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SZEGO'S CONJECTURE ON LEBESGUE
CONSTANTS FOR LEGENDRE SERIES

C. K. Qu AND R. WONG

In 1926, Szego conjectured that the Lebesgue constants for
Legendre series form a monotonically increasing sequence. In this
paper, we prove that his conjecture is true. Our method is based on
an asymptotic expansion together with an explicit error bound, and
makes use of some recent results of Baratella and Gatteschi concern-
ing uniform asymptotic approximations of the Jacobi polynomials.

1. Introduction. The Lebesgue constants for classical Fourier series
are defined by

(1.1) Pn = -[ o w t n ( dt> /i = 1,2,3,...;
n Jo sm(t/2)

see [18, p. 172]. Fejer [4] was the first to show that

(1.2) p

where CQ and C\ are constants and a(n) is bounded for all n. From
(1.2), he deduced that

(1.3) pn+l~pn>0

for large n. He further conjectured that (1.3) holds for all n > I, a
conjecture later proved by Gronwall [7]. GronwalPs result was con-
siderably improved by Szego [12], who showed that the sequence of
differences of the Lebesgue constants pn is in fact completely mono-
tonic, i.e., Apn = pn+i -pn>0 and (-iy-lArpn > 0 for r = 2 , 3 , . . . .

In exactly the same manner, one can investigate the properties of
the Lebesgue constants

= (« + 1) rsin|cos^|i>,(1 '0)(cos0)\d6,
Jo ^ ^

n = 1,2, . . . ,

for Legendre series at x = 1, where PJil'0\x) is the Jacobi polynomial
with a = 1 and /? = 0. The asymptotic formula

(1.5) Ln = *nV2 + 0(n
lt2), n->oo,

/n
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was first given by Gronwall [8] and later, by Szego [14,15] with simpler
proofs. In 1926, Szego conjectured that this sequence is monotonically
increasing, i.e.,

(1.6) Ln+l-Ln>0

for all n > 1; see footnote 6 in [13] and also the editor's comment on
page 313 of [1]. In order to settle his conjecture for at least large values
of n, Szego posed to Lorch in the fifties the problem of obtaining more
refined results than that given in (1.5). In [10], Lorch showed that

?3/2
n 7\ r _± * , I /2_I_D _i_ n f w - i / ^
\L. /) LiYI — —7==""' "• 0 » U\J* )i

where B$ is a constant. More explicitly, if jv$k denotes the A:th positive
zero of the Bessel function Ju(x), and if

(1.8)

then

(1.9) B0=l+2
k=\

where the infinite series is absolutely convergent. A simple calculation
reveals that the result in (1.7) is insufficient to determine the asymp-
totic monotonicity of the sequence Ln. Lorch thus proposed to one
of us (Wong) in 1980 the problem of replacing the 0-term in (1.7)
by an explicitly determined expression plus terms of lower asymptotic
order. The following result provides a solution to his problem, and is
proved in [6]:

23/2 fl
(1.10) Ln = —=r^l2 + B0 + \ -n~l/2 + Don~l + e(n),

y/n V 71

where

(1.11) A) =

and

(1-12) Mk = (-\)k+1(Jo,k)JiUo,k)-

The remainder e(n) in (1.10) satisfies

(1.13) e(n) = O(n~3/2), as n -> oo,
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and the infinite series in (1.11) is absolutely convergent. From (1.10),
it follows immediately that {Ln} is an asymptotically increasing se-
quence.

The purpose of this paper is to demonstrate that (1.6) holds for
all n > 1, i.e., Szego's conjecture is true. Our argument is based
on the asymptotic representation (1.10) together with the improved
numerical estimate

(1.14) | C ( H ) | < - 1 * for all n> 49.
Yl5lL

From (1.14), it will be proved that (1.6) holds for all n > 49. The first
fifty pn can be calculated numerically, and their values are exhibited
in the table in §3. An examination of these values shows that the
sequence {Ln} is indeed monotonically increasing.

To prove (1.14), we shall make use of some recent results of Baratella
and Gatteschi [2] concerning asymptotic approximations of Jacobi
polynomials and their zeros. Although these results are in a sense
refinements of the asymptotic approximations obtained by Frenzen
and Wong [5], they are of quite different nature from those given in
[5]. Thus, in spite of the fact that the main strategy in this paper
is similar to that employed by Frenzen and Wong [6], the detailed
analysis here differs considerably from that given there.

The content of this paper is arranged as follows. In §2, we collect
some of the known results to be used later in the paper. The main
sketch of the argument is presented in §3. Many of the results in §3
are proved in subsequent sections.

2. Some preliminary results. In [5], Frenzen and Wong have derived
the following asymptotic expansion for the Jacobi polynomial.

