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SZEGO’S CONJECTURE ON LEBESGUE
CONSTANTS FOR LEGENDRE SERIES

C. K. Qu AND R. WoONG

In 1926, Szegbé conjectured that the Lebesgue constants for
Legendre series form a monotonically increasing sequence. In this
paper, we prove that his conjecture is true. Our method is based on
an asymptotic expansion together with an explicit error bound, and
makes use of some recent results of Baratella and Gatteschi concern-
ing uniform asymptotic approximations of the Jacobi polynomials.

1. Introduction. The Lebesgue constants for classical Fourier series
are defined by

_ 1 [™|sin(n+1/2)¢| _ )
(1.1) Pn = 75/0 Sin(Z/2) dt, n=12,3,...;
see [18, p. 172]. Fejer [4] was the first to show that
4 Cq a(n)
(1.2) p,,=;logn+co+7+7,

where ¢y and c; are constants and a(n) is bounded for all n. From
(1.2), he deduced that

(1.3) Pn+1— Pn>0
for large n. He further conjectured that (1.3) holds foralln > 1, a
conjecture later proved by Gronwall [7]. Gronwall’s result was con-
siderably improved by Szego [12], who showed that the sequence of
differences of the Lebesgue constants p, is in fact completely mono-
tonic, i.e., App = ppy1— pn>0and (-1)"1A7p, >0forr=2,3,....
In exactly the same manner, one can investigate the properties of
the Lebesgue constants

1
(Lo =252 [ RO dx
-1

n
=(n+l)/ singcosg|1>,$1-°)(cos0)|do, n=1,2,...,
0

for Legendre series at x = 1, where P,El'o)(x) is the Jacobi polynomial
with a = 1 and B = 0. The asymptotic formula

23/2
(1.5) L,= —ﬁnl/z +o(n'?), n— oo,
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was first given by Gronwall [8] and later, by Szegd [14, 15] with simpler
proofs. In 1926, Szegd conjectured that this sequence is monotonically
increasing, i.e.,

(1.6) Ln+1 - Ln > 0

for all n > 1; see footnote 6 in [13] and also the editor’s comment on
page 313 of [1]. In order to settle his conjecture for at least large values
of n, Szegd posed to Lorch in the fifties the problem of obtaining more
refined results than that given in (1.5). In [10], Lorch showed that

3/2
(1.7) Ln=2

= 7n‘/2 + By + O(n~'12),

where By is a constant. More explicitly, if j, ; denotes the kth positive
zero of the Bessel function J,(x), and if

(1.8) My = (=D To(1 k),

then

(1.9) By = 1+2i{Mk-—¥[k”2—(k—1)1/2]},
k=1

where the infinite series is absolutely convergent. A simple calculation
reveals that the result in (1.7) is insufficient to determine the asymp-
totic monotonicity of the sequence L,. Lorch thus proposed to one
of us (Wong) in 1980 the problem of replacing the O-term in (1.7)
by an explicitly determined expression plus terms of lower asymptotic
order. The following result provides a solution to his problem, and is
proved in [6]:

23/2 2
(1.10) L,= —\/—;t_nl/2 + By + En"/z + Don~! + &(n),
where

= [ 22 3 3/2

k=1

_ 2—3/2[k1/2 _ (k _ 1)1/2]}
and

(1.12) My = (=1 (o)1 Uo)-
The remainder &(n) in (1.10) satisfies
(1.13) e(n)=0n"3?), asn— oo,



LEBESGUE CONSTANTS 159

and the infinite series in (1.11) is absolutely convergent. From (1.10),
it follows immediately that {L,} is an asymptotically increasing se-
quence.

The purpose of this paper is to demonstrate that (1.6) holds for
all n > 1, i.e., Szeg6’s conjecture is true. Our argument is based

on the asymptotic representation (1.10) together with the improved
numerical estimate

15
(1.14) le(n)| < P77

From (1.14), it will be proved that (1.6) holds for all n > 49. The first
fifty p, can be calculated numerically, and their values are exhibited
in the table in §3. An examination of these values shows that the
sequence {L,} is indeed monotonically increasing.

