.

If {au} satisfies this condition, there is a Blaschke product Φ whose
zeros are {au}, and it is unique apart from multiplication by a unit.

LEMMA 3. A bounded analytic function f {not = 0) may be factored
into f = Φg where Φ is a Blaschke product with the same zeros as f
and g is a function without zeros having the same bound as f. The
factorization is unique apart from units.

LEMMA 4. The product of two Blaschke products is a Blaschke prod-
uct, and so is their quotient if it is analytic {i.e., has no poles).

A bounded analytic function Φ in G is called an inner function if
the nontangential boundary values of |Φ| on each boundary contour of
G are almost everywhere equal to a constant. Note that this definition
makes the constant 0 an inner function. An inner function {φ 0) is
said to be non-trivial if it is not a unit.

An inner function with no zeros is called a singular function. Sin-
gular functions are those functions in ^°°{G) for which

(2)

where μ is a positive measure on Γ which is singular with respect to
the measure given by arc length, and h is a harmonic measure. The
measure μ in this representation is unique.

LEMMA 5. Every Blaschke product is an inner function. The product
of two inner functions is an inner function, and so is their quotient if it
is bounded.

If Φi and Φ2 are inner functions, we say that Φi divides Φ2 if
there is an inner function Φ3 such that Φ2 = Φ1Φ3. If Φi is not
identically zero, then Φi divides Φ2 iff Φ2/Φ1 is bounded. Using the
representations given in (1) and (2) one can establish the following
lemma:

LEMMA 6. Let {Φa} be any collection of inner functions. Then there
is an inner function ΦQ which divides each Φa and has the property that
if Φ is an inner function dividing each Φa, then Φ divides ΦQ.
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The function Φ o given by the lemma is called the greatest common
divisor of the class {Φa} If the class consists of two functions Φi and
Φ 2 , we write ΦQ = (Φi, Φ2). The greatest common divisor of the class
{0} is 0.

A meromorphic function / in G is said to have bounded character-
istic, or to belong to the Nevanlinna class N, if / = f\/f2 where f\
and f2 are bounded analytic functions in G.

LEMMA 7. The functions of class N form a field. An analytic function
f belongs to N if and only if log | / | has a positive harmonic majorant
Functions of class N have non-tangential boundary values almost every-
where, and, if two functions of class N have the same boundary values
on a set of positive measure on Γ, they are identical

The existence of boundary values follows from Lemma 1. To see
the unicity, we suppose / = g on a set of positive measure on Γ, and
that / = fi/fi and g = gx/g2 with fh gj bounded. Then fλg2 = f2g\
on a set of positive measure on Γ, and, since they are bounded analytic
functions, we have fχg2 = f2g\ in G. Thus / = g.

An analytic function / in N is called an outer function if

(3) log|/(C)| = J - ^ log | / ( z ^ ^

where g is the Green's function of G.

LEMMA 8. An outer function has no zeros. A function f is outer if
(3) holds for a single point ζ e G. The outer functions of N form a
group under multiplication. An analytic function in N is both inner
and outer if and only if it is a unit.

LEMMA 9. Every function f of class N may be factored into

where Φ\ andΦ2 are inner functions with (Φi,Φ2) = 1 and F an outer
function. Iff is not identically zero, then this factorization is unique
except for units.

An important subclass of the class N is the class N+ consisting of
those functions / e N which have a factorization of the form f = ΦXF
where Φi is inner and F is outer.
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It is sometimes useful to extend these notions to a set O which
is the union of a finite number of smoothly bounded domains {G7}
whose closures are disjoint. A function / is holomorphic in O if it is
holomorphic in each G r The function / is bounded (or of class N)
iff each f\Gj is. A function Ψ is an inner function on O iff Ψ ; = Ψ|G y

is inner for each j . Note that some Ψ7 may be identically zero and
others not.

The concept of inner and outer functions is due to Beurling [1] who
first established the factorization into inner and outer functions for
functions of class %?2 on the disk.