THEOREM A. For a > -\, a - p > -2p and a + p > - 1 , we have

(2.1)fsin|V fcos|) Pia/?)(cos0)

_r(n + a+l) ( 6 \ 1 / 2

n\ \sin0/

where
/j *}\ -\r M i l / A , n •

and

(2.3) op = 6aO(N-p),

E
/=0



160 C. K. QU AND R. WONG

the O-term being uniform with respect to 0 e [0,n - e],e > 0. The
coefficients A[(d) are analytic functions inO<O<n-e, and are 0{6l)
in that interval In particular, AQ(O) = \ and

(2.4) AX(O) = ^ [(4a2 - 1) (§ - c o t 0 + (4fi2 - l)tan||

It is this result that has led to the four-term asymptotic expansion of
Ln given in (1.10). Motivated by Theorem A, Baratella and Gatteschi
[2] showed that Pia'^(cos0) also has the Cherry-type approximation
[3] given in Theorem B below, complete with an explicit error bound.
Let

(2.5) fx{6) = (1 -4a2) (1 - c o t 0 +(1 -4/?2)tan|

and

(2.6) f(0) = NO ^

cf. (2.4). From the Maclaurin series expansion of tan(0/2) and (2/6 -
cot(0/2)), it is easily seen that if — j < a, p < \, then f\(6) is positive
and increasing in (0, n). Since /(0) = 0 and

the equation f(0) = n/2 has a unique root 6* in (0, n/2).

THEOREM B. Let -\ < a, p < \ and let 6* be the root of the
transcendental equation f(6) = rc/2. Then

where A = (l- 4a2), B = (1 - 4£2), amZ/or iV > 5

aiV4("+Q)[0.00812A + 0.08285], 0 < 6 < 6*,
(2.8)

As we shall see in this paper, it is this latter result which has led to
the error estimate (1-14). For the Lebesgue constant (1.4), we need
a = 1 and P = 0, a case not included in Theorem B. Nevertheless, by a
slight modification of the argument given in [2], we have the following
corollaries.
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COROLLARY 1. Let N = n + 1 > 50, and let

(2.9) m = JW + ̂ L [«, » - 3 ( | -ootf)]

equation f(9) = 7r/2.

(2,0)

O.OO59AT30, 0 < 6 < 6*,

A precise estimate for the root 6* can be obtained as follows. Since
fx(6) is positive and (l/6)fi(6) is strictly increasing in (0,n/2], we
have

(2.12)

From this, it is easily verified that for N > 50,

(2.13) 0.999997^ < 6* < ^ .

In view of the well-known identity [16, p. 59]

(2.14) Pw
(1'o)(cos0) = (-l)nPJi0'l)(-cosd) = (-l)nPJP'l)(cos(n-0))

and the fact that the interval of integration in (1.4) is (0, n), we also
need an asymptotic approximation for />„ ^(cosfl).

COROLLARY 1'. Let N = n + 1 > 50, let

(2.13) /w-w-^fstm |-(§-«.§

and let 0* be the root off{6) = n/2. Then

(2.16)
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where

i/i < I 0M43N~4> o<d<6*,
I O.SllSN^^d1!1 6* < 6 < #.
v * — — 2"

By using an argument similar to that for (2.13), it can be shown
that

(2.18) ^ 7 < 0* < 1.00004^-
2N 2N

for N > 50.
The method used by Frenzen and Wong [6] consists of a subdivision

of the interval of integration (0, n) in (1.4) at the zeros of the Jacobi
polynomials and an application of the uniform asymptotic expansion
given in Theorem A. In this paper, we shall approach the problem in a
different manner. We shall first replace the Jacobi polynomial in (1.4)
by its asymptotic approximation given in Corollary 1, and then split
the interval (0, n/2) at the roots xk of the equation f(6) = j i t k , where
jik is the kth positive zero of J\(x).

LEMMA 1. Let f(0) be the function defined by (2.9) and let xk denote
the root of the equation f{9) = j i f k . (a) Ifn = [n/2] andN = n + \ > 5,
then

(2.19) X-n < | <!„+!.

(b)Fork= \,2,...,n,

(2.20) xk = ^ ( 1 +£i),

where

(2.21) |Cl | < J_ ( i _ 1 ) N~2 = 0.0072iNT2.v J l n ~ 2n \ nj

Proof (a) From (2.9) and the well-known inequality [17, p. 492]

(2.22)

we have
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and Tfl+i < \% if N > 5. The first inequality in (2.22) and the mono-
tonicity of f\{6) in the interval (0, n) yield

if N > 5.
(b) Equation (2.9) gives

(2-23) T, = M__L_

Since f\{6) is positive and (1/0)/i(0) is monotonically increasing in
(0, n/2], it follows that

(2.24, £(!-§) $
/: = 1,2, . . . , n, which of course implies (2.20)-(2.21). This completes
the proof of the lemma. •

To derive the estimate (1.14), we also require a bound for the er-
ror in the two-term McMahon asymptotic expansion for the zeros of
Bessel functions; see Hethcote [9, p. 38]. The particular result which
we need is stated in the lemma below.

