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^-THEORY FOR GRADED BANACH ALGEBRAS II

A. VAN DAELE

Let A be a real or complex Banach algebra and assume that A
is equipped with a continuous automorphism a such that a2 is the
identity. In "i^-theory for graded Banach algebras I" we have asso-
ciated a group K{A) to such a pair (A, a). In this paper we prove
that this group K(A) is isomorphic with K(SA®C) where SA is the
algebra of continuous functions / : [0,1] -> A with /(0) = / ( I ) = 0
and equipped with pointwise operations and where SA&C denotes the
graded tensor product of SA with the Clifford algebra C = C0Λ. The
periodicity of Clifford algebras is used to show that K(SSA) = K(A)
in general and K(S2A) — K{A) in the complex case. All this gives
rise to an important periodic exact sequence associated to an algebra
A and an invariant closed ideal / with

> K(A) -> K(A/I) -> AΓ(/(g>C) -> K{A®C) -> K(A/I&C)

as its typical part. The usual 6-term periodic exact sequence with Ko

and K\ is a special case of this sequence.

1. Introduction. In a previous paper we have defined an abelian
group K{A) for any real or complex Banach algebra A equipped with
a Z2-grading [4]. For convenience we work with an involutive auto-
morphism a that determines the grading in the sense that degα = 0
if a(a) = a and degα = 1 if a(a) = —α. The main result in [4] is the
usual exact sequence

K(SI) -> K{SA) -> K(S(A/I)) -> K(I) -> K(A) -

for any invariant closed two-sided ideal / of A. As usual SA is the
algebra of continuous functions / : [0,1] —• A such that /(0) = /(I) =
0 with pointwise operations and supremum norm.

In this paper we will obtain another important exact sequence. It is
related to the following lifting problem. As above let / be an invariant
closed two-sided ideal of A. Denote by π the quotient map and also
use the symbol a for the induced involution on A/1. Assume that A
has an identity and take an element x e A/1 such that x2 = 1 and
a(x) = -x. Of course there is an element a € A such that π(a) = x
and by taking \{a- a(a)) we may even assume that also a(a) = -a.
In general however it will not be possible to find a lifting a such that
also a2 = 1.
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Consider the following two motivating examples. First let a be the
flip automorphism on A® A. Then any element aeAφA with a2 = 1
and a(a) = -α has the form a = (b, -b) with b = 2p - 1 and p a
projection (i.e. p2 = p) in A. It is well known that projections in a
quotient cannot always be lifted. Secondly let a be the automorphism
on M2{A), the algebra of 2 x 2 matrices over A, defined by

Then any element a e M2(A) with α2 = 1 and a(a) = -α has the form

-(£ o)
with b invertible in A. Again it is well known that invertible elements
cannot always be lifted to invertible elements.

So the general question arises to "measure" the obstruction for an
element x e A/1 with x2 = 1 and a(x) = —x to have a lifting a
such that also a2 = 1 and a(ά) = -a. The idea is the following.
First construct a good lifting in a somewhat bigger algebra and then
"measure" the distance of this lifting to the original algebra. This is in
fact also the basic idea of the connecting map K(S(A/I)) —• K(I) in
[4]. The bigger algebra there is CA, the algebra of continuous functions
/ : [0,1] -» A with /(0) = 0. The distance of an element / e CA to
SA can be measured simply by /(I).

Here we consider the crossed product of A by the action a of
Z 2 as the larger algebra. We will denote this by A®C (for reasons
which will be made clear in the text) and use the common realisation
{a + bf\a, b eA} with f2 = 1 and fa = a(a)f for all aeA. The auto-
morphism on A®C will not be the dual action from crossed product
theory but the automorphism a defined by ά(a + bf) = a(ά) - ot(b)f.

Then it is not hard to show that if a e A and a(a) = -a then
y = sin^πα + fo,o%\πa satisfies y2 = 1 and ά(y) = —y. Moreover
if π(a) = x and x2 = 1 then π(y) = x simply because s i n ^ x =
x sin f = x and cos \nx = cos f = 0. So >> would be a good lifting in
A®C.

