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TOPOLOGICAL ENTROPY AND
RECURRENCE OF COUNTABLE CHAINS

IBRAHIM A. SALAMA

We consider a symbolic dynamical system (X, σ) on a countable
state space. We introduce a kind of topological entropy for such sys-
tems, denoted /?*, which coincides with usual topological entropy when
X is compact. We use a pictorial approach, to classify a graph Γ (or
a chain) as transient, null recurrent, or positive recurrent. We show
that given 0 < a < β < oo, there is a chain whose h* entropy is β and
where Gurevic entropy is a. We compute the topological entropies of
some classes of chains, including larger chains built up from smaller
ones by a new operation which we call the Cartesian sum.

Introduction. The importance of subshifts of finite type in ergodic
theory and dynamical systems is well known. One needs also to study
chains on a countably infinite set in order to analyze problems in vari-
ous fields such as differentiable dynamics, coding for magnetic record-
ing, nonuniqueness of equilibrium states in statistical mechanics, for-
mal languages and automata, or even to analyze arbitrary subshifts.
(See [3], [9], [6], [2], [1], [10], respectively.)

Let Γ be a strongly connected directed graph on a countable set of
vertices S = {s\, S2,...}, and let

X(Γ) = {x e Sz I for all /, there is an edge in Γ from xz to X/+i}.

If S has the discrete topology and Sz the product topology, then in the
induced topology X(Γ) (or simply X), together with the shift trans-
formation σ defined by (σx)i = X/+i for all /, is a (non-compact)
dynamical system, called the chain determined by the directed graph
Γ. The topological entropy of X may be determined using Bowen's
definition, to obtain hB{X) (see [8] for a definition). This definition
depends on the metric we put on X. We consider the following two
metric spaces.

1. For x,yeX define

where δ(s, t) = 1 if s = t and 0 if s φ t.
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2. Let S = {1,2,...,} and define

(we may use S = {1/tf, rc > 1} and define d2{x, y) = Σi |JC, - y/l/2'1"').
On the other hand and without reference to any metric, we may use
Gurevic's definition (Gurevic, [4]), hG(X) = hG(Γ) = supP < Γ/*(Γ'),
where the sup is taken over all (connected) finite subgraphs Γ' of Γ
(and h(V) is the usual topological entropy of the subshift of finite
type determined by Γ', the logarithm of the maximal eigenvalue of
the transition matrix).

Another possible approach, suggested by Gurevic [4], is to let S
be the one-point compactification of S, and Ύ the closure of X in
5 Z . Then Ύ is compact, and we may define hc(X) to be the ordinary
topological entropy of (X, σ).

Fix a vertex S in Γ and define
βW = number of paths of length n in Γ from s to s;
fln) = number of paths of length n in Γ from s to s with no other

occurrences of s in between;

() Σs
Let LY and i?p be the radii of convergence of F(Γf s, z) and B(Γ, s, z),
respectively (they are independent of s). We will abbreviate Lp by L
and RY by R (generally, Lγt by L/ and Rγt by Rj).

Vere-Jones ([11], [12]) studied the classification of the graph Γ as
transient, null recurrent, or positive recurrent according to the follow-
ing table:

F{Γ,s,R)
F'{Γ,s,R)
B{Γ,s,R)
Λ B^Rn

transient
< 1

= oo
< 00

= 0

null
recurrent

= 1
= 00

= oo
= 0

positive
recurrent

= 1
< oo
= oo
> 0

Gurevic ([4], [5]) showed that if X is a connected chain with the
^-metric, then hG{X) = hc{X)\ and if Γ is a connected graph with
hG{T) < oo, then hG(Γ) = - logiϊ .

The paper is organized as follows: In § 1 we introduce a new def-
inition for the topological entropy of a symbolic dynamical system
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(X,σ), which we call h*. For a locally finite chain X, we show that
hB(X) = h*(X) when the dx-metric is used; and that hB(X) = hG(X)
when the ύf2-πietric is used. In §2 we consider a geometric or picto-
rial approach to classify chains as transient, null recurrent, or positive
recurrent. In §3 we show that given 1 < a < β, there exists a re-
current uniformly locally finite graph Γ such that hG{T) = logα and
h*(Γ) = log/?. If a = β, then the Γ that we construct is positive
recurrent. In §4 we consider some computation examples.