2. The Hardy classes &p. An analytic function / in G is said to
belong to the Hardy class %*P(G) if \f\p has a harmonic majorant in
G. For p > 1 these are Banach spaces, if we define

(5) \\f\\p = (u(ζo))ί/p,

where Co is a fiχed point of G and u is the least harmonic majorant
of I/]*7. Different choices of ζ0 give different norms, but these are
equivalent. For a discussion of these spaces in this form see Parreau
[10] or Rudin [11].

We use %*°° to denote the space of all bounded analytic functions
on G, and %? to denote the union of all %?p with p > 0. If p > q, then
β?P C βfq.

A harmonic function u in G is said to belong to the class hp(G) if
\u\p has a harmonic majorant. The class hι(G) consists precisely of
those harmonic functions which can be expressed as the difference of
two non-negative harmonic functions. We list some standard proper-
ties of the %?p spaces as further lemmas. The following result is due
to M. Riesz (cf. [3] and [4]).

LEMMA 10. If 1 < p < oo, then a holomorphic function f in G
belongs to ^ p iff R e / belongs to hp. If R e / € Λ1, then feβ?p for
allp< 1.

LEMMA 11. Each f in β?p belongs to the Nevanlinna class N+ and
has a factorization

(6) f = ΦιF,

where Φ\ is inner and F is an outer function in %?p with the same norm
as f.

LEMMA 12. A function f e N with canonical factorization ΦiΦ^F
belongs to %*p if and only ifΦ2 is a unit and the boundary values of
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| F | belong to £?v on Γ. The Ξ*p norm of the boundary values of f is
an equivalent norm for

Thus a function / in TV + is in %*p if and only if its boundary values
are in Sfp. We say that an inner function Φ divides an β?p function
/ if / = Φg for some g e

COROLLARY. An inner function Φ divides a function f in βfp if and
only ifΦ divides the inner part of f. IfΦ^O, we have \\fΦ~ι\\ <
m\\f\\, where m~x is the essential infimum of |Φ| on the boundary.

The following proposition guarantees that certain functions which
we construct are of class JΓ and hence of class N.

PROPOSITION 1. Let z denote the unit tangent vector at a point z of
Γ, and let μ be a complex Borel measure on Γ. Then for each p < 1
the function f defined by

is of class %fv in G and in each component of the complement of G.
Let ff denote the boundary values of the function from the outside and
fj from the inside on a component of Γ ; of Γ. Then

where μ' is the Radon-Nikodym derivative ofμ with respect to arc length
on Γ.

Proof. Since each complex measure is a linear combination of pos-
itive ones and %*p is a linear space, it suffices to prove the proposition
for positive measure μ. Since Γ is C 2 , there is a δ > 0 such that at
each z e Γ there are two circles of radius δ tangent to Γ at z, with
one circle in G and one in G. Then

z 1 _{

and

lm——γ<-δ~ι, ζeG.

Thus in G the real part of / differs from a positive harmonic function
by a bounded function and so belongs to A1. By Lemma 10, the
function f\G is in &P(G) for each p<\. Similarly for g\&. The fact
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that (8) holds at each point where the cumulative distribution function
of dμ has a derivative follows from the argument in Nevanlinna [9],
section 163, pp 193 f. α

LEMMA 14. Ifh is a function of class S?p on Γ with 1 < p < oc, and
g(z, C) is the Green's function for G, then the function

is a harmonic function of class hp.

Proof. Observe that dg/dn is non-negative and

2π JΓ dn

Hence by the Holder inequality

and the integral on the right is a harmonic majorant for \u\p. D

PROPOSITION 2. Let h be a function of class S?p on Γ with 1 < p <
oc. Then the function f defined by

is of class %?p in G and in each component of the complement o/G.
Moreover, /(oo) = 0. If ff and f~ denote the limits from outside and
from inside on a component Γ7 of Γ, then

(10) f+{z)-fj{z) = h{z)

almost everywhere.