If y would be in A itself then —yfy = —fa{y)y = fy2 = /. So
we could use —yfy as a sort of measure for the obstruction. This
element z = -yfy has the property that z2 = 1 and ά(z) = -z as
well. Moreover π(z) = -x/x = / so that in fact z e 7+®C where 7+
is the ideal / added with the identity of A.
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All this results in a map K(A/I) —• K{I®C) and it should not be
surprising that the sequence

+ K(A) -> K{A/I) -> K(I®C) — K(A®C) -> K(A/I®C)

is exact. This sequence is obtained in §3 of this paper. If it is applied
to the algebra CA with the ideal SA it yields an isomorphism K(A) —•
K(SA®C). In fact, in our paper this isomorphism is proved first (in
§2) and it is combined with the main exact sequence of [4] (see above)
to obtain the new sequence.

The notation A®C stands for the graded tensor product of A with
the Clifford algebra C = C 0 1 . The periodicity of Clifford algebras
leads to the periodicity of the groups K{SnA) and implies that our
long exact sequences are in fact periodic. We have K(SSA) = K(A)
in general and K(S2A) = K(A) if A is a complex Banach algebra.

Throughout the paper we will freely use notations and properties
from the first paper [4], We will also use the same point of view w.r.t.
notations. So often we will use the same symbol to denote different
but very similar things. Finally we wish to thank P. de la Harpe for
his hospitality at the University of Geneve and for discussions we had
on this subject. We also express our gratitude to C. Hu for stimulating
conversations on this material.

2. The isomorphism K(A) -> K(SA®C). Let A and B be Banach
algebras over the field K of real or complex numbers. Assume that a
and β are continuous involutive automorphisms on A and B respec-
tively. Let A<g>B denote the algebraic tensor product of the vector
spaces A and B. We equip A ® B with the graded product defined by

(a ® b)(c <8> d) = ac <g> bd if a(c) = c or β(b) = b

(a ®b){c®d) = -ac ® bd if a(c) = -c and β(b) = -b.

It can be checked that this product is well defined on A ® B and that
it makes A ® B into an associative algebra (see e.g. [2], page 129 and
[3], page 522). We also equip A®B with the involutive automorphism
a ® β. The algebra thus obtained, together with the involution, will
be denoted by A®B.

We will only use this notation when B is finite dimensional. In that
case it doesn't matter for our purpose which norm is considered on
A®B as long as it is a Banach algebra norm which is compatible with
the norms on A and B. Such a norm exists in all the cases considered
in this paper.
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Another important remark is that such a graded tensor product is
an associative operation in the sense that A®{B®C) = (A®B)®C for
algebras A, B and C.

In this section we will only consider a very special case for B.

2.1. NOTATION. Let C denote the Clifford algebra C 0 1 = R φ R
with the usual involution given by (α, b) —• (b, a) where now a, b e R.

Throughout this section we will work with the algebra A®C where
A is a given Banach algebra with involution. The involution on A®C
will be denoted by a.

In order to work with this algebra A®C it is important to have a
nice and easy description of it. We first realise it as a subalgebra of
M2(A). That is not surprising since

A®C = A®C0Λ C A®C0Λ Θ C1 '0 = A ® C u = A ® M2(R) =

Remark that different notations are used for the Clifford algebras in
[2] and [3]. We will use the conventions of [2] and we also refer to [2]
for all results on Clifford algebras.

2.2. LEMMA. The mapping

a(b) a{ά

defines an injectίve homomorphism of A®C into Mι(A).

It is a matter of straightforward checking that this result is true.
Moreover, it is easily seen that the involution on A&C is carried to
the restriction of the involution γ on M^{A) which we defined before
(see [4]) by

(a ^(
y \ c d) \-a(c) a(d)

It is also interesting to notice that the algebra A&C is isomorphic with
the crossed product A ®a Z2 of the algebra A by the action of Z2 given
by (see e.g. [5], page 11). However, the action γ does not correspond
to the dual action a which would be given by

Λ . (a b\ (a -b\

For notational convenience we will still work with another description
of A®C. For this we suppose first that A has an identity. Then denote
/ = 1 0 (1, -1) in A®C. It is clear that
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Moreover a —• a ® (1,1) is an injective homomorphism of A in A&C.
If we identify A with its image in 4̂® C we find the following.