1. The h* entropy. Let (X, σ) be a symbolic dynamical system with
countable state space S = {s\, s2,...}. If S is finite, then X is compact
and the topological entropy of X is given by h(X) = lim« ^\ogB^n\
where B^ is the number of blocks of length n in X. Taking this
formula and applying it "formally" to symbolic dynamical systems
with infinite state space S, we will end up assigning the same value,
namely oc, to these systems. However, it is reasonable to consider
the rate of growth of the number of blocks in X starting with a fixed
symbol or generally starting with a fixed block. Based on this notion
we introduce a new definition for the topological entropy of {X,σ),
which we shall call Λ*, formulated as follows.

DEFINITION Let T^ be the number of blocks of length n in X
starting with s G S. The entropy of X relative to s is defined by

and the entropy of X is defined by

h*{X) = sup h*(X\s).
seS

We observe that if X is a finite connected chain, then h*(X) —
h(X) = hβiX) = hβ(X). Also, it is easy to see that if X is transitive,
then h*{X) = h*(X \ s) for all s e S, and if X is a countable connected
chain, then hG(X) <h*(X).

A chain X is locally finite if the corresponding graph Γ satisfies: If s
is a state of Γ then the number of arrows coming in and going out of s
is finite. The chain is uniformly locally finite if the number of arrows
coming in and going out of any state is less than some fixed number,
say m.

THEOREM (1.1). IfX is a locally finite connected chain with the met-
ric du thenh*(X) = hB{X).
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Proof. Let AT be a compact subset of X. Then for every /, the
number of different symbols appearing in the /th place in K is finite.
For ε = 2~\ rn(e, K) is the number of different blocks in K of the form
S-i - •$„+,•. Let ΛL/ be the set of symbols appearing in K in the —/th
place. Then rn(e,K) = ΣseN-, rn(ε>κ)> where rs

n(ε,K) is the number
of blocks in K of the form ΛS_(, _I) sΛ+/ and s G ΛL/. Since rΛ(ε, K)
is the sum of #{ΛL/} nonnegative sequences, there is SQ G ΛL/ such
that

Hence Λ*(Jr) < A*(X).
Now, since X is locally finite, for s e S, Ks = {x e X\XQ = s} is

compact. If ε = 2"1', then rΛ(e, T~*KS) is the number of blocks in Jζy
of the form &s_(/-i) •• 5Λ+i, and A*(Λf |s) = limilogrw(ε, T^Kg) <
hB(X). Thus, Λ*(JΓ) < As(JΓ). D

The notion of the A*-entropy may be extended to a general topologi-
cal space (not necessarily compact) and a homeomorphism T: X —• X
as follows. For an open cover a of X and a compact K c X let N£(ά)
denote the minimum number of sets in V/=o ^*~z needed to cover K,
and let H£(ά) = logΛ^(α). The entropy of T relative to a given com-
pact K c X is defined as h*(T,a;K) = ϊuήn ^H^{a). The entropy of
T relative to a is defined as h*(T,a) = s u p ^ c ^ h*{T,a\K), where Λ̂  is
compact. Finally, the entropy of T is defined as h*(T) = supα h*(T,a).
The following fact follows from a straightforward argument.

PROPOSITION (1.2). IfX is compact, then h*(T) = h[T).

PROPOSITION (1.3). If X is a connected chain with the di-metric,
then hB{X) = hG(X).