LEMMA 2. For k>4,

(2.25) *•* 1/4)+e»'

where

(2.26) \e2\ < 0.4576AT2.

From the numerical values of j \ jC9 k = 1,2,3, it is easily verified
that (2.25)-(2.26) in fact holds for all k > 1. With Lemma 2, we can
now prove the following results.

LEMMA 3. The number M^ = (-1) Jo{j\,k) given in (1.8) satisfies

y 7t \ ' l o i)/c J

where
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Proof. First, we put x = j \ ̂  in the asymptotic expansion [16, p.
193]

1 2 3 2

COS [X — —

where

Next, we replace ji^ in the trigonometric functions in (2.29) by its
asymptotic approximation (2.25). The result is

^ = \\ihT -e2 1 -
32

— sin (-!)%•

Now we approximate the cosine and sine function, respectively, by
their two-term and one-term Maclaurin expansion. This results in

( 2 . 3 1 ) Mk = \^j
128;2

fc

S2,

where

f y/l0-0723k-V2 (k > 2),

7/2 (k > 25).

Finally, we rewrite (2.25) as

( *'

to obtain

(2.32) -
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with

Since j l t k > nk by (2.22), we have from (2.26)

/ 3 0.4576\ 1 f 0.1108A:-2 (k>2),
| 3 | < V 8 ^ + ^2 / *k - { 0.0438AT2 {k > 25).

The desired result (2.27) now follows upon substituting (2.32) into
(2.31). n

From (2.25), it is easily seen that

(2-33) j i f k - j\tk-\ = Tt + S*,

where

1 .0382^ (k > 25).

Rewriting (2.33) as

/ n + SA
J\,k-\ = Jl,k [ 1 :• J

V h,k J

and using the binomial expansion, it can be shown that
(2.35) T" x-^ dx = nj-l/i + ^-j-^ + S5

and

(2.36)
fj\k~\

where

and

(2.38)

A combination of (2.27), (2.35) and (2.36) gives the following result;
cf. [6,Eq. (4.1)].
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LEMMA 4. The number Mk given in (1.8) satisfies

(2.39) Mk = J , r x-W dx - -L= r x-W dx + e4,

where
, „ rtN r 1.216IA:-5/2 (fc > 2),
(2-40) | 6 ^ { (13144*-* ( ^

In exactly the same manner, one can prove the following analogues
of Lemmas 1 to 4 above.

LEMMA V. Let f{6) be the function defined by (2.15) and let xk

denote the root of the equation f{6) = jOtk, where jOik is the kth positive
zero ofJo(x). (a) Ifm = n — n = n- [n/2] then

(2.41) *m<f< W

(b) Fork= l , 2 , . . . , m ,

(2.42) f* = ^ ( 1 + " l )

where N = n + 1

(2.43) |6!|<0.1085iV-2 for N> 50.

LEMMA 2'. For k > 4,

(2.44)

(2.45) |e2| < 0.3268A:-2.

LEMMA 3'. The number Mk = (—l)*+1yoffc-M./olfc) ^w/ i m (1-12)

(2.46)

~ \ 0.0819A:-5/2 (jfc>25).
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LEMMA 4'. The number M^ given in (1.12) satisfies

1.3468Ar3/2 (A: > 2),
0.4916A:-3/2 (A:>25).

An immediate consequence of (2.48) is that the constant DQ in
(1.11) is in absolute value less than 2.6945, a result which is needed
later in our discussion. To see this, we recall that in [6, Eqs. (1.16)
and (6.17)], it was shown that Do has the alternative expression

(2.50) A) =
k=i I #w Jjok-i 2y2n jjQk_l

The first term of the series can be calculated numerically. Thus, from
(2.48), it follows that

00

(2.51) |A)I < 0.0009+ 1.3468 J ] A:"3/2 < 2.6945.
k=2

3- Sketch of the procedure. Returning to (1.4), we have

(3.1) Ln = (n + 1) / sin-cos-\PJil'0)(cosd)\dd.
Jo l l

Throughout the remainder of this paper, we shall let N = n + 1 and
suppose that N > 50. In view of the identity (2.14), Ln can be written
as
(3.2) L}

with
rn/2

(3.3) L™= /
Jo

n/2
(3.4) 4 2 ) =

Jo0 £ L
(1)We shall first be concerned with the constant L\ }. The calculation of

L$ proceeds in a similar manner.
In (3.3), we replace the Jacobi polynomial /^lf0^ (cos0) by its uni-

form approximation given in (2.10). Note that the function

| cot I
n\ 1/2
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is positive and bounded by 1 on the interval 0 < 8 < n, and that the
function f{(d) in (2.9) satisfies (l /0)/i(0) < //(0) for 0 < 0 < n.
Thus

By Corollary 1, we have

where

(3.8) |es| < 0.0059JVT5/2.