2.3. LEMMA. If A has an identity then

{a + bf\a,beA}

where f2 = 1 and af = ./α(α) y&r all a. The involution is given by
ά(a + bf) = a(a) - <*(

Again this is a matter of simple checking. Remark that the structure
of A®C is completely determined by the algebraic relations in the
formulation of the lemma.

It turned out to be most convenient to use this description of A&C.
If A has no identity we can consider A+ and we can still use the same
description. In that case however / is no longer in A®C.

In this section we will construct an isomorphism from K (A) to
K(SA<g)C) where as before SA is the algebra of continuous functions
/ : [0,1] -+ A with /(0) = /(I) and pointwise operations. This result
will have very important consequences such as periodicity. We will
discuss this in the following section. The proof of this result is mainly
a consequence of a theorem of Wood [6] which we will formulate in
due time. Unfortunately there are some technical difficulties to over-
come before we can get to the stage where this theorem can be used.
Many of these have to do with the problems of defining K{A) when A
is a general Banach algebra. We refer to §3 of [4].

Recall the definition of K(A). First we considered A+ and M2(A+)
with the involution γ defined by

(a ίΛ / a(a) -a(b)\
' \c d) \-a(c) a(d)J'

In connection with this step in the procedure we have the following
lemma.

2.4. LEMMA. There is a natural isomorphism from M2(A+)®C to
compatible with the natural involutions on the two algebras.

Proof Let A+®C = {a + bf\a, b e A+} with f2 = 1 and af = fa(a)

as in Lemma 2.3. Let f\ = (ζ _ A Then f2 = l and af\ = f\γ(ά) for

any a e M2(A+). So v/e have

= {a + bfx \a, b e M2(A+)} = M2(A+<§>C).
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The involution considered on Λf2(v4+)<§>C is γ and given by a + bf\ —•
γ(a) - y{b)f\. It is straightforward to verify that this coincides with
the involution

(a ft\ / ά(a) -ά(b)\
\c d) V-ά(c) ά(d)J

where now a, b,c,d e v4+®C D

We will in what follows work further with the set {a + bf\ \a, b e
M2(A+)} as a description of Mι{A+)®C. Also we will use γ to denote
the involution on this algebra. Remark that loosely speaking the sec-
ond statement of the lemma says that going from a to γ first and then
to γ is the same as first taking a and then associating γ in the same
way as γ is associated to a.

The next step is to consider M4(A+) = M2(M2(A+)) with pointwise
application of the involution γ. For this reason we here have to use
the element k = f\ φ f\ to get a natural description

M*{A+)®C = {a + bk\a, b e M4{A+)}

in such a way that still k2 = l,ka = γ(a)k, and involution given by
y(Λ + bk) = y(α) - γ{b)k when α, Z? G M 4 ( ^ + ) .

2.5. NOTATION. In what follows we will use the notation B =
M4(A+).

Recall that now any element in ^(^4) is of the form [x] where x E
Mn(B) with x2 = 1 and γ(x) = -x. As before [x] denotes the class
of x with respect to a twofold equivalence relation. On the one hand
there is homotopy equivalence while on the other hand we have the
equivalence due to the inductive limit associated with the imbeddings
x -^ x®e where e e M4(K) is still given by

Γθ 1 0 Ol

1 0 0 0
0 0 0 - 1

L0 0 - 1 0J
We will use a number of steps. Each step will be in an obvious way
compatible with the quotient map φ : A+ -» K. This is important
since K(A) is the kernel of the map φx : K{A+) -» K(K).

2.6. NOTATION. Let D = {y e B®C\γ(y) = y}. Denote by γ the
automorphism on D defined by γ(a + bk) = a-bk. It is easy to check
that D is indeed invariant under γ.

Remark that here indeed γ is the dual action in crossed product
theory associated to γ (cf. remark after Lemma 2.2.).



^-THEORY FOR GRADED BANACH ALGEBRAS II 383

Now consider x e B and assume that x2 = 1 and γ{x) = -x.
Put y = xk. Then y e B®C, γ(y) = -γ{x)k = xk = y so that in
fact y e D. Moreover y2 = xkxk = xγ(x)k2 = -x2k2 = - 1 and
γ(y) = -y. So to any x e B with x2 = 1 and γ(x) = -x we associate
an element y € D with y2 = - 1 and γ(y) = —y. This is the basis for
the following definition and proposition.