Proof. It suffices to prove the proposition when h is real. If δ is the
constant in the proof of Proposition 1, then in G we have

Re
2iz dg(z,

<δ -1

z-ζ dn

Consequently, Re / differs in G by a bounded harmonic function from

. Qds.
dn
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Since the latter is in %?p by Lemma 14, we have Refehp. By the
theorem of Riesz (Lemma 10) we have / e ̂ p. A similar argument
applies to each component of the complement of G, and the fact that
(10) holds follows from Proposition 1. D

LEMMA 15. LetfeJTp(G)forl<p<oo. Then

( l l j Ήϊjτz-ζaz-\o, ifζeG.

A function analytic in the complement G of G is said to be of class
%fr in G if it is of class %?r in each component of the complement. If
/ e ̂ ( G ) , and /(oo) = 0, then

f d z
2πiJΓz-ζdZ-\0, ifCEG.

This enables us to characterize the topological dual of ̂ p (G) as %β (G)
for 1 < p < oo, where q~ι = p~ι = 1, and where ^ ( G ) is the subset
ofβrq(G) consisting of those functions / with /(oo) = 0:

PROPOSITION 3. Let G be a finitely connected, bounded domain
whose boundary Γ is C 2 . Then for each continuous linear functional
L on β?p{G), 1 < p < oo, there is a unique function g e %Q{G) with
q~ι = p~ι = 1 such that

(13)

Proof. By the Hahn-Banach theorem we may extend L to a bounded
linear functional on ̂ fp (Γ). By the Riesz representation theorem there
is a function k e -S^Γ) such that

Define g in G and h in G by

and

Then g and Λ are in %?q by Proposition 2, and A: = g + h. Since
A/ € ̂ ( G ) for / e JTP(G), we have
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Hence

Since g(oo) = 0, it remains only to show the uniqueness of g. Suppose
that for some g e ^q{G) we had

for each / e JTp{G). Since (z - ζ)~ι e %>P{G) whenever ζ e G, we
must have

D

3. Fully invariant subspaces of &p. Let G be a bounded domain in C
with smooth boundary Γ, and let GQ, G I , . . . , GΛ_i be the components
of the complement of G. We say that a closed subspace Jt oϊβ^p{G) is
fully invariant if there are points OLJ e G7 such that (z—aj)~ιf(z) is in
Jt whenever / is. We may take αo = oo for the unbounded component
Go, in which case we require that zf(z) is in Jt whenever / is, i.e. that
Jt is invariant in our previous sense. Since any function holomorphic
in an open set containing G can be uniformly approximated on G
by rational functions with poles only at the points α, , we see that
the fully invariant subspaces of βfp(G) are just those closed subspaces
which are invariant under multiplication by any function holomorphic
in a neighborhood of G. This definition is not changed by conformal
mapping, and we may use it to define the notion of fully invariant
subspaces for domains in C which contain oo and also for open sets
in C which are a finite union of components.

The characterization of the fully invariant subspaces of β?p(G) for
multiply connected regions G closely resembles Beurling's character-
ization for ^P(A). This characterization was carried out for the an-
nulus by Sarason [12], and for the more general case by Hasumi [5],
and Voichick [13], [14]. Their results are summarized in the following
Theorem. We give a brief proof utilizing methods we shall use later.

If φ is an inner function in G, we denote by φ^p the space of all
/ E %*p which are multiples of φ, i.e., those / for which there exists
g e ^ p such that / = φg. These are clearly closed subspaces of <%*p

invariant under multiplication by rational functions with poles outside
G. The following theorem states that these are the only closed fully
invariant subspaces.
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THEOREM 1. Let Jί be a closed subspace ofβ^p{G) for 1 < p < oo
{weak" closed if p = oo) which is invariant under multiplication by
rational functions with poles outside G. Then there is an inner function
φ on G such that Jί = φ%fp.