To prove (1.14), we shall make use of some recent results of Baratella
and Gatteschi [2] concerning asymptotic approximations of Jacobi
polynomials and their zeros. Although these results are in a sense
refinements of the asymptotic approximations obtained by Frenzen
and Wong [5], they are of quite different nature from those given in
[5]. Thus, in spite of the fact that the main strategy in this paper
is similar to that employed by Frenzen and Wong [6], the detailed
analysis here differs considerably from that given there.

The content of this paper is arranged as follows. In §2, we collect
some of the known results to be used later in the paper. The main
sketch of the argument is presented in §3. Many of the results in §3
are proved in subsequent sections.

for all n > 49.

2. Some preliminary results. In [S], Frenzen and Wong have derived
the following asymptotic expansion for the Jacobi polynomial.

THEOREM A. Fora > -1, a—~ B> -2p and a + B > ~1, we have

o B
(2.1)(sin g) (cos g) P{*P(cos 6)

T(n+a+1) [ 6 \'/? (N8O
- n! )<sin0> [ZA (©) N[(” )+ap},

where

(2.2) N=n+ia+B+1)
and

(2.3) 6, = 6°O(N~P),
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the O-term being uniform with respect to 8 € [0, — ¢],& > 0. The
coefficients A;(0) are analytic functions in 0 < 0 < n—e¢, and are O(6")
in that interval. In particular Ao(0) = 1 and

(2.4) A (0) = [(4 2_1) (———coto) +(4ﬂ2—1)tang

It is this result that has led to the four-term asymptotic expansion of
L, given in (1.10). Motivated by Theorem A, Baratella and Gatteschi

[2] showed that P,f“'ﬂ )(cos 0) also has the Cherry-type approximation
[3] given in Theorem B below, complete with an explicit error bound.
Let

0

2.5)  fi(0) = (1 — 4a?) (——coto) +(1- 46 tan
and
26) £(6)= No + == £1(6);

cf. (2.4). From the Maclaurin series expansion of tan(6/2) and (2/6 —
cot(8/2)), it is easily seen that if —1 < a, B < 4, then f;(0) is positive
and increasing in (0, #). Since f(0) = 0 and

n n 1 /4 T .
f(3)=Ny+5yfi(3)>7 #N>1
the equation f(0) = n/2 has a unique root 6* in (0, n/2).

THEOREM B. Let —3 < o, B < 1 and let 6* be the root of the
transcendental equation f(0) = n/2. Then

2. 7’[;%))] ; (Si“ g)m/z <°°s g)ﬂﬂ/z PP (cos )

el +a+1 1 (4 -
= 2-12y-alln n‘: )[1+32N2(§+B)] Jolf (0] -1,

where A = (1 — 4a?), B= (1 - 482), and for N > §

62N-4("+*)[0.008124 + 0.0828B], 0< 6 < 6,
61/2N-e=1/2("+2)[0,05264 + 0.535B], 6* <6< L.

As we shall see in this paper, it is this latter result which has led to
the error estimate (1.14). For the Lebesgue constant (1.4), we need
a = 1and f =0, a case not included in Theorem B. Nevertheless, by a
slight modification of the argument given in [2], we have the following
corollaries.

(28) ] < {
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COROLLARY 1. Let N =n +1 > 50, and let

(2.9) £(6) = N0+161N [tang—3(%—cotg)] EN0+T—611—V-f1(0),

and let 6* be the root of the equation f(0) = n/2. Then

(2.10) [?}%%))-] o (sin g) " (cos g) . P9 (cos 6)

=272 (0)] + 1,
where
0.0059N 3¢, 0<0<6*,
2.11 Il < =
( ) = { 0.1581N-7/291/2, *<0<%.
A precise estimate for the root 8* can be obtained as follows. Since
f1(0) is positive and (1/8) f,(0) is strictly increasing in (0, z/2], we
have

0 3
(2.12) N0<f(0)<N0+2N (1——7;).
From this, it is easily verified that for N > 50,
(2.13) 0.9999972 <0*< fl_\’—

In view of the well-known identity [16, p. 59]
(2.14) P{"9(cos6) = (=1)"P{®V (= cos ) = (—1)"P%V(cos(x — 8))

and the fact that the interval of integratlon m (1.4) is (0, &), we also
need an asymptotic approximation for P (cos 8).