2.7. DEFINITION. Consider homotopy classes of elements y e
Mn(D) such that y2 = - 1 and γ(y) = - y (with the convention that
again γ is used for the elementwise application of γ on Mn(D)). Con-
sider the inductive limit of these classes with respect to the imbeddings
y —> y + ek. Denote this set by H.

It is clear from the above considerations that also (ek)2 = — 1 and
γ(ek) = -ek. Because e is homotopic with -e also here ek will be
homotopic with -ek. So in fact H is similar to the group introduced
in §2 of [4]. The only difference is that here we have elements y
with y2 = - 1 instead of y2 = 1. In the complex case this makes no
difference. In the real case we get something else. But clearly this new
situation is completely analogous.

We refer here to the Remark 2.14 of [4]. In that remark we have
implicitly replaced B by D just by defining another product on B.

2.8. PROPOSITION. The map x —• xkn where x e &^{B) and kn is
the direct sum ofn copies ofk induces an isomorphism from Kk(B) to
H.

Proof This is almost obvious. We have seen already that x2 = 1 and
γ(x) = -x implies xkn € Mn(D) and (xkn)

2 = - 1 and γ(xkn) = -xkn.
Moreover e is sent to ek and the inductive limit in Ke(B) and H are
precisely taken with respect to these points. D

We are now able to use the theorem of Wood [6]. This will be our
next step. Also here we will first motivate it. So let y e D such that
y2 = - 1 and y(y) = -y. Define the continuous function v : [0,1] —• D
by

v(t) = (cos \πt + y sin \%t){zo& \πt - ek sin \nt\
Then v(t) is invertible in D, the inverse being

v(t)~ι = (cos^πί + eksin^πt)(cos^πt - yύn^πt).

Furthermore v(0) = 1 and v(l) = -yek. Now γ(-yek) = —γ(y)γ(ek)
= -(-y)(-ek) = -yek. So y(v(l)) = v(l). This is the basis for the
following definition and the formulation of Wood's theorem.
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2.9. DEFINITION. Consider homotopy classes of continuous func-
tions v : [0,1] -> Mn(D) such that v(ί) is invertible for all ί, v(0) = 1
and y(v(l)) = v(l). Let G be the inductive limit of these classes with
respect to the imbeddings v —> v 0 1 where here 1 denotes the constant
function with value l e u .

In the complex case the group G is nothing else but the group K\
of the algebra of continuous functions / : [0,1] —> D where /(0) G Cl
and y(/(l)) = / ( I ) . In the real case we only have "one half of the
K\ since we have the restriction v(0) = 1.

2.10. THEOREM (WOOD). Let y e Mn(D) be such that y2 = - 1 and
γ(y) = -y. Associate the function v : [0,1] —> Mn{D) defined by

v(t) = (cos \πt + y sin ^π£)(cos \πt - enkn sin \πt).

Then the map y —• v induces an isomorphism of the groups H and G.

Let us remark here that the map described above is clearly compat-
ible with direct sum which induces the group composition law in the
two cases. Further if y = ek then v is defined precisely in such a way
that v = 1. This assures that the map is compatible with the inductive
limit structures.

The use of Wood's theorem is the crucial step. The following how-
ever is also important to bring us closer to the group K(SA®C). So
let v : [0,1] —• D where v is continuous, v(ί) is invertible, v(0) = 1 and

)

Define z : [0,1] -+ B®C by z(t) = v(t)kv(t)-{. Because k2 = 1
we also have (z(t))2 = 1. Because v(t) e D we have γ(v(t)) = v(t)
for all t and since γ(k) = -k we also have γ{z(t)) = —z{t). Clearly
z(0) = k since v(0) = 1. We claim that also z(l) = k. Indeed, because
v(l) e B®C and y(v(l)) = v(l) we must have v(l) G B. But as also
v(l) G D we have y(v(l)) = v(l). On B however y coincides with y.
So all together we get

z(l) = v{\)kv{\yx = kγ{v(l))v(l)-1 = kv{l)v(l)~ι = k.