Proof. Let φ be the greatest common divisor of the inner parts of
functions of Jί. Then Jί c φ%fp. Let Sf° denote the annihilator of
Sf in %tf{G). Since Jί is closed, Jί = J!m. Thus in order to show
that φ%?p C f̂, it suffices to show that each linear functional L in
Λf ° satisfies L(φg) = 0 for each g e J^p. In the case of ^°°, we
have assumed Jί is weak* closed in -2*°°, and so it suffices to consider
weak* continuous linear functional, i.e., those which are represented
by integrals of £?x functions.

If every continuous linear functional which vanishes on Jί is zero,
then Jf = %?p, and the theorem holds with φ = 1. Otherwise, let L
be a non-zero continuous linear functional in ^f °. Then there is a
k e -S^(Γ), p~x + q~ι = 1, such that

Define Tf in the complement of Γ by

(14) 7 / ( 0 = L((z - C)-1/)

Then for r < 1 we have Tf e <%*r in G and each component of the
complement of G. If / e Jί, and Jί is fully invariant, then Tf = 0
outside G. By Proposition 1 the function fk is the set of boundary
values of a function in β^r of G. The quotient of this function by / is a
meromorphic function in G of class N whose non-tangential boundary
values are almost everywhere equal to k. Denote this function by k,
and let k = ΦγΦ^K be its canonical factorization. If / € Jί has
the canonical factorization / = ΦF, then fk = ΦΦiΦ^1FK. Since
fk G ̂ r , Φ2 must divide Φ. Because this holds for each / e Jί, Φ2
must divide φ.

Let g G β?p be any multiple of φ. Then

gk = hφk = hφΦiΦ^K

is a function of class iV whose canonical factorization contains no
inner function in the denominator and whose boundary values are in

. Thus gk G β?x by Lemma 11, and



162 H. L. ROYDEN

Consequently L annihilates φJTp(G), and so φJ^p{G) c Jt. Thus
Jt = φβTP(G). Q

A slight modification of this proof gives the standard characteriza-
tion of the closed ideals in the algebra s/[G) of continuous functions
on G which are analytic in G.

If O is an open set which is the finite union of regions {G7} with
disjoint closures and smooth boundaries, we may still define fully in-
variant as before: A closed subspace of <%*P(O) is fully invariant if
rf e J? whenever f e Jf and r is a rational function with poles in
the complement of O. It is not difficult to see that a closed sub-
space Jt of &p(O) is fully invariant if and only if the subspace
jtj = {g: g = / | G , , / € ^} is a fully invariant subspace of &p(Gj).
Then Theorem 1 still holds with G replaced by O. Note that in this
case the inner function φ is given by giving inner functions φj on each
of the components G, of O. Some of the φj may be identically zero
without φ being identically zero.

4. Analytic pseudo-continuation. Let Di and D 2 be disjoint plane
domains whose boundaries have a smooth arc Γ in common, and let
f\ and f2 be meromorphic functions of class N on Di and D2. We
say that f2 is an analytic pseudo-continuation of f\ across Γ if the
boundary values of f\ and f2 on Γ are equal almost everywhere. Note
that an analytic pseudo-continuation of f\ to D2 across Γ is unique if
it exists.1

If /1 and f2 are in &ι (or any &p, 1 < p < 00) and f2 is an analytic
pseudo-continuation of f\, then Lemma 15 may be used to show that
there is a holomorphic function / on Di U D 2 U Γ with / | D , = //. In
this case f2 is an ordinary analytic continuation of / .

If φ is an inner function (or a quotient of inner functions) in the
unit disk Δ> then the function φ defined in A by

is an inner function (or quotient of inner functions) in Δ and φ~ι is
the analytic pseudo-continuation of φ to A.