Let T^ have the same meaning as given in Lemma 1, and for conve-
nience, put T0 = 0. Since | / i(x) | = (-l)kJ\(x) for x in Ui,k>Ji.k+i)
and k = 0 ,1 ,2 , . . . , (3.7) can be expressed as

1
(3.9)

where

UW)J

65,

fTk+l ( f(6) \ 1 / 2 / 0 \=X im) K)
k = 0, \,...,n- 1,

and
1/2rn/2 ( f(d) \l/z ( 0 \ I / Z(3-n) /"=/. (M) r ' v

In the next section, it will be shown that

(3.12) \{-\yik= S* + -j^-[g(rx)M1 -g(tn)Mn] + e6,
k=\

where

(3.13) s; =
k=2

and

(3.14) |e6| < y/2 x O
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Mfr being the constant given in (1.8); cf. [6, p. 399]. The calculations
of /o and In are also given in §4, and it will be proved that

(3.15) I

and

(3.16) (-1)% = ^ [g{xn)Mn - (-1)»* ( | ) Jo ( / ( f

Here

(3.17) |e7| <V2x 0.0442AT5/2

and

(3.18) |e8 |<>/2x0.1088iV-5/2.

The following lemma is demonstrated in §5.

LEMMA 5. The sum S* in (3.13) has the asymptotic approximation

(3.19) S;=Biy

where B^ is a constant given by

(3.20) 4"
k=2

and

(3.21) |e9| < 3.7924W"3/2.

The asymptotic approximation of L^ is obtained by inserting (3.19)
in (3.12), and combining the resulting expression with (3.15) and
(3.16). First, we observe that the function g(6) in (3.5) satisfies
g(0) = 1 and g'(0) = 0. Thus,

(3.22)
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where 0 < £ < T\ < j\,\/N < 5n/4N. Furthermore, since g"{6) is
negative and decreasing in (0, n), we have

(3.23)

with

(3.24) |e lo|

Substituting (3.19)

a - l

(3.25) Y( \)kIk
k=\

< - \

and

V

^(TI)MI

g"

(3.23) in

I

M! < 0.2465iV

(3.12), we obtain

1) 2 3 / 2

7T3 /2
[J>>x-V2dx +

Jo

- 2

- -fir

where

(3.26) |en|<8.5212«-3/2 .

Next, we observe that B^ is related to BQ via the identity

(3.27) B0 = 2B{
0

l)

seeEqs. (1.10), (6.15) and (6.4) in [6]. A combination of (3.9), (3.15),
(3.16) and (3.25) gives

9/ / / /

(3.28) NLP = B0 + ^NWif - g{0)e-"2dd
/ /-Jt/2 rn/2 \if -

where

(3.29) l^l < 8.6801«-3/2.
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As mentioned earlier, the evaluation of Z^2) proceeds in a similar
fashion, and the result is

_ f71'1
JjOmiN

+ E2,

where

( 2 Q\ 1/2

-tan^J
and
(3.32) \E2\ < 4.4788«"3/2.

Note that the bound for E2 is only half of that for E\. An explanation
of this phenomenon and a brief summary of the calculation for L$
can be found in §6. Asymptotic expansion (1.10) and its error bound
(1.14) is obtained by adding the results for L^ and L$ together.
This is done in §7.

We close this section with a proof of Szego's conjecture. Let
(n + l)!/2 = nl/2 + Jn-l/2 + pu (n + l)~l/2 = n- l /2 + p

(n + I)"1 = rcx + p$. From (1.10), we have

-u-fr *> f^

where p* = e(n + 1) - e(n). It is easy to see that \pi\ < | «~ 3 / 2 ,
\Pi\ < i«~ 3 / 2 and \p3\ < ^n"3/2 for n > 49. By (1.14), we also have
|/7*| < 30«"3/2 for n > 49. Thus

(3.33) Ln+l - Ln = \j\n

for n > 49, where

(3.34) \p\ < 30.9833«-3/2.

Here use has been made of (2.51). The right-hand side of (3.33) is
obviously positive if n > 49, thus proving (1.6) for all n > 49.
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TABLE OF Ln (1 < n < 50)

n
1
2
3
4
5

6
7
8
9
10

11
12
13
14
15

16
17
18
19
20

21
22
23
24
25

Ln
1.6666666667
2.1757550766
2.6042945349
2.9815812630
3.3225397887

3.6360053510
3.9277225676
4.2016761244
4.4607644000
4.7071738476

4.9426021800
5.1683989094
5.3856578313
5.5952801306
5.7980187723

5.9945105436
6.1852997023
6.3708557767
6.5515871874
6.7278518354

6.8999654408
7.0682081922
7.2328301049
7.3940553830
7.5520860056

n
26
27
28
29
30

31
32
33
34
35

36
37
38
39
40

41
42
43
44
45

46
47
48
49
50

Ln
7.7071046904
7.8592773737
8.0087552924
8.1556767429
8.3001685828

8.4423475116
8.5823211753
8.7201891188
8.8560436165
8.9899703935

9.1220492583
9.2523546614
9.3809561825
9.5079189674
9.6333041150

9.7571690148
9.8795676628
10.0005509311
10.1201668153
10.2384606609

10.3554753584
10.4712515292
10.5858276893
10.6992403971
10.8115243935

4. Calculation of /^. In view of the identity J\(x) = -J'0(x), the
integral /^ in (3.10) can be expressed as

(4.1)