So we have associated to v a function z : [0,1] —• B®C such that
z(t)2 = 1, γ(z(ή) = -z(ί) for all t and z(0) = z(l) = k. This leads to
the following.

2.11. PROPOSITION. Let v : [0,1] -> Mn{D) be a continuous function
such that v(t) is invertible for all t, v(0) = 1 and y(v(l)) = v(l). Define
z(t) — v(t)knv(t)~ι for all t. Then the map v —• z defines an injective
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homomorphism of the group G into the group Kk{ΩB®C) where ΩB is
the algebra of continuous functions g : [0,1] -+ B such that g(0) = g(l)
with pointwise operations.

Proof We have seen already that z is a continuous function from
[0,1] into Mn(B®C) and that z(t)2 = 1 and γ(z(ή) = -z(t) for all
t. We also showed that z(0) = z(l) = kn. Moreover if v is the
constant function 1 then z is the constant function with value kn.
Then it clearly follows that we obtain a map from the group G (where
the inductive limit is taken w.r.t. to the imbeddings v —• v θ 1) to
the group Kk(ΩB<g>C) (where the inductive limit is taken w.r.t. the
imbedding z —> z®k, where now k also denotes the constant function
on [0,1] with value k).

We will now show that this map is injective. Because we already
have a group homomorphism it will be sufficient to prove the follow-
ing. Consider a continuous function v : [0,1] -» Mn{D) such that
v(t) is invertible, v(0) = 1 and γ(v(l)) = v(l). Assume that the as-
sociated function z given by z(t) = v(t)knv(t)~ι is homotopic with
kn in <9^(ΩB<g)C). If necessary we first may have to pass to trivial
extensions. We then must show that v is homotopic with 1.

Because z is homotopic with kn within ^n(ΩB®C) by Proposition
2.3 of [4] we can find a continuous function w : [0,1] x [0,1] —>
Mn[B®C) such that

(i) γ{w(s, ή) = w{s, t) for all s, t,

(ii) w(s, 0) = w(s,l) for all s,
(iii) w(0, t) = 1 for all t,

(iv) w(s, t) invertible for all s and t,

(v) z(t) = w{\,t)knw(\,t)-χ for all*.
Let a(i) = v{t)~xw(\,t) for all t. Because v(t)knv(t)-{ = z{t) =

w(l, t)knw{\, t)~ι we have that a{t) commutes with kn. Because also
y{a(i)) = a{t) we get that a{t) e Mn(B) for all t.

Define u(s,t) = w(s,t)w(s,0)~l for all s,t. We first show that
s —• u(s,-) defines a homotopy between the functions 1 and t —•
v(t)a(t)a(0)-1. Indeed

(i) γ(u{s, ή) = u(s, t) so that u(s, t) e Mn(D),
(ii) u(s, 0) = 1 for all s,

(iii) u(s, 1) = 1 for all s,

(iv) M(0,0 = 1 for all t9

(v) w(l, t) = w(l, t)w{l, O)"1 = v(t)a{t)a{0)-1.
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Next consider (s,t) -> v(t)a(st)a(0)~{. We claim that this defines
a homotopy between the functions v and t —» v(t)a(t)a(Qi)~x. In-
deed, for all s we have v(l)a(s)a(0)~l e Mn(B) and if s = 0 we
have v(t)a(sήa{0)~1 = v(ί) and if 5 = 1 we have v ^ α ^ M 0 ) " 1 =

vίOflWβίO)"1.
Combining the two results we see that v is homotopic with 1 within

the set of continuous functions g : [0,1] —• Mn(D) such that g(0) =
l,g(t) invertible for all t and γ(g{\)) = g(\) (which is equivalent with
g{\)eMn{B)). u

In the following proposition we find the range of this map.