Proof. Let AT be a compact subset of X, rn(ε,K) = the smallest
cardinality of an (n, ε)-sρanning set of K, r(ε, K) = limΛ i logr^ε, K)9

and hB{K) = limε_+0 r(β, K), so that hB(X) = sup^c^ hB{K).
If Xf is a connected finite subchain of X, then A^(Z') < A^(X);

hence hG(X) < hB(X). On the other hand, let X be the completion of
X in the ^-metric. Since (X, d2) is totally bounded, (X, d2) is compact.
If X" is a compact subset of X, then Xn is compact as a subset of X,
and hB{X") < hB(X) = A(X) = hG{X). Hence A5(X) < hG{X). u
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2. Classification of chains. In this section we present a criterion en-
abling us to decide if a connected graph Γ is transient, null recurrent,
or positive recurrent. Our approach is geometric or pictorial in na-
ture, avoiding the computational and combinatorial problems usually
encountered. The idea is to relate the value of hG(Γ) to the values of
hG(F)9 where F is either a subgraph of Γ or a graph containing Γ.
In general terms, our results on this question may be summarized as
follows: Γ is transient if and only if we can "expand" or "contract" Γ
without changing hG, Γ is positive-recurrent if and only if any "expan-
sion" or "contraction" of Γ will change hG in the right direction; and
Γ is null-recurrent if and only if we can "contract" Γ without changing
hG but any "expansion" of Γ will increase hG. We prove the following.

THEOREM (2.1). (i) 7/Γ0 < Γ2 and hG(Γ0) = hG(Γ2), then Γo is
transient

(ii) //To is transient, then there exists Γ2 > Γo such that hG(Γo) =
hG(Γ2) andT2 is transient

THEOREM (2.2). Let Γo be such that R$ = Lo- Then there exists
Γ < Γo such that hG{T) = hG(Γ0).

THEOREM (2.3). The following conditions for Γo are equivalent:
(i) ΓQ is positive recurrent

(ii) RQ < L 0

(iii) For all Γ{ < Γo, hG(Γ{) < hG(Γ0).

COROLLARY (2.4). IfT0 is transient, then there exists Γ\ < Γo such
that hG(Γ\) = hG(Γo) and Γ\ is transient

COROLLARY (2.5). Γo is recurrent if and only if for all Γ2 > Γo,

MΓ2)

COROLLARY (2.6). ΓQ is null-recurrent if and only if: (i) there exists
Tx < Γ o such that hG(Γι) = hG(Γ0), and (ii) for all Γ2 > Γo we have
hG{T2) > M Γ o )

Proof of Theorem (2.1). (i) Let 5 be a state in Γo and Γ2. Then
F(Γ 2, s, R2)<\. Since Γo < Γ2 and Ro = R2, we have F(Γ 0, s, RO)<1.

(ii) Since Γo is transient, F(Γ0,s,R0) = Σnfs
{n)^o < ι Hence,

for some m we can find a positive integer k such that k > f^>
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and Σnϊm fsn)Ro+kRo < L L e t Γ 2 b e t h e 8 r a P h obtained by adding
a loop of length (k - fW) based at s to Γo. Thus Γo < Γ2 and
F(Γ2,s,R0) < 1. Since R2 < Ro, then F(Γ2,s,R2) < F(Γ2,s,R0) < 1,
and Γ2 is transient. To show Ro = R2, note that Lo = L2 and
i?2 < ^o < Lo. If R2 < Ro, then R2 < L2 and F'(Γ2,s,R2) < oo,
contradicting that Γ2 is transient.

Proof of Theorem (2.2). For a state s in Γo, let Fol( s) = {5' | there
is an arrow from s to s' in Γo}. Let s0 be a state in Γo such that
#Fol(^o) > 2. Let s* e Fol(so)5 let Γi be the subgraph obtained by
removing the edge SQS* from ΓQ, and let Γ2 be the subgraph obtained
by the removal from Γo the edges sos

f, S' e Fol(s0) - s*. Let i be such
that Li = min(Li, L2). Then Ro < Rt < Lz = Lo. Since L o = Ro, we
have Ro = Ri and hG{Γ0) = Λσ(Γ/). D

Proof of Theorem (2.3). (i) If i?0 < A)> then /^(Γo^^o) < 00 and
Γo is positive recurrent. If Ro = Lo ? then by Theorem (2.2) there is
Γ! < Γo such that Rx = Ro. Hence by (i) of Theorem (2.1) Π is
transient. Since Ff(Γhs,R0) = cx> and F ;(Γi, A Λ 0 ) < F ;(Γ 0, J,iίo),Γo
cannot be positive recurrent.