where

(4.2)

ik = £k+lG(d)d(-j0(f(d))),

G(d) =
1/2
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and g(6) has the same meaning as given in (3.5). Using the mono-
tonicity property of (1/6) f\(6) and f[(0) on (0, n/2), it is easily seen
that

(4.3)

and

(4.4)

where \37\ < 0.0036JV-2 and \SS\ < 0.0405AT-2. Thus,

(4.5) G(d) = y/2g(d)N-l+el2

with

(4.6) |ei2| < \ / 2 x 0.0442JV"3 for N > 50.

Inserting (4.5) in (4.1) and applying an integration by parts, we obtain

(4.7) Ik = (-\)k—[g(xk)Mk + g(rk+i)Mk+i]

^ / g'(e)Mf(d))dd+ / el2Mf(d))df(6),

where Mk is given in (1.8). By (4.6), the last integral on the right is
in absolute value less than y/2 x 0.0442N~3(Mk + Mk+X). Thus, upon
summation, we have

(4.8) J^(-l)fc/fc = -jfSn + -jf[g{^\)M\ - g{in)Mn\
k=\

y/2"-1

where S* is given in (3.13) and

(4.9) |ei3| <

cf. Eq. (3.12). Since j \ k > nk, Lemma 3 gives

Furthermore, since
fl-l -s_i

(4.10) Y,k~P< x-Pdx, p>\,
f2

 Ji
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by (2.28) we have

|e13| < yfl x 0.0442JV"3 2- I)1/2 + f^ + 2 x 0.0582 x ±
y 4 T T 3 55

-1/2

Thus,

(4.11) |e i3 |<\ /2x0.0597Ar5 /2 .

Let us now estimate the second last term in (4.8), namely,
_ _ a 1

(4.i2) £l4 = ̂  y ; ( - i )* frk+l s>{o)W{o))do.

In the integral, we make the change of variable f(d) = y. This gives
/•Tjfc+l PJl.k+l

(4.13) / g'(6)Mf(d))dd= H(y)yJ0(y)dy,

where
g'(8)

By the Mean-Value Theorem,

(4.15) H{y) = HU

for some ̂  between y and iojt+i. Inserting (4.15) in (4.13), we obtain

(4.16) / g'(d)Mf(6))dd= H'($k)(y-j0,k+l)yMy)dy,

the first term vanishing in view of the identity yJo(y) = {yJi(y)Y- To
estimate H'(y), we note that both g'(8) and g"(6) are negative and
decreasing. Furthermore, £;(0) = 0 and \(l/d)g'(d)\e=0 < \g"(n/2)\.
Thus, for xk<6< xk+l, or equivalent^ for j L l c <y< j l M U

(4.17) 2i
Using (2.22) and

(4.18)

we also have \y — j'o^+i I < 37t/4 and 0 < j\tk+i ~ J\,k ^ 97r/8. A com-
bination of these results shows that the integral in (4.16) is bounded
by

(4.19) 0.1503AT-2 • g V 5 «
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Therefore the error term e14 given in (4.12) satisfies

|e14| < ^ x

A \k=i iAk=\ )

This together with (4.10) yields

(4.20) |e1 4 |<v /2x0.8418iV-5/2 for N > 50.

Coupling (4.11) and (4.20), we obtain (3.14), thus proving the asymp-
totic approximation (3.12).

The calculation of IQ proceeds in a slightly different manner. We
first make the change of variable y = f{6). Thus

(4.21) /„= [JllG(d)My)dy.
Jo

Substituting (4.5) in (4.21) yields

(4.22) /„ =

where

(4.23) |eiS| <V2x O.OO88AT5/2.

Note that g(d) in (4.22) is a function of y and

d2g _ (g'(d)\
\f'(e)J ney

Using the facts that both g' and g" are negative and decreasing in
(0, n/2] and £;(0) = 0, we have

(4.24)
d2g

<N -2 - S <0.0835iV-2

dy2

for 0 < y < jit\ and N > 50. Expanding g(6) at y = 0 gives

(4.25) ^(fl) = 1 + 1

for some r\ between 0 and y. Inserting (4.25) in (4.22) and making
use of (4.24), we obtain the required result (3.15).