2.12. PROPOSITION. Let z : [0,1] —> Mn(B®C) be a continuous
mapping such that z(t)2 = l,γ(z(t)) = —z(i) for all t and z(0) =
z(l) = kn. Then there exists a continuous function v : [0,1] —• Mn{D)
such that v(t) is invertible for all ί, v(0) = 1 and γ{v(\)) = v(l) and

Proof It is clear that z is homotopic with the constant function with
value kn by means of functions with value kn at 0. By Proposition 2.3
of [4] there exists a function v : [0,1] —> Mn{B®C) such that v(t)
is invertible and γ(v(t)) = v(t) for all t and such that v(0) = 1 and
z{t) = v(t)knv(t)~ι. Because γ{v{ή) = v(t) we have v(ί) e Mn(D)
and because z(l) = kn we have that v(l) commutes with kn so that
v(l) G ArΛ(5) and γ(v(l)) = v(l). D

The group K(SA®C) is a subgroup of the group Ke{M^{{SA®CY)),
Clearly M4((SA®C)+) c Ω5®C because 5 = Λf4(^+). The mapping
v —> z in Proposition 2.10 brings us to the group Kk(ΩB<g>C). This
group is isomorphic with A^(Ω5®C) as we have seen in [4]. In this
case it is easy to describe this isomorphism.

2.13. PROPOSITION. Let p = (1/Λ/2)(1 + ek). Then γ(ρ) = p, p is
invertible and pkp~ι = e. Hence the automorphism a -> pap~ι of
B®C induces an isomorphism from Kk(£lB®C) to Ke(ΩB<g>C).

Proof Because γ(e) = -e and γ(k) = -k we have γ(p) = p. More-
over because e e B and γ(e) = -e we have ek = kγ(e) = —ke. Then
simple calculations give that p~ι = (l/>/2)(l + ke) and pkp"1 = e.
All the rest is then obvious. D

If we put everything together we have now obtained an injective
homomorphism from Ke{B) into Ke(ΩB®C). The mapping is given
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by the following formula. If x e Mn(B) and x2 = 1 and γ(x) = -x
then let

z(ί) = - = ( 1 +enkn)v{t)knv{t)-χ--={\ +knen)V2 V2

with

v(ί) = (cos \πt + xkn sin ^πt)(cos \πt - enkn sin

We are now ready to complete the argument and to prove our main
result.

2.14. THEOREM. The mapping described above defines an isomor-
phism from K{A) to K(SA®C).

Proof. Let us first show that our mapping really goes from K(A) to
K{SA®C). In [4, Proposition 3.7] we saw that any element in K(A) is
of the form [x] where x e Mn{M4{A+)) such that x2 = 1, γ(x) = -x
and φ(x) = en.

If we apply our map to this x we have seen before that z e
Mn(ΩB®C) and z(ή2 = 1 and γ(z(ή) = -z(t) for all t and z(0) =
z(l) = en. Now if we apply φ we get φ{y{t)) = 1 because φ{x) = en

and so φ{z(t)) = en for all t. This means that in fact

z e Mn(M4{(SA®C)+)).

So [z] G Ke(M4((SA®C)+)) and precisely because p(z(ί)) = en for all
ί we have [z] e K(SA®C).

It is clear that all steps are compatible with direct sums and with
the imbeddings (as we have remarked before) so that we get a homo-
morphism.

Let us show that it is injective. So assume that [z] = 0. This means
that z is homotopic with en within ^(Λf4((&4<8)C)+)) (if necessary
we first pass to a trivial extension). Clearly then also z is homotopic
with en in the larger set ^(ΩB&C). But because of the injectivity at
the different levels (essentially Theorem 2.10 and Proposition 2.11),
it follows that also [x] = 0 in Ke(B), hence in K(A).

Finally we prove that it is surjective. Again by [4, Proposition
3.7.] any element in K(SA®C) has the form [z] where φ(z) = en

and z e ^n{M4({SA^C)+)). In particular z : [0,1] -> &n{B®C)9 z is
continuous, z(0) = z(l) = en and φ{z(t)) = en for all t. By Proposi-
tion 2.11 we have that

z(t) = -^(l+enkn)



388 A. VAN DAELE

where v : [0,1] —> Mn(D) is a continuous function such that v(ί) is
invertible, v(0) = 1 and y(v(l)) = v(l). Now apply φ. Then it follows
that φ{v(t)) commutes with kn. If we then replace v(ί) by v(t)φ(v(t)~ι)
we see that we could assume that φ(v(t)) = 1 for all t. By the theorem
of Wood we know that there is an element x e &iι(B), such that v is
homotopic with the function v' given by

v'(ί) = (cos \πt + xkn sin ^π/)(cos \πt - enkn sin \πt)

(if necessary pass to trivial extensions). Now if we apply φ we get that
1 is homotopic with φ{y'). By the injectivity in the theorem we know
that therefore also φ(x) and en have to be homotopic within S^(B).
This means precisely that [x] e K(A). This completes the proof.