COROLLARY 1'. Let N =n+ 12> 50, let
A 1 7] 2 7}
(2.15) f(8) = N@ — 16N [Stan2 (E—COtE)]
= NO — —1—6——N—f1(0),

and let 6* be the root of f(6) = n/2. Then

A -1/2 /2 3/2
(2.16) [%J <sin g) 1 <cos g) P,So'l)(cos 0)

= 27211 f (01 + 1,
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where

. . —4 < 6*,
2.17) IIIS{00843N , 0<6<86

0.5713N-7/2912,  §*<6<%.

By using an argument similar to that for (2.13), it can be shown
that

(2.18) L < 6* < 1.00004 =

2N 2N

for N > 50.

The method used by Frenzen and Wong [6] consists of a subdivision
of the interval of integration (0, z) in (1.4) at the zeros of the Jacobi
polynomials and an application of the uniform asymptotic expansion
given in Theorem A. In this paper, we shall approach the problem in a
different manner. We shall first replace the Jacobi polynomial in (1.4)
by its asymptotic approximation given in Corollary 1, and then split
the interval (0, 7/2) at the roots 1, of the equation f(0) = j, , where
J1,x is the kth positive zero of Jy(x).

LemMMA 1. Let f(0) be the function defined by (2.9) and let t;. denote
the root of the equation f(0) = ji . (a) Ifn =[n/2)and N = n+1 > 5,
then

(2.19) Tn < g < Tpyl.
(b) Fork=1,2,...,n,
(2.20) T = l]‘\',—"(l +ep),
where
1 3\ v—2 -2
(2.21) le1] < 5 (1- 2 ) N2 = 0.00728 2

Proof. (a) From (2.9) and the well-known inequality [17, p. 492]

(2.22) (k + %) < jix < (k + %) ,
we have
Jin 1 (_ 1 N-1/2 n =
h < N <N(Vl+z>ﬂ< N E<§
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and 7, < %n if N > 5. The first inequality in (2.22) and the mono-
tonicity of f;(6) in the interval (0, z) yield

1.1 1 2
Ta+1 > Jl;;l - 16N2f1 (—7[)

> () - [40())> 2

if N>5.
(b) Equation (2.9) gives
1
(2.23) T = th - Tea /i)

Since f1(0) is positive and (1/0) f1(8) is monotonically increasing in
(0, m/2], it follows that

1 (0 3\ w _ 1 ( 3\Jjuk
(2.24) 0<16N2f1(rk)<2n(1 )N2<27t(1 )N3

k=1,2,...,a, which of course implies (2.20)-(2.21). This completes
the proof of the lemma. O

To derive the estimate (1.14), we also require a bound for the er-
ror in the two-term McMahon asymptotic expansion for the zeros of
Bessel functions; see Hethcote [9, p. 38]. The particular result which
we need is stated in the lemma below.

LEmMMA 2. For k > 4,

. 1 3
(225) k= <k+z)ﬂ—8—n(m+£2,
where
(2.26) lea| < 0.4576k~2.

From the numerical values of j; ;, kK = 1,2, 3, it is easily verified
that (2.25)-(2.26) in fact holds for all k > 1. With Lemma 2, we can
now prove the following results.