(ii) We show that: Γo is not positive-recurrent if and only if there
is Γi < Γo, hG{Γ\) = ΛG(Γ 0 ) . SO? assume that Γo is not positive-
recurrent, then by (i) above we have Ro = Lo; hence, by Theorem
(2.2) there is Γi < Γo such that hG(Γι) = hG(Γ0). On the other hand,
if there exists Γi < Γo with hG{Y\) = hG(Γ0), then Γo is not positive-
recurrent as shown in the proof of (i) above.

(iii) Assume F(Γ 0 ,^L 0 ) > 1. Since F(Γ0,s,R0) < 1, we have Ro <
Lo and by (i) above Γo is positive-recurrent. If ΓQ is positive-recurrent,
then RQ < Lo. Since F(Γ0,s,R0) = l, we have F(Γ0,s, LQ) > 1. D

Finally, Corollary (2.4) follows from part (ii) of the proof of Theo-
rem (2.3), Corollary (2.5) follows from Theorem (2.1), and Corollary
(2.6) follows from part (ii) of the proof of Theorem (2.3) and Corol-
lary (2.5).

3. Relation between hG and A*. In this section we study the relation
between hG and h* using the following class of countable graphs:

ίn

n n+1
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Here: r, = the number of paths from state / to state / + 1, and // =
the number of arcs between state / and state 0 (as shown above). A
graph of this form is indexed by two nonnegative integer sequences
{rn}> Un} and is denoted by Γ{{rn}, {/„}).

Let ΓQ be any connected countable graph (not necessarily of the
form above) and let s be a state of Γo. Define Cj") = the number
of sequences ss^ ••$,•„_, in Γo such that Sj Φ s for j = i\,..., /n_i,
and recall that T^ = the number of sequences of length n in ΓQ that
start with s. Let C(Γ0, s, z) = Σn φzn, Γ(Γ0, s, z) = Σn Tjn)zn, and
QO(AQ) be the radius of convergence of C(Γ0, s, z)(Γ(Γ0, s, z)).

Towards proving the main result of this section, we use the following
Lemmas:

LEMMA (3.1). For a connected graph Γo, we have

Proof. Let s be a state in Γo. Then T^ = Σ?=i£i n ~°Q ( l λ and
Ao = min(Ro,Qo)- Since Λ*(Γ0) = l o g ^ 1 , hG(Γ0) = logi?^1, the
result follows. D

LEMMA (3.2). Let Γ0({rn}, {ln}) be a graph with associated sequence
j*)}. Then

(i) If \imn I log Π?= 1 Γ/ = log β, then lim, I log φ = log β.

i i ) A ( Γ ) { l A A ( Γ ) }

Prao/. Let n, = // 4- (i + 1), i = 0,1,2 andH^ = Π t i n, i =
1,2,... (Ŵo = 1). To count the number of sequences of length k
in Γo that start with 0, let Sk = {i = 0, l,...,fc - 1 \nt > k}, then

= Σ / ^ ^ and Γ )̂ = ΣUBfr-VCJf). Noting that ^ <
< Σf=i Wi> and limπ I logΠΓ^i Π = limπ I log ^ = logjί, then

limπ ^logC^Λ) = log/?. That shows (i) and (ii) follows by Lemma
(3.1). D

LEMMA (3.3). Let m < x < (m + 1). Then there is a sequence {rn}
such that

(i) rn = morm+l,
(ii) for all n:

( £ )
ι = l v 7 i=\
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and
(iii) limw ± log Π?=i n = log*.

For a graph Γ0({rΛ}, {/„}), let Wπ = Π/Li fϊ, and let JF0 be the radius
of convergence of the series Σn Wnz

n. Then by Lemma (3.2) we have

LEMMA (3.4). For Γ0({rn}, {/„}), ifL0 = Wo, then hG(Γ0) = A*(Γ0).