3. Periodicity and exact sequences. Consider the Clifford algebra
C0>n generated by elements /i, Λ> > Λ such that f£ = 1 and f^fj +
fjfk = 0 if k Φ j . Then it is well known that C0>P®C0><t = C°*+«. So
if we iterate the result of the previous section we get an isomorphism
between K(SnA&C° n) and K(A) for all n. Here of course SnA =
S{Sn~ιA) when n > 2. It is also known that C 0 2 = M2(R) and
C 0 ' 8 = Mi6(R). We will now draw several conclusions from these
facts.

3.1. PROPOSITION. For any real or complex graded Banach algebra
A we have that K{A®C0*) = K{A). If A is complex, then already
K(A®C°>2) = K{A).

Proof. Consider the algebra C 0 2 and let v = f{f2. Then v2 = - 1
and vfjV~ι = -/) for j = 1,2. So v implements the natural involutive
automorphism η on C 0 2 . Next consider the algebra C 0 8 and let v =
f\h * * /δ Then v2 = 1 and also vfjV1 = -/} for all j . So also here
v implements the natural involutive automorphism η on C 0 ' 8.

Now write B for C 0 2 or C 0 8 . Define a mapping ψ : A&B —> A<g>B
given by ψ(a ® b) = a ® b if α(α) = α and ^ ( ^ ® b) = # (8) vZ? if
a(a) = ~α. It is straightforward to verify that ψ gives an isomorphism
from the graded tensor product A®B to the usual tensor product A®B.
The involution on A®B is given by a ® η and is not affected by this
isomorphism.

It follows that A®C°>2 ̂  A ® Af2(R) = Af2(i4) and Λ®C α 8 = y4 ®
M1 6(R) = Λf16(v4). In the two cases the involution becomes a ® η.
The main difference is that in the first case η is implemented by an
element v such that v2 = - 1 while in the second case v2 = 1.
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Consider K{A®C°>S) = K(MX6(A)). In defining this last group,
one of the steps is to consider M2(Mι6(A)) = A <g> Af16(R) ® ΛΓ2(R)
with the automorphism a® η ® δ where δ is implemented by H> =
( Q ^ J ) Because w2 = 1 and v2 = 1 we can find an isomorphism
Λ/16(R) Θ M2(R) -> AΓ2(R) ® Afi6(R) carrying // ® <5 to (5 ® 1. This
means that we are working with M2(A) equipped with γ and further
M^(M2(A)) where γ is applied elementwise. This clearly will result
in an isomorphism from K{A®CQ>%) to K(A).

Finally, suppose that A is a complex algebra. Then A ® M2(R) =
A®M2(C) where we have a tensor product over the complex numbers.
The automorphism is a ® η where // now can be implemented by iv.
In this case (iv)2 = 1. Again the same argument as above will give us
that K{A® C° 2) is isomorphic with K(A). D

Now we can combine this result in the obvious way with the result
from the previous section to obtain the following periodicity theorem.

3.2. THEOREM. For any real or complex graded Banach algebra A we
have K(S*A) £ K(A). If the algebra is complex then K(S2A) £ K(A).

This periodicity theorem is one main application of the isomor-
phism of §2. We will now use this result to transform our exact
sequence in [4] to a new one. Recall the exact sequence which we
obtained there ([4, Theorem 4.6]):

K(SI) -> K(SA) -> K(S(A/I)) -+ K(I) -* K(A) - K(A/I).