For each inner function ψ on the complement G of G we define the
subspace Jtψ of^p(G) to be the space of those functions / e <%*P(G)
such that the function fψ\γ is almost everywhere equal to the non-
tangential boundary values of a function in <%*O

P(G). The following
proposition characterizes Jtψ in terms of its annihilators.

is no longer true if we do not require a pseudo-continuation to be of class N. See
Kahane and Katznelson [8].
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PROPOSITION 4. Let ψ be an inner function in β?°°{G). Then the
annihilator in βTP(G) ofψ%tf(G) is just the subspace

Jίψ — {/ G WP{G): fψ extends from Γ to a function in

Proof. Let / e Jfψ and g = ψhbc an arbitrary element of

Then fψ extends to a function in J^O

P{G) and so fg = /^Λ extends to

a function in ^ (G) with a double zero at oo. Hence

f{z)g{z)dz = Ό,
Γ

and / € [ψ^o

q{G)]°. This shows that Jtψ C [ψ^o

q{G)]°.

Let / be any element in | > ^ ( G ) ] 0 . For any C G G, the function

{z-ζ)~ι i s i n ^ ( G ) and so

If we set

for C G G, then Proposition 2 implies that A e ^ ( G ) , and that Λ has
the boundary limits f(z)ψ{z) almost everywhere on Γ. Thus / e Jtψ.
This shows that

[^(G)]° D

In the remaining sections we use the concept of analytic pseudo-
continuation to characterize some of the invariant subspaces of %*P{G)
which are not fully invariant. We begin by looking at invariant sub-
spaces for the backward shift.

5. Subspaces of β??ρ invariant under the backward shift operator. In

this section, we assume G is a bounded domain containing the origin.
The backward shift operator S* is defined on the space of analytic
functions on G by

(15) {

It is a left inverse of the shift operator (the operator S which sends /
into zf) and maps β?p{G) into itself. On ^ 2 ( Δ ) , where Δ is the unit
disk, S* is the Hubert space adjoint of S.

The methods of the preceding section can be used to characterize
the closed subspaces of ^ 2 ( G ) which are invariant under S*. Douglas,
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Shapiro, and Shields [2] have considered this problem from a slightly
different viewpoint.

For each inner function ψ on G we denote by Jtψ the space of
functions / e %?p{G) such that fψ can be extended to a function in
%*P{G) which vanishes at oo. Clearly, Jtψ is a closed linear subspace
of &p{G). life Jfψ, so is S*f = (/ - /(0))/z: The first term times
ψ has a continuation in &P(G), namely (1/z) times the continuation
of fψ. Likewise for the second term, and both vanish at oo. Thus Jtψ

is a closed invariant subspace for S*. We shall show that these are the
only closed subspaces of %?P{G) which are invariant under S*.

THEOREM 2. LetJί be a closed subspace ofβ?p(G) which is invariant
under S*. If I < p < oo, there is an inner function ψ on G such that

Proof. Let Lk be the linear functional on βfp(G) given by

. Then

f(z)k(z)dz

since

fc(z)<fe=α

Thus

(16)

where S is the linear operator o n J ^ ( G ) which takes k(z) into z~ιk(z).

Let Jt be a closed subspace of ^ ( G ) invariant under 5*. Then
(16) implies that ^f ° is invariant under S\ But this means that .#° is
a closed fully invariant subspace of %fi(G), since the complement of
G has only the one component G. By Theorem 1 applied to
we have

for some inner function ψ on G. Hence

= Jtψ. π

6. Invariant subspaces of %?p for multiply connected regions. Let G
be a finitely connected bounded region with smooth boundary. As
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usual we denote the unbounded component of the complement of G
by Go, and the bounded components by G i , . . . , Gw_i. We let -Γy de-
note the boundary of Gjr, 0 < j < n - 1 . In this section we characterize
some of the closed subspaces Jt of %?P{G) which are invariant under
multiplication by z. We begin with a theorem which gives us infor-
mation about the invariance of such a subspace under multiplication
by a rational function.

THEOREM 3. Let J! be a closed subspace of %fp{G), 1 < p < oo
{weak* closed ifp = oo), which is invariant under multiplication by z,
and let G 7 be a bounded component of the complement of G. Then
either Jt is invariant under multiplication by rational functions with
poles in Gy or else each pair of elements f, g in Jt has the property
that f/g has a pseudo-continuation of class N in Gj. The inner part of
the denominator of this pseudo-continuation is a multiple of an inner
function Ψ in Gj which depends only on g.