LEMMA 3. The number My, = (—1)*Jy(j, ) given in (1.8) satisfies

2 (. 3
(227) Mk=\f (J111</2 16115/2)+83,

where

-17/2
228) el < { 0.0582k (k>2),

0.0360k~72 (k> 25).
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Proof. First, we put x = j; ; in the asymptotic expansion [16, p
193]

(2.29) Jo(x) = \/% [cos (x - %) + —8192 sin (x - %)

12.32 n
28R cos (x - Z)] + d1,

where

(2.30 6| < L3250 (2 o 00732\/— -7,
30) =738 Vz©

Next, we replace j; ;. in the trigonometric functions in (2.29) by its
asymptotic approximation (2.25). The result is

2 3 32
M, = —1/2 R 1 — ———
S R N P 28772,
3 1
— S e + 1k5
smlSn(k+;’;) }811 } =10

Now we approximate the cosine and sine function, respectively, by
their two-term and one-term Maclaurin expansion. This results in

[2 9 9
2.31) M, = —1/2 1 - -
(231) M=\ 7/ 128n2(k + §)2 1287,

- 3 +6
an(k + Nl

where

" V200723672 (k 22),
2| <
\/20.0448k-72 (k> 25).

Finally, we rewrite (2.25) as
(k + l) T=/j .+ ___3__ —&
4 ET\ S+ )~ 2

1
(k+ =

to obtain

(2.32) = ja(1+63)
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3
[/) =1
o3| < (8 k+ 4) 82) J1.k

Since jj , > mk by (2.22), we have from (2.26)

l51<( 3 04576)L {0.1108k—2 (k >2),
3 8nk k2 ) mk ~ | 0.0438k~2 (k> 25).

The desired result (2.27) now follows upon substituting (2.32) into

with

(2.31). 0
From (2.25), it is easily seen that
(2.33) Jik = Jik—1 =7+ 0a,
where
1.1061k~2 (k > 2),
2.34 ds4| < =
(2.34) 194] { 1.0382k~2 (k> 25).

Rewriting (2.33) as

. . T+0
Jik-1=J1k (1 - — 4)
J1,k
and using the binomial expansion, it can be shown that
Ik 172 —1/2 n? :~3/2
(2.35) /J dx =nj + i+ s
and
jl A
(2.36) / x~ 32 dx = nj7 3 + J,
jl A—1 '
where
2.1972k75/2 (k> 2),
2.37 _
(2:37) 195! < { 0.8258k5/2 (k> 25)
and
3.1103k-5/2 (k > 2),
2.38 < =
(2.38) 19| { 0.4743k=5/2  (k > 25).

A combination of (2.27), (2.35) and (2.36) gives the following result;
cf. [6, Eq. (4.1)].



166 C. K. QU AND R. WONG

LEMMA 4. The number M, given in (1.8) satisfies

\/f Jik 1 Jik N
239) M=-—": 12 dx — / x~32dx +
( ) k 7[3/2 Jia—1 * x Zm Jrk—t * o4
where
1.2161k~5/2 (k> 2),
2.4 < -
(2.40) &4 { 0.3144k-52 (k> 25).

In exactly the same manner, one can prove the following analogues
of Lemmas 1 to 4 above.

LEMMA 1. Let f (8) be thekfunction defined by (2.15) and let
denote the root of the equation f(0) = jo x, where jg i is the kth positive
zero of Jo(x). (@) If m=n—n=n—[n/2] then

(2.41) < -’25 < Emrl.

(b) Fork=1,2,....,m

(2.42) T = Jok (1+é&)
where N = n + 1 and

(2.43) |é1] < 0.1085N~2 for N > 50.

LemMA 2. For k > 4,

1 1
2.44 ok =k—= ——— + &,
(2.4 o= (k=) "+ g=y +
where
(2.45) &2 < 0.3268k 2.

LEMMA 3. The number My = (—1)**1jo . J1(jox) given in (1.12)
satisfies

(2.46) My = \/7 (]O/k + 161-3/2) + &,

where

.1251k-5/2 k>2),
(2.47) rﬂ<{°u5k (k22)

0.0819k~5/2  (k > 25).
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LEMMA 4. The number M, given in (1.12) satisfies

. \/E Jok 12 1 Jok 172 R
(2.48) M, = Y3 o x'“dx + Wz——; /jw(_l X dx + &4,
where
1.3468k732 (k> 2),
2.49 éal < -
(2.49) 18l < { 0.4916k-32  (k > 25).