LEMMA (3.5). For Γ0{{rn}, {/„}), if limπ £ logΠJU '/ = log * V and
{ln} is bounded {say by k), then Lo = Wo and hG(Γ0) = Λ*(Γ0).

Proof. Note that ffl < Σ"=o wh hence Wo < Lo. To show that
Lo < Wo, consider the sequence {rij \ lHj Φ 0}. Then for every j we

have ffJ+lnj) > Wnj9 hence

ΠϊS — \ogf^nj+ίnj) > lim — log Wnj = log Wζ-1,

and Lo < Wo. By Lemma (3.4) we have hG(ΓQ) = λ*(Γ0). D

LEMMA (3.6). Let Γ0({rw}, {/„}) όe .swc/z £/zatf {r^} w α special se-
quence satisfying the conditions of Lemma (3.3) and {ln} is bounded
{say by k). Then hG{Γ0) = A*(Γ0) and Γo is positive recurrent.

Proof. As before consider the sequence {nj \ lUj Φ 0}. Then for
every j we have

a n ,

By (ii) of Lemma (3.3), we have WΛj/xnJ > m/{m+\) > 0. Since {/„}
is bounded, we have

ΛnΛlnj)

lim ^ — ^ > lim ̂ f ( - f ) > 0 f
^oo χnj+lHj j^oc XnJ \χl»jj

hence F(ΓQ, 0, x~ι) = CXD. By the proof of Lemma (3.5) we note that
Lo = x~\ hence F(ΓQ, 0, Lo) = oc and by Theorem (2.3) Γo is positive
recurrent. D

We consider two examples. The first shows that positive recurrence
and equality of hG and h* can happen without {/„} being bounded.
The second shows we may have positive recurrence with hG < h*.



TOPOLOGICAL ENTROPY 333

EXAMPLE (3.7). Let Γ0({rn}, {/„}) be given by

0

That is rn = 2 for all n > 1 and /„ = n + 1, n = 0,1,2,.... Γo may
be "represented" in a locally finite form by Γf

0 as follows:

Vo • o • o • o • • o

0 2 1 2 2 2 3 n

(These two graphs have the same values of hG and h*.)
Note that LQ = l/>/2 and F(ΓQ, 0, Lo) = oo. Thus, by Theorem (2.3)

Γo is positive recurrent. Also F(Γ0,0, \) = 1, hence /*G(Γ0) = log2.
Finally, since Wo = \, then by Lemma (3.2) Λ*(Γ0) = log2.

EXAMPLE (3.8). Let Π ({rn}, {/„}) be the same as the Γo in Example
(3.7), except with the loop based at 0 removed. Again by the same
argument as in Example (3.7), Π is positive recurrent. Since Γ! < Γo,
then by Theorem (2.3) hG{Tx) < hG(Γ0) = Iog2. By Lemma (3.2),
A(Γ0

THEOREM (3.9). Given 1 < a < β, there exists a recurrent uniformly
locally finite graph Γo such that hG(Γ0) = logα and Λ*(Γ0) = log/?. If
a = β, then the ΓQ that we construct is positive recurrent

Proof, Let m < β < m+ 1, and choose a sequence {rn} satisfying
the conditions of Lemma (3.3) with β replacing x. We construct the
/cth partial sum, Sk, for the loop series of Γ o as follows: Let n{ = 1
and set S\(a) = \/a < 1. Let nι be the smallest integer such that

Note that ni > 2. Assuming that we have n\ < nι < < n^, let
be the smallest integer such that

and note that nkΛ.χ > nk.
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We construct ΓQ as follows: Let /0 = 1, and // = ni+\ - i, i =
1,2, Then Γo is the graph indexed by the sequences {rn}, {/„}, and
is denoted by Γ0({rn}, {/„}).