Proof. Suppose there is a function g e Jt such that {z -a)~ιg φ Jt
for some a e Gj. Then it suffices to show that for each / e Jt the
quotient f/g has a pseudo-continuation to G y . Let L be a continuous
linear functional on βTp{G) such that L\Jt\ = 0 and L[(z-a)-ιg] Φ 0.
Then there is a function k e -S^(Γ), p~ι + q~ι, such that for each
/ G J^P we have

Let ΓQ be the outer boundary of G and - Γ 7 the boundary of G ; . Let
ko and kj be the restrictions of k to Γo and Γ7. By adding a constant
to k, if necessary, we may assume k0 ψ 0 and kj ψ 0.

The functions Tf defined by

f(z)k(z)dzJL r
2πiJΓ

z-ζ

are of class %** for each r < 1 in the complement of Γ. If / e Jt, then
for each ζ e Go> the function (z - ζ)~xf e Jt. Hence for / e Jt the
function Tf is identically zero in Go- By Proposition 2 the function Tf
has the boundary values fko almost everywhere on Γo as we approach
Γo non-tangentially from G.

Let g € Jt be the function chosen at the beginning of the proof.
Then (Tg)(a) Φ 0, and so Tg φ 0 in G 7 . Since the function Tg
in G has boundary values gko almost everywhere on Γo, we see that
Tf/Tg = f/g in G. Let {Tf)" and (7^)~ denote the boundary values
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on Γz of Tf and Tg in G7, and (Γ/)+ and (Tg)+ the boundary values
on Γj approached from G. Then (Γ/)+ - (Tf)' = kjf and {Tg)+ -
(Tg)' = kjg. Thus (Tf)'/{Tg)' has the boundary values //# on Γ, .
Since Tg φ 0 in Gj9 the function (Tf)/(Tg) is of class JV in G7. Thus
fig has a pseudo-continuation to G ; of class N. The denominator of
the canonical factorization of this function is a multiple of the inner
part of Tg. π

The next lemma characterizes those closed invariant subspaces of
JPp, 1 < p < oo, which contain the constant functions. We let Go de-
note the unbounded component of the complement of G and {G/} the
bounded components, and let Γo be the outer boundary of G and —Γ/
the boundary of G/. For a function k e %*P(G) we use the notation
k = (ko,k\,...,kn-\) to indicate that k\Q. = kj.

LEMMA 16. LetJΐ be a closed invariant subspace of <%*P(G), 1 < p <
oo. Then 1 G / if and only if every annihilator k = (k$, k\,..., fcπ-i)

in ^ ( G ) Aα5 A:o = 0.

Proof. Suppose &o = 0 for each k 6 Jf. Then 1 is annihilated by k
for each k e Λf °. This implies 1 € Jί, since J? is closed.

We now suppose 1 € JK, and take any fc € ^ ° . Since 1 belongs to
Jί, so does the function (z - ζ)~ι for each £ G Go- Hence

1 fk(z)dz_

for C G GQ. But

:{z)dz 1 /" ko{z)dz 1

for C € Go. Thus A:0(C) = 0. D

Let
Λ-l

be the union of the bounded components of the complement of G,
and let
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be the negative of the boundary of G/. Then Lemma 16 says that
the annihilator Jt® of an invariant subspace Jt which contains 1 is in
effect a subspace of β^q{Gj). This enables us to establish the following
theorem characterizing those invariant subspaces.