An immediate consequence of (2.48) is that the constant Dy in
(1.11) is in absolute value less than 2.6945, a result which is needed
later in our discussion. To see this, we recall that in [6, Eqs. (1.16)
and (6.17)], it was shown that D, has the alternative expression

o0 . ﬁ Jok 1 Jok
(2.50) Dy = [Mk -2 x'2dx — / x V2dx|.
; n3/2 Jok-1 2V27 J joue
The first term of the series can be calculated numerically. Thus, from
(2.48), it follows that

(2.51) |Do| < 0.0009 + 1.3468 Y " k~3/% < 2.6945.
k=2
3. Sketch of the procedure. Returning to (1.4), we have

n
(3.1) L,=(n+ 1)/ singcosglP,Sl’o)(cose)ldH.
0

Throughout the remainder of this paper, we shall let N = n+ 1 and
suppose that N > 50. In view of the identity (2.14), L, can be written
as

(3.2) L,=NILY + LY
with
/2
(3.3) LY = / sin g cos glP,El'o)(cos 6)|de,
0
/2
(3.4) LY = / sin g cos gIP,fo’”(cos 6)|db.
0

We shall first be concerned with the constant LS,I). The calculation of
Lg) proceeds in a similar manner.

In (3.3), we replace the Jacobi polynomial P,Sl’o) (cos 8) by its uni-
form approximation given in (2.10). Note that the function

1/2
(3.5) g(0) = <g cot g)
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is positive and bounded by 1 on the interval 0 < 6 < @, and that the
function f1(0) in (2.9) satisfies (1/0)f1(6) < f{(0) for 0 < 0 < .
Thus

(3.6) (%) v (cot g) v <V2.

By Corollary 1, we have

n/2 1/2 1/2
(3.7) Lﬁ,”:% /0 (%%) (cot-g-) IJ1(f(6))| 8 + &5,

where
(3.8) |es| < 0.0059N /2,

Let 7, have the same meaning as given in Lemma 1, and for conve-
nience, put 7o = 0. Since |J1(x)| = (=1)¥Jy(x) for x in (ji x, j1.ks1)
and k=0,1,2,..., (3.7) can be expressed as

n-1
(3.9) =L [I + N (-1 +(—1)n1,-1] +&s,
\/5 0 ;; k 5

where

(3.10) I, = / (_;_:%)1/2 (cotg)llz J1(£(6))db,
A k=0,1,...,n—-1,

and

(3.11) I = /:2 (%%)1/2 (cotg)m]l(f(e))de, = [g]

In the next section, it will be shown that

h-1 3/2
(3.12) E(—1>k1k=2 S;:+ﬁ[g(n)MI—g(mMans,
k=1

N N
where
n
(3.13) Sy=Y glt) My
k=2
and

(3.14) les| < V2 x 0.9015N 572,



LEBESGUE CONSTANTS 169

M, being the constant given in (1.8); cf. [6, p. 399]. The calculations
of Iy and I are also given in §4, and it will be proved that

(3.15) Iy= W@/OJ 5(»)dy +e

and

(316) (~1)Tr = Y2 [ - (-17g (2) o (£ (2))] +n
Here

(3.17) le7] < V2 x 0.0442N 512

and

(3.18) leg] < V2 x 0.1088N~3/2,

The following lemma is demonstrated in §5.

LEMMA 5. The sum S, in (3.13) has the asymptotic approximation

VI i

(3.19) Sy = B{" - 27 |, x 12 dx
£ M2 i ( [-r ) £(6)6-12 d6
Jia/N
1 12
where B(()l) is a constant given by
o .
1 \/f J1k _
(3.20) B'=>" (Mk— e B I/de)
k=2 Jri=1
and
(3.21) leg| < 3.7924n73/2,

The asymptotic approximation of Lﬁ,l) is obtained by inserting (3.19)
in (3.12), and combining the resulting expression with (3.15) and
(3.16). First, we observe that the function g(@#) in (3.5) satisfies
g(0) =1 and g'(0) = 0. Thus,

(3.22) glr) =1+ "(é) 2,
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where 0 < € < 171 < j;,1/N < 57/4N. Furthermore, since g”(0) is
negative and decreasing in (0, @), we have