Let S(x) = limk^ooSιc(x). Note that S(x) is the loop series for
the graph Γ0({rn}, {/„}), and S(a) = 1. To show that hG{T0) = logα,
let Ro be such that hG(Γ0) = logi?^1. Thus F(Γ0,0,a-1) = 1 and
F(Γ0,0,R0) < 1. Hence Ro < a~K If in fact Ro < a~l, then we
must have F(Γo,O,Ro) < 1. In this case Γo is transient, hence by
Theorem (2.3) Ro = Lo < a~ι, contradicting that L o is the radius of
convergence of the loop series. Hence Ro = α" 1 and hG(Γ0) = log a.
By Lemma (3.2) we have Λ*(Γ0) = logβ. Note that if a < β, then
by Lemma (3.5) {/«} is not bounded, hence Γo may be constructed
to be a locally finite graph as shown in Example (3.7). Also {ln} is
monotone nondecreasing. To show that Γo may be constructed to be
uniformly locally finite, we show that if for some / we have // = /;+r,
then (1 + T) < a(m + l)/m. Equivalently, if for some / we have

= m + T, then (1 + T) < ot{m + l)/m.

Let T be the greatest integer such that n\+τ = n\ + T = 1 + Γ. Then

a aι+τ "a\m+lJ a

Since 5i + r(α) < 1, we have (1 + T) < a(m + l)/m.

In general, let k be an integer such that nk+{ > nk + 1, and T be
the greatest integer such that n ^ + 1 + r = nk+x + T. Then

, Utiίn

Hence, (1 + T) < a(m + l)/m.

Let d be the greatest integer such that d < {m + \)/m. Then, by
construction, {/„} is monotone nondecreasing with the property that
it cannot stay constant for more than d consecutive times. Then, by
using the same idea as in Example (3.7), it is easy to see that Γo may
be constructed to be a uniformly locally finite graph.

Finally, we show that if a = β then Γo is positive recurrent. Note
that for every n we have
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Thus

o g ^ - 1 , where C = l im-.
+ C n Ά

Thus we have Lo = WQ^1+C\ NOW, for every n we have ln > n/d,
c = ^n{lnln) > l/d > 0, and Wo < Lo. Since a = β, Ro = Wo> we
have i?o < £o a n d ΓQ is positive recurrent. D

This result shows that in the Countable-alphabet case, hG and h*
can be anything, unlike the finite-alphabet case, where the possible
entropies are exactly the Perron numbers (see [7]).

4. Computational examples. In this section we present some com-
putational results of the topological entropy for certain classes of ex-
amples of chains. Consider a chain X over Z xZ with the following
transitions: (JCI, y\) —> (X2> yi) if either xι = X\ ± 1 or y2 = y\ ± 1.
We picture X as follows:

... 0
I

... 0
I

. . . 0

<-> 0

I
<-• 0

I
«-> 0

^ 0 . . .

I
*-* 0 ...

ί
<-> 0 . . .

We compute the entropy of some subchains of X whose states are
contained in some nice region of R2. The following result will be used
in the computation.

Let X be a chain with state space S, and / : S —> C. Let foo be the
corresponding map of X generated by / and Y = foo(X) For every
n > 1, let BX(n, s) {BY(n, c)) be the set of n-blocks in X (Y) starting
with s G S (c e C); and let fn be the corresponding n-block map
generated by /. For B e BY(n, c) let f~ι{B) = {B1 \ B' e BX(n, s) and
fn(B')=B}.

With these notations we have:

PROPOSITION (4.1). Let X and Y = foo{X) be connected chains. If
for i = 1,2 there exists Cι e C and Si e f~ι (c, )

(i) for every n> 1,
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(ii) {#f~ι(B)} is bounded as B varies over all blocks in Y starting
with c2, then h*(X) = h*(Y).

Proof. For s e S and c e C, let Ts(n) (T'c(ή)) be the number of
blocks in X (Y) starting with s (c). Then

g ; i ( )

On the other hand, if the bound on #f~ι(B) is k, then we have

h*(X) = KmUogTS2{n) < ϊ ϊ m l l o g ( £ . T'Cl{n)) = h*(Y). π

REMARK (4.2). Proposition (4.1) holds for the following two more
general cases:

(i) / is an m-block map of X.
(ii) X and Y = foo(X) are both transitive symbolic dynamical sys-

tems.