The calculation of In resembles that of Ik for 1 < k <n - 1. Thus,
instead of (4.7), we have

(4.26) (-!)»/„ = ^ [g{Tn)Mn - (-Ifg ( | ) Jo ( / ( | ) ) ] + fig,
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(4.27)
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es = ( - r/2gf(d)J0(f(6))dd

cf. (3.16). By (4.6), the second integral on the right is less than
y/2 x 0.0442N-3\J0(f(7c/2)) - J0Ui.n)\- Using (2.22) and the facts
that |/o(*)l < V2/nx and f{6) > N8, it can easily be shown that

(4.28) ( - 1 ) " / < 0.001

The first integral in (4.27) can be estimated as in (4.13)-(4.19). In-
stead of (4.15), here we expand H(y) at y = f(n/2). The analogue
of (4.16) is

(4.29) ( -
n/2

g'{d)JQ{f{d))dd

Jin

for some £n between y and fin/2). Again using the facts that \J\ (JC)| <
y/l/nx and f(n/2) > (n/2)N, it can be shown that the first term on the
right is bounded by 0.1025iV~3/2. By an argument similar to that for
(4.17), we also have

\H'($n)\ < 0.0350AT3.

This, together with

implies that the second term on the right-hand side of (4.29) is bound-
ed by 0.0052JV~3/2. Therefore,

(4.30) J2 fl
^ / g'(6)J0(f(d))dd

<\/2x0.1077iV-5/2 .

The estimate (3.18) now follows from (4.28) and (4.30). This com-
pletes the proof of (3.16).
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5. Proof of Lemma 5. From (3.13), we have

k=2 k=2

Replacing Mk by its asymptotic approximation in Lemma 4, we can
express S% as

(5.i) s; = sHtl+s;t2 + s;ti + el6,
where

(5.3) «.2 ^ E / .

( 5 - 4 ) s » > = -

and

(5.5) «I6 =

A:=2

Since ^"(0) is negative and decreasing in [0, n/2], it follows from
(3.22) and (2.23) that

l^(Tik)-1)1 < 5

A combination of (2.40), (2.22) and (4.10) gives

(5.6) |e16| < 2.2259«"3/2 for n > 49.

Note that the infinite series Sn>\ is absolutely convergent by Lemma 4,
and is a constant independent of n; cf. [6, p. 405].

(A) Evaluation ofS*2.
The argument here parallels that given for Sni2 in [6, p. 405], except

that the zeros Qk of the Jacobi polynomial there is replaced by the roots
Tfc of the equation f(6) = j \ t k and the O-terms are replaced by explicit
bounds. Thus, in (5.3), we make the change of variable x = NO and
write

(5.7) g(rk) = g(0) + g'{d){xk - 6) + \g"
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where £ is between xk and 0. Since

|*"«)| < |s"(*/2)| and (Tjk - 6)2 < (ji,k - Ji,k-i)2/N2

for 0 € [j\,k-i/NJiik/N], the remainder term ^ " ( ^ ) ( T ^ - 0 ) 2 in (5.7)
contributes to S*2 an error

(5.8) |e17|<0.3171v^«1/2iV-2 for N > 50.

Here use has been made of (2.33)-(2.34). Substituting (5.7) in (5.3)
then gives

(5.9) ^

where
ft rjik/N

(5.10) Sn,i=Nl/2J2 '
k=2 J{k-llN

and
n rjik/NJ2 'n rjik

(5.11) 5^ ' = N^2J2 '
k=2

JJik-

J2
k=2

JJik-i/N

Clearly, S^l* c a n be written as
/ rn/2 rjn/N rn/2

( 5 . 1 2 ) s T ( /

For S $ \ we let O((9) = g'{d)6-V2 and write

Then

k = 2

+
2i

uk-1) f *w
Z i V / JJik-i/N

Making the change of variable t = 6 - (l/2N)(j\k + Ji^-i), each
integral in the second sum on the right becomes

(5.14) J
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By the mean value theorem, this integral is equal to

(5.15) /
Jo

for some & satisfying

2ffU\.h + h.k-\) -t<&< 2]v(./u + h.k-\)

Since 0 < t < Ui.k-Ji.k-\)/2N in (5.15), we have Jiik-X/N < & <
jXtk/N. Furthermore, since 1^(^)1 < \gn{nl2)\^ll2, by using (2.33)-
(2.34), it can be shown that the integral in (5.15) is bounded by

12y/n
l
8

From this and (4.10), it follows that the second term on the right of
(5.13), i.e.,

(5.16) en =

satisfies

(5.17) |e18| < 0.0956^3/2iV-2«1/2.

To calculate the first term on the right-hand side of (5.13), we use
Lemma 1 and (2.33). Thus

(5-18) U - hk+
2i

l-k-1

where

Since (l/6)gr(6) is negative and decreasing in [0, n/2]

Using (2.22), (2.33) and (4.10), it can then be shown that

(5.20) |e19| < 0 .0588^^-2 .
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Inserting (5.18) in (5.13) and adding the resulting expression to (5.12),
we obtain from (5.9)

J ii.k-\

where

and by (5.8), (5.17) and (5.20)

(5.22) |e20| < 0.7237«-3/2 for n > 49.