(3.23) glr)M, = My + &9
with
1 Sn j 2 _

Substituting (3.19) and (3.23) in (3.12), we obtain -

n—l V2 23/2 fin
(3.25) Y (-DFL, = ¥ l (233‘) - m/o x~1/2 dx+M1)
k=1

23/2 /2 /2
+ _n_3/_2N1/2 (/ _/ ) g(0)0—1/2 do
0 Jua/N

1
¥ TEN_1/2+811}

- —\J/Vzg(‘t,-,)M,—,,

where
(3.26) leq1] < 8.5212n73/2,
Next, we observe that B(()l) is related to By via the identity

(327)  Bo=280 — 22 (M s v2ax s+ [ 1) dy:
. 0 0 /2 0 1 0 1y)ay;

see Egs. (1.10), (6.15) and (6.4) in [6]. A combination of (3.9), (3.15),
(3.16) and (3.25) gives

/2
(3.28) NLY’ = By+ 23/2N1/2 (/ / /N) s(O)01d0
Jin

e o (307 (3)) + 5

where

(3.29) |E;| < 8.6801n73/2,
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As mentioned earlier, the evaluation of Lﬁ,z) proceeds in a similar
fashion, and the result is

n/2 n/2
3.30)NLP =20 %N‘/z / - / 2(6)0'72do
n3/ 0 Jom/N

N
L 12 (_qym_ L 5 (B 2 (% F(T
+EN DR (3) 7 (3) 1 (7(3))
+ E>,
where
. 2 0 1/2
(3.31) 20 = (5 tan 5)
and
(3.32) |E;| < 4.4788n73/2,

Note that the bound for E, is only half of that for E;. An explanation
of this phenomenon and a brief summary of the calculation for Lﬁ,z)
can be found in §6. Asymptotic expansion (1.10) and its error bound
(1.14) is obtained by adding the results for Lﬁ,l) and Lﬁf’ together.
This is done in §7.

We close this section with a proof of Szegd’s conjecture. Let
(n+ DY2 = nl2 4+ In~2 4 py, (n+1)"Y2 = n71/2 + p, and
(n+1)"! = n~1 + p;. From (1.10), we have

_ 2,2, 22 2 .
Ly Ln—\/;n +ﬁ/)1+ ”P2+DOP3+P,

where p* = e(n + 1) — &(n). It is easy to see that |p;| < 1n=3/2

|p2| < 4n=3/2 and |p3| < 1n=3/2 for n > 49. By (1.14), we also have
|p*| < 30n~3/2 for n > 49. Thus

2 _
(3.33) Lygi—Ln= \/;n 24 p
for n > 49, where
(3.34) |p| < 30.9833n73/2,

Here use has been made of (2.51). The right-hand side of (3.33) is
obviously positive if n > 49, thus proving (1.6) for all n > 49.



172 C. K. QU AND R. WONG

TABLE OF L, (1 < n <50)

n L, n L,
1 1.6666666667 26 7.7071046904
2 2.1757550766 27 7.8592773737
3 2.6042945349 28 8.0087552924
4 2.9815812630 29 8.1556767429
5 3.3225397887 30 8.3001685828
6 3.6360053510 31 8.4423475116
7 3.9277225676 32 8.5823211753
8 42016761244 33 8.7201891188
9 4.4607644000 34 8.8560436165

10 4.7071738476 35 8.9899703935

11 4.9426021800 36 9.1220492583
12 5.1683989094 37 9.2523546614
13 5.3856578313 38 9.3809561825
14 5.5952801306 39 9.5079189674
15 5.7980187723 40 9.6333041150

16 5.9945105436 41 9.7571690148
17 6.1852997023 42 9.8795676628
18 6.3708557767 43 10.0005509311
19 6.5515871874 44 10.1201668153
20 6.7278518354 45 10.2384606609

21 6.8999654408 46 10.3554753584
22 7.0682081922 47 10.4712515292
23 7.2328301049 48 10.5858276893
24 7.3940553830 49 10.6992403971
25 7.5520860056 50 10.8115243935