EXAMPLE (4.3). Chains contained in the domain D(m,n,w). Let
D(m, n, w) be the domain in R2 bounded by two parallel lines of slope
m/n with horizontal distance w. We assume that one of these lines
passes through (0,0). Let Γ(m, n, w) be the largest subchain of X con-
tained in D(m, n, w). To compute the A*-entropy of Γ(m, n, w)9 we
note that it consists of a "fundamental" finite chain Γo which repeats
itself periodically in an obvious way giving Γ(m, n, w). ΓQ may be cho-
sen to include the states (x, y) in Γ(ra, n, w) such that y = 1,2,..., m.
Let c be the number of states in Γo and consider the following ordering
or labelling of these states by 1,2,..., c as follows: (x\, y\) < (X2, yι) if
yx = y2 and X\ < Xι or y\ > y2. If we repeat this labelling periodically
in an obvious way to cover all states of Γ(m, n, w), we obtain a one
block map, /, from the states of Γ(m, n, w) to the set {1,..., c}. The
map foo generated by / gives a finite chain Γ>(m, n, w) over {1,..., c}
and foo satisfies the condition of Proposition (4.1). Hence we have
Λ*(Γ(/w, n, w) = Λ*(Γ/r(m, n, w)).

For example consider Γ(l, 2,2):

T*w"
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the fundamental chain is given by <0°C^0 a n c * may be labelled by 1,
2 and 3. Γ>(1,2,2) is given by

In general, the transition matrix for Γ(l, n, w) is given by the (w +1) x
(w + 1) matrix Jf$v where

4%(ij) = 1 if \i - j \ = 1 or n, w > n > 1.

We note that for w < n, Λ*(Γ(1, n, w)) = 0. Also, for n = 1, we have

ι7) = 2 for | / - 7 | = 1.

Computation of hg for Γ(ra,«, w) is generally harder. If we like to
compute hg from the definition, then we should be able to identify
hg for suitable subchains of Γ(ra, n, w). This may be easily done in
two cases: Γ(l, 1, w) and the infinite vertical rectangular strip denoted
herebyΓ(l,0,H>).

EXAMPLE (4.4). HQ for Γ(l, 1, w). Consider the chain Γ/(l, ή) given
by

Let Tι{n®m) be the Cartesian product of Γ/(l, ή) and Γ/(l, m). That
is, Γ/(n®m) is the chain over {1,..., n}x{l,..., m} with the following
transitions: (x\, y\) -• (x2, y2) if ^i -> ^2 in Γ/(l, n) and y\ -+ y2 in
Γ/(l,m). If Tn and Γw are the transition matrices for Γ/(l, n) and
Γ/(l,m), respectively, then ΓΛ(g)w = Tn®Tm is the transition matrix
for T\{n ® m) (in some order of the state space of Y\{n ® m)), and
hG{Yι{n ® m)) = Λσ(Γ/(l, Λ)) + AG(Γ/(1, m)). Note that Γ/(n ® m)
is the disjoint union of two chains, and the entropy of Γ/(n ® m) is
the maximum of the entropy of these two chains. Since any finite
subgraph of Γ(l, 1, w) is contained in a component of Γ/((w + 1) ® m)
for some integer m, we have

= log(2 x

An application of Theorem (2.1) shows that Γ(l, 1, w) is transient.
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EXAMPLE (4.5). hG for Γ(1,O, w) and the Cartesian sum of two
chains. The chain Γ(l, 0, w) is given as

0
I
o

(W-1,0)

In order to compute IIQ(Γ(1, 0, w)) we find an easy way to compute the
topological entropies of some finite rectangular chains, that is chains
of the form

0

I
0

(0,0) (1

0

I
0
,0)

\,m)
0

I

0

X
0

(1.1)

(2,m)
*-> 0 <-•

I

<-+ 0 «->

I
<-*• o <-•

(2,1)

(n,m)
... «-> 0

I

. . . «• o

I
... <-> o

(«, 1)

This is done using an idea we introduce as follows. Let Γi and Γ2

be finite chains with state space U and V respectively. We define the
Cartesian sum Y\ Θ Γ2 to be the chain over U x W with the following
transitions; {u\, v\) -> (w2, v2) if U\ —*• w2 in Γi and vi = v2 or vi —• v2

in Γ2 and Wi = w2.