(B) Evaluation ofS*3.
The analysis here is similar to that of S* 2, and is in fact simpler.

We first make the change of variable x = N6 in (5.4) and then replace
g(*k) by g(d) + g'(0(rk - 6); cf. (5.7). The result is

(5.23)

where

(5.24) sp: = £ [iu/N g(e)e-y2dd

and

(5.25)

<f being between xk and 6. By integration by parts
-1/2

-2g

+ 2 T" g\d)d-xl2dd.

Note that the last integral on the right-hand side is equal to the finite
sum in (5.21). Since \g"{6)\ < \g"{n/2)\ for 6 e [0,TT/2] and j u <
5n/4, by a two-term Maclaurin expansion we have

(5.27) g(jJA^ = i+E22> |e22| < 1.1035AT - 2



LEBESGUE CONSTANTS 181

Put h(0) = {co\{dl2))ll2. Since g{6)d-ll2 = ( l /v^Xcot^) ) 1 / 2 , by
the mean-value theorem

( 5 . 2 8 )

where r\ is between j\>n/N and n/2. Furthermore, since hr(6) is neg-
ative and increasing in (0,2TT/3) and n{\ - I/AN)/! < Ji§n/N9 we
also have \hf(rj)\ < \h'(fl)\9 where fj = n{\ - 7/4iV)/2. From this, we
conclude that

(5.29) g

for « > 50. Inserting (5.27) and (5.29) in (5.26) and coupling the
resulting expression with (5.23) gives

(5.30) S h = ^ ^

JJ, ,

( 5 . 3 1 ) e 2 4 = ± \ l h
where

=rx\h21

To estimate 621, we note that j\tk-\IN< x^ < Ji^/N and

4
Thus, as in (5.20), it can be shown that

(5.32) |e2 i |<\/^-l-1162AT-3 /V/2 .

A combination of (5.27), (5.29) and (5.31) yields

(5.33) |e24| < 0.8256«-3/2 for n > 49.

Observing that the sum Snii in (5.2) can be written as

(5.34) Snil = B{
o
l) ± \ / 2

n '

where B^ is given in (3.20), it follows immediately from (5.1), (5.21)
and (5.30) that

(5.35) s: - <»

7r-r=N-^2 + e16 + e2o
Ay/11
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Recall from (3.22) that

l*(*)-i|<5
Hence

(5.36) / g{6)6-xl2 dd = N-V2 I '
Jo Jo

where

(5.37) |£25| < 0.4791^-5 /2 for iV>50.

Coupling (5.35) and (5.36), we obtain (3.19) with

n
89 = £i6 + e2Q + e24 - ^372Nl/2e25.

This completes the proof of Lemma 5.

6. Calculation of L|,2). By Corollary 1',
n/2 ( f(Q\\ 1 / 2 / o\ 1/2

where
rn/2

Since 0 < tan(0/2) < 1 and 0 < f{0) < NO for d e [0, TT/2], it can be
shown that

(6.3) |£s| < 0.0141 iV"5'2 for N > 50.

Here we wish to point out that the function fl(d) = 3 t an(0 /2) - (2 /0-
cot(0/2)) in (2.15) and all its derivatives are positive and increasing in
[0, n/2]. Furthermore, the functions / (0 ) = NO - (l/l6N)fi (0) and
(1/0) /i(0) are also increasing in that interval. Following (3.9), we
split the interval of integration in (6.1) at f k, the root of the equation
f(0) = hk. (Note that jOik/N< xk < jo>k+i/N.) Thus

i r m - i

(6.4)

where
1 / 2 / flNl/2

(6.5)
A: = 0, l , . . . , m - 1,
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and

fn/2 ( f(e) \1/2 / 0\1/2

(6.6) Im = j U^-J (tan|j Jo(f{O))dO. m = n-n.
For convenience, we have set f o = 0.

In view of the identity xJo(x) = [xJ\(x)]f, the integral 7* can be
expressed as

(6.7) 4 = f™ G(e)d[f(6)jx(f(e))i
t k

where

1 / A \ 1 / 2

(6.8)

and

(6-9) $(0)=^tan|J .

Note that the function g(6) is increasing in [0, n/2]. The result cor-
responding to (4.5) is

(6.10)

where

(6.11) |e12| < 0.2650A^-4 for N > 50.