THEOREM 4. Let Jί be a closed invariant subspace of^p(G)t 1 <
p < oo, and suppose 1 e f̂. Then there is an inner function ψ on G/
such that Jί is the space Jfψ consisting of those f e β^p{G) such that
fψ is the boundary values of a function in

Proof. By Lemma 16 each L e ^° is of the form

for some k e &q{f*i). If S is the operator on β?p{G) and
which takes g into zg, then

Lk[Sf] = ^ιf zf{z)k(z) dz = Lsk[f],

This shows that the annihilator ^f ° of Jί is an invariant subspace of
<%*p(Gj). Since each component of G is a bounded simply connected
domain, ^#° must be a fully invariant subspace of ^ ( G / ) . By Theo-
rem 1 there is an inner function ψ on G/ such that J?° = ψ^q(Gj). If
we extend ψ to G by setting ψ = 0 in Go, then ψ is an inner function

and

Thus

by Proposition 3. D

This theorem gives us a one-to-one correspondence between invari-
ant subspaces of JPp(G) containing 1 and the inner functions on G/.
Observe that the spaces Jtψ are closed invariant subspaces for each ψ.
Also Jtw C Jtψ* if and only if ψ divides ψr.

A subspace Jt of %?p is said to be a reduced subspace if the greatest
common divisor of the inner parts of the functions of Jί is 1. If JK is a
closed invariant subspace of %*p and φ is the greatest common divisor
of the inner parts of functions of f̂, then the subspace Jί1 = {/: fφ e
^} is a reduced closed invariant subspace of %fp and ^# = $?.#'. Thus
to classify the closed invariant subspaces of S^p it suffices to classify
the reduced ones.
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The problem of giving an effective description of reduced invariant
subspaces of β?p(G) which do not contain 1 seems to be difficult. I
have only been able to characterize those subspaces Jt that satisfy a
fairly strong additional hypothesis:

Hypothesis H. The subspace Jί contains a function h with the prop-
erty that on the inner boundaries Γ/ of G the boundary values ofh sat-
isfy m <\h\ < M almost everywhere for suitable constants M, m> 0.

Some of the significance of the hypothesis H is given by the follow-
ing lemma:

LEMMA 17. Let Jt be a reduced invariant subspace of^p (G) satisfy-
ing hypothesis H. Then for each k = {k0, kϊf..., kn-{) in %£{(*) which
annihilates Jί the function k0 extends to a function in ^ ( G G Γ )

Proof. Let k e %${G) annihilate ΛT, and define Tf as usual by

f(z)k(z)dz
z-ζ

Then Tf = 0 in G o for f eJt. Thus for / e Jί the function Tf in
G is a function of class %?r, r < 1, with boundary values fk$ on Γo.
Hence /CQ has an extension to G of class N whose denominator divides
the inner part of each / E ̂ #. Since Jt is reduced, this denominator is
one and k§ extends to a function of class JV+ in G. Since its boundary
values on ΓQ are in S?q, we see that ko is regular and of class 7V+ in
G U Go U Γo.

Let h be the function in Jt satisfying hypothesis H, and let Γ'o be
a curve in G homologous to Γo. Then for ζ in the region between ΓQ
and Γ/, we have

1 f h(z)ko{z)dz , 1 f h{z)kI{z)dz

h(z)ko(z)dz t 1 f h(z)kI(z)dz
= __!___ r h(z)ko(z)dz { l r

2πi JΓQ z-ζ 2πi JΓι z-ζ '

Since hk0 e -S^(Γ'O) and hkj e &qφi), we see that hk$ belongs to
%*q in the region between ΓQ and Γ/. Thus the boundary values hko
belong to 2?q on Γ/. Since h is bounded from below on Γ/, we have
the boundary values of ICQ on Γ/ in Sfq, and so ICQ is in ^ q of the
exterior of Γ/. D
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LEMMA 18. Let Gy be a simply connected region with smooth bound-
ary Γj, and let u be a complex-valued measurable function on Γ7 with
log 1̂1 integrable. Then there is a χ e <2?°°(Γj), with \χ\ = 1, such that
for each f e <S?p(Γj) the function fu is the boundary value of a function
of class N+ in G7 if and only if fχ is the boundary value of a function
of class %fp in Gj.