3.3. THEOREM. For any invariant closed ideal there exists an exact
sequence

> K(A) -> K(A/I) -> K{I®C) -+ K(A®C) -

The sequence can be extended in the obvious way to a periodic se-
quence with 6 terms in the case of a complex algebra and 24 terms in
general

Proof It is clear that for any invariant ideal / of A also /®C is an
invariant ideal of A®C with quotient A/I&C. Then the left and right
part of the sequence are nothing else but the short exact sequences
associated to an ideal ([4]).
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By the result of §2 we have a diagram

> K{A) —

K(SI®C) • K{SA®C)

And it is not hard to see that this diagram is commutative. Further-
more it is clear that the long exact sequence of [4] applied to the
algebra A®C and ideal /<g>C gives the desired result. D

We have proved our theorem by using the exact sequence of [4]
and the isomorphism K(A) —• K(SA®C) obtained in the previous
section. On the other hand it is easy to see that Theorem 3.3 in turn
will imply both the exact sequence of [4] and the isomorphism of
§2. For this the theorem is applied to the algebra CA of continuous
functions / : [0,1] -> A with /(0) = 0 and the ideal SA. Because
CA is contractible we get K(CA) = {0} and K(CA®C) = {0}. This
yields the desired isomorphism as A is a quotient of CA over SA.
Again as before the isomorphism transforms the sequence of Theorem
3.3 into Theorem 4.6 of [4]. Moreover one can check that the same
homomorphisms are found again.

It is both important and interesting to have the following description
of the connecting map K(A/I) —> K{I®C) of Theorem 3.3.

3.4. PROPOSITION. Let [x] e K(A/I) and assume that φ{x) = en

andxe&n(M4((A/I)+)). Define

y = --τ=(ι + enkn)(sin πa + kn cos πa)-=(l + knen)

where a is any element in Mn(M4(A+)) such that π(a) = x and γ{a) =
-a. Then [y] is the image in K(I®C) of[x] under the connecting map.

Proof. By the result of §2 the image of [x] in K{S(A/I)®C) is [z]
where

z(t) = 4=(1 +enkn)v(t)knv(t)-ι-±=(l +knen)
V2 V2

and
v(t) = (cos \πt + xkn sin ^πt)(cos \πt - enkn sin \πt).

To find the image of [z] in K{I®C) we first have to lift this function z
to a good function y (see [4], Proposition 4.8). We do this by choosing
any element a e Mn(M4{A+)) such that π(a) = x and still γ(a) = - α .
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(The point is that in general we won't be able to choose a such that
also a1 = 1, cf. the introduction.) Now define

w(t) = (cos \πta - kn sin ^πta)(cos \πt - enkn sin \πt).

Because γ(a) = -a and the facts that cos is an even function and
sin is an odd function we will still have that γ(w(t)) = w(t) for all t.
Moreover

(cos \nta + kn sin jπία)(cos \πta - kn sin \πtά) = 1

because kn commutes with cos \πta and anti-commutes with sin \πta
as it anti-commutes with a. So w(t) is invertible. Because x2 = 1 we
have that cos \πtx = cos \πt and sin \πtx = x sin \πt. So we get from
π(a) = x that π(w(ή) = v(t) for all t. Let

y{t) = ^(\+enkn)w(t)knw(t)(
V2 V2

then clearly (y{t))2 = 1 and γ(y(t)) = -y{t) for all t,y(O) = en and
π(y(t)) = z{t) for all t. So by Proposition 4.8 of [4] we have that

is the image of [x] in K{I®C). Now

w(l) = (cos \πa - kn sin jπa)(-enkn)

and

v2

x (cos ^ β + /:„ sin \πά)—={\ +
v2

)-7=(l +knen).
V2

(To check that this last element really belongs to
simply apply π and indeed π(y(l)) — en because sinπ.x = xs inπ = 0
and cosπx = cosπ = -1.)

As we mentioned already in [4] the group AΓ(̂ 4) is in fact K\ (A) if A
is given the trivial automorphism α, and that KQ(A) = £(^40,4) when
the flip automorphism on A 0 A is considered. In fact A®A = A®C
when a is trivial on A. So K(A®C) = K0(A).

It can be shown that our exact sequence in Theorem 3.3 gives the
sequence

KX{I) - KX{A) - KX(A/I) - ΛΓ0(/) - K0(A) -+ K0(A/I),
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if it is applied to an algebra A with the trivial automorphism. If A ®A
is considered with the flip and if A is a complex algebra then our
sequence becomes

K0(I) - K0(A) - K0(A/I) - KX(I) -> ^ ( Λ ) - KX(A/I).

The exponential map can be recognised in terms like cos πa + k sin πa.
For details we refer to a paper by Hu Chuanpu [1].
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