Let T\ and Γ2 be the transition matrices for Γi and Γ2 respectively.
Order U x V according to the following: (u\,v\) < (w2, v2) if vi < v2

or Vi = v2 and U\ < w2. According to this order, the transition matrix
T of Γi Θ Γ2 is given by T = Tx ® 7W + /„ ® Γ2. The matrix Γ satisfies
the following two properties: (1) The eigenvalues of T are given by
a+β where a and β are eigenvalues for Γi and Γ2 respectively, (2) the
eigenvectors of T are given by X® 7, where X and 7 are eigenvectors
for T\ and Γ2 respectively.

Now, the finite rectangular chain given above is in fact Γ/(l, ή) Θ
Γ/(l, m) and is denoted here by Γ/(wθm). It follows from the previous
discussion that

hG{Tι{n θ m)) = log (2cos ^ y + 2 cos
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Direct application of the definition of hG yields:

REMARK (4.6). Let D be a region in R2 such that D contains arbi-
trarily large rectangles, and let ΓD be the largest subchain of X con-
tained in D. Then hG(ΓD) = log 4. We also note that for any region £>,
we have hG(JΓo) = h*(ΓD), as indicated in Petersen [9]. We note that
the computation for the entropy of ΓD, where D is a region bounded
by two parallel lines of irrational slope, is hard. We feel that the meth-
ods introduced here are not going to work in this case. One possible
approach may be through studying the continuity properties of A* or
hG.

Finally, the entropies of the following examples may be computed
by first constructing chains which factor onto them. For details see
[10].

EXAMPLE (4.7). The sum-bounded systems X{n, m). Consider the
closed shift-invariant set

ί A
X(n,m)= { {*/}?°oo \Xj = ±l,—n < )Zxι ^ m>

I ι=k
k and K are integers and n, m > 0 >.

Then for n, m > 0, the system X{n, m) is sofic with topological entropy

h{X{n, m)) = log (lcos . , π

 Λ—-) .n \ mm(n, m) + 2J

EXAMPLE (4.8). The sum-bounded-above systems Λf(—oo, m). Con-
sider the system X(—oo,m), where

{ K

\Xif-oo \Xi = = =t 1> / Xi S W,

l=k

k and K are integers and m > 0 > .

Then h(X(—oo,m)) = logx*, where x* is the largest root of the
equation (1 - x)fm+χ{x) + fm-\{x) = 0, and

fc=0 ^ k
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EXAMPLE (4.9). The sum-bounded run-length-limited systems
X(n,m\l,k). Let x e {-1, 1}Z and Br = X\ -xr be an r-block in
x. If X\ = - - — xr, then Br is said to be a run of length r of x. Br

is a positive (negative) run if X\ = = xr = 1 (xi = = xr = -1).
A subblock 5 of Br is said to be an end run for Br if Br = Xi x,5,
and i? is a run of maximal length, that is B is a run by x,i? is not a
run.

For n, m, I and k positive integers we define

X(n, m; I k) = {x = { x / } ^ \Xi = ±l,n< the length of a

positive run in x < m, I < the

length of a negative run in x < k}.

Then, h(X{n,m\l,k)) = logx*, where x* is the largest root of the
equation Σ/=!i+/ #//•** = 1 ( s e e Petersen [9]), and the α/'s are given as
follows:

Let M = min{(k -l) + l,(m-n) + 1). Then

i-(n + l)+l if n + I < i < (n + 1) + [M - 2),

M if (Λ + /) + (M - 1) < / < (m + k) - (M - 1),

a{l+n)Hk+n)_i iϊ{m + k)-{M -2)<ί<m + k,

I 0 otherwise.
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