Proof. Let v be the outer function in G7 whose boundary values
have modulus \u\ almost everywhere. Set χ = u/v. Then fχ has an
extension to Gy of class N+ if and only if fu does. But an extension
of fχ to Gj of class iV+ is of class %Tp since fχe^fp. π

THEOREM 5. Let <£ be a closed invariant subspace ofβ?p(G), 1 <
p < oo, and suppose Jt satisfies hypothesis H. Then there is an inner
function φ in G and a measurable function χ on Γ/ with \χ\ constant
almost everywhere on each component of Tj such that Jt = φJίχ,
where J?χ = {/ e %?p: fχ has an extension from Γ7 to XP(G/)}. The
function ψ is the greatest common divisor of the inner parts of the
functions in Jg.

Proof. Without loss of generality we may suppose that Jί is reduced.
Let /i be a fixed function in Jί, f\ ψ 0. It follows from Theorem 3
that there is an inner function Ψ in G/ such that for each / e Jΐ
the function fΨ/f\ has an extension to G/ of class iV+. Let ψ be
the greatest common divisor of all such inner functions Ψ. Since
the denominator of the extension of class N of f/f\ divides each Ψ it
divides their greatest common divisor ψ. Thus fψ/f\ has an extension
of class iV+. Let χ be the function of constant modulus given by
Lemma 18 for u = ψf{~1. Then fχ extends to ̂ ( G / ) for all feJf,
and s o . # aJίχ.

Since J£ is closed, we will have Jfχ c Jί if every linear functional
L on β?p(G) which vanishes on Jt also vanishes on Jίχ. Such an L is
represented by

where k = {ko,kj) E ^ ( G ) . By Lemma 17 the funxction k$ is of
class %β on the exterior of Γ/. Thus
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As usual we define Tf in f by

τ m - L [ { z o n-2πijTι z_ζ •

Then Tf is a function of class %?r in f for each r < 1.

If / is in Jί so is (z - ζ)~ιf for ζ e Go. Thus for / e Jί we have
Tf = 0 in Go and hence also everywhere outside Γ/. Consequently
the function (&o + kj)f has an extension Tf to G/ of class β?r for
each r < 1. Since (A:Q + &/)/ is in - ^ ( Γ ) , its extension is in β?x(G[).
Because fψ/f\ has an extension of class N+, we see that the extension
of (fc/ + &o)/i is divisible by ψ.

Let ^ be in Jtχ. The fact that gχ has an extension to G/ of class
implies that gχ/f\ has an extension of class N+. If ^y ^ 05

has an extension to G/ of class iV+. Since ^ G JΪ?P and the A:'s are in
, this extension is of class βfι. Thus

by the Cauchy theorem. This proves the theorem.

I have only been able to characterize the invariant subspaces of
%*P{G) under the restrictive hypothesis H. That not every invariant
subspace of %*P(G) is of the form φJTχ with \χ\ = constant can be
seen by the following example, due to Hitt:

Let G be the annulus {z: 1 < \z\ < R} and h the function h(z) =
z - 1. Then the space Jί = h(z)J^p(AR), where AR = {z: \z\ < R}, is
a reduced closed invariant subspace of <%*P(G). Suppose some space
Jίχ, with \χ\ = 1 almost everywhere on \z\ = 1, contains h(z). Then
χh extends to a function g in J ^ ( Δ ) . Let # have the factorization

g= ψgo
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where ψ is inner and go outer on Δ. Then

χh

go

and since h/go is outer ψ = χ. Consequently

since every function in Jί has a zero at 1.

This example shows that zeros (and presumably infinities) on Γ/ of
the outer parts of functions in Jt play a role in determining Jΐ. It
seems to me likely, however, that each closed invariant subspace Jΐ of
%*P(G) is of the form jf = hJΐχ where h is a function in %*p(G) whose
outer part is continuous and non-zero on the outer boundary Γo of G.
We may even be able to take / to be the boundary values of an inner
function on G/. Hitt [6] shows this is true f o r G = { z : l < | z | < i ? }
and p = 2.
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