Inserting (6.10) in (6.7) and applying an integration by parts, we ob-
tain, upon summing up,

k=\
1 .

where Mk is as given in (1.12) and
m

(6.13) S* = ~
k=2

The error terms e^ and 614 correspond to those given in (4.9) and
(4.12), respectively. It can be shown, as in §4, that

(6.14) |fi13|<0.1830Ar5/2
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and

(6.15) | £ u | < 0.9712JV-5/2

for n > 50. The analogues of (3.15) and (3.16) are

(6.16) /„ = -±=N~2 [J°l yJo(y) dy + e7 = ±=N~2MX + i7
V2 Jo v2

and

where

(6.18) |fi7|<0.0019iVr5/2 and |£8| < 0.1927i\r5/2

for N > 50. In a manner similar to Lemma 5 (cf. (3.19)), it can also
be proved that

(6.19) S;

where

(6.20) |£9| < 3.489AT-1/2

and DQ has the same meaning as given in (2.50). The final asymptotic
formula for iff, given in (3.30), is obtained by combining the results
in (6.12), (6.16), (6.17) and (6.19).

Observe that the coefficient in the approximation (6.10) for G(6)
is l / \ /2, whereas the corresponding coefficient for G(6) in (4.5) is
y/2. Thus, the approximations differ by a factor of two. Compar-
ing equations (3.12), (3.15) and (3.16) with the corresponding equa-
tions (6.12), (6.16) and (6.17), one notices that this difference carries
through the calculations of L^ and Z^2). This explains why the error
Ei in (3.28) is approximately twice as large as that in (3.30).

7. The sum of L ^ and Z^2). From (3.28) and (3.30), we have

(7.1) Ln = I*{+!$ + !$+Bo^
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where

(7.2) /,' = S i n 2 J (C0Sf) dd

x/2 / Q

)
]

<7-3> ^ = -

and

(7.4)

By letting 8 — n - 0 in the second integral in (7.2), the two integrals
there can be combined into the single integral

p7l / n\—\/2 / n\ 1/2

(7.5) J (sin^J fcos|J dO
Thus, since JV = n + 1, (7.2) can be expressed as

(7.6)

where \e\\ = 0.1995«~3/2. By the same argument, the two integrals in
(7.3) can be combined into the single integral so that

(7.7)
2 f

Jj

n-J°"</N 0X1/2

2j dd.

Since both limits of integration tend to n/2 as n -» oo, we expand the
integrand h{6) = (cot(0/2))1/2 at 6 = TT/2:

*'(,,) ( 0 - | ) ,(7.8)

^ being between 6 and 7i/2. Note that both Jiifi/N and Jo,m/N are
less than 7i/2, and hence that the upper limit in (7.7) is indeed greater
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than the lower limit of integration. Inserting (7.8) in (7.7), we obtain
by the argument following (5.28)

T* - 2 AT 1/2 L h,m j\,n

with |e |̂ < 0J555N~~3/2. Here use has also been made of the inequal-
ity n/2 - n/4N< Jo>m/N. From Lemmas 2 and 2', it follows that

(7.10) / ^ - - ^ i v - i / 2 + e*,

where |e;| < 0.7933n"3/2.
To approximate 1%, we first recall the asymptotic approximation

where

(7.12) |e; |<\p4*~3 /2< x>0.
V 71 o

Next we observe that if n is even, then

and that if n is odd, then

+ ( l ) ^ [J.
The last two equations can be combined to give

(7.13) [ ( I

with \e*5\ < 0.0080JV-1. Since g(n/2) = y/n/2 and

5» niseven,

with |ej| < 0.0029JV"5/2, a combination of these results gives

(7.14) (-l)^
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where |e^| < 0.0495iV~3/2. In a similar manner, one can show that

(7,5) t m N

where |e§| < 0.2314^-3/2, Note that the leading terms in (7.14) and
(7.15) differ only by a minus sign, and hence that

(7.16) / J = « 7 +fig-

By (2.51), we also have

(7.17) D0N~l =Don-{ +e*9,

where |e£| < 0.3849W3/2. The final result (1.10) now follows upon
adding (7.6), (7.10), (7.16) and (7.17) together. The error term e(n)
in (1.10) is given by

e(n) = ej + 63 + ej + fi| + 69 + Ei + E2,

and hence satisfies the estimate (1.14).

8. Conclusion. In this paper we have found an error bound for
a four-term asymptotic expansion of the Lebesgue constants for
Legendre series. From this we have also shown that these constants
are indeed monotonically increasing, a conjecture of Szego which dates
back to 1926. The development of error theories for asymptotic ap-
proximations has been advocated by F. W. J. Olver [11] for some
time. The present paper is another demonstration of the usefulness
of a well-constructed error bound.

Although Szego's conjecture is now proved, the present approach is
far too complicated. A more satisfactory approach would be to search
for an alternative expression for the Lebesgue constants from which
the monotonicity of these constants is evident. This is the approach
which Szego had used to show that the sequence of differences of
the Lebesgue constants for trigonometric Fourier series is completely
monotonic. We shall, however, leave this problem to the experts in
orthogonal polynomials.
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