4. Calculation of ;. In view of the identity J;(x) = —Jj(x), the
integral [, in (3.10) can be expressed as

(4.1) I = / ! G(8) d(-To(£(6))),

where

1/2
(42) 6(0) = (52) " Lrer s
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and g(0) has the same meaning as given in (3.5). Using the mono-
tonicity property of (1/6) f1(0) and f{(0) on (0, 7/2), it is easily seen
that

(4.3 (L) = wrq s

and

(4.4) [f'(6)173/% = N732(1 + &),
where |d7] < 0.0036 N2 and |dg| < 0.0405N 2. Thus,
(4.5) G(0) = V2g(O)N~! + ¢y

with

(4.6) le12| < V2 x 0.0442N~3  for N > 50.

Inserting (4.5) in (4.1) and applying an integration by parts, we obtain
V2
(4.7) I = (=1)* SF18(wi) Mic + 8(Thes1) Mics1]

+ X2 [ g @ds+ [ eanis o) aro)

Tk Tk
where M, is given in (1.8). By (4.6), the last integral on the right is
in absolute value less than v/2 x 0.0442N~3(M; + M;.,). Thus, upon
summation, we have

n-—-1
(4.8) Z(_l)klk—MS* \/_[g(Tl)Ml &(tn) Mp]

k=1
\/E n-1 Th+1
+ D [ OO0 d + a3,
k=1 Tk
where S, is given in (3.13) and

A—1
(4.9) le1s] < V2 x 0.0442N 3 [ZEMk + M) + M,—,] ;
k=2
cf. Eq. (3.12). Since j; x > nk, Lemma 3 gives

2(1 0, 3 ,-5p
MkS\/;<ﬁk +l6 5/2k +|83|.

Furthermore, since
-1

n—1 f
(4.10) Y kP< / x~Pdx, p>1,
k=2 1
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by (2.28) we have

le1s] < V2 x 0.0442N 3 4_7}\/2(’_’ -2y 4—{?3 +2 % 0.0582 x %

) 2 -1/2 .
. < _ < -1/2
+ |J0(.]1.1)| + - (1 N) N .

Thus,
(4.11) le13] < V2 x 0.0597N5/2,
Let us now estimate the second last term in (4.8), namely,

n-1 P Th+!
@2 an= Y Cr [T g enae
. k=1 T

In the integral, we make the change of variable f(8) = y. This gives

@13) [T geurend= [ H)Iw)dy,
Tk Jik
where
L0
(4.14) H(y) = (O F @)

By the Mean-Value Theorem,

(4.15) H(y) = H(jo k1) + H' (&)Y = Joes1)
for some &; between y and jg 4. Inserting (4.15) in (4.13), we obtain

@16) [ g@slr@)d8 = [ H G - joxr)yIo2)dy.

Jrk
the first term vanishing in view of the identity yJo(y) = (»J1(»))'. To
estimate H'(y), we note that both g'(6) and g"(8) are negative and
decreasing. Furthermore, g'(0) = 0 and |(1/8) g'(8)lg—0 < |&"(7/2)|.
Thus, for 74 < 6 < 144, or equivalently for j; <y < jj k415

(4.17) |H'(y)| < 0.1503N2j .
Using (2.22) and
(4.18) (k—;‘i)n<j0,k < (k—%) 7,

we also have |y — jor41| £ 3n/4and 0 < jj o1 — j1.k < 97/8. A com-
bination of these results shows that the integral in (4.16) is bounded
by

7 . .
(419)  0.1503N2. 21 /3n3 ( i 11,2’2> _



LEBESGUE CONSTANTS 175

Therefore the error term &4 given in (4.12) satisfies

\/j n—1 9 n—1
le1a] < 3 x 0.17937N 2 (Z k=172 4 3 > k-3/2) .
k=1 k=1
This together with (4.10) yields

(4.20) lels] < V2 x 0.8418N~%/2 for N > 50.

Coupling (4.11) and (4.20), we obtain (3.14), thus proving the asymp-
totic approximation (3.12).

The calculation of Iy proceeds in a slightly different manner. We
first make the change of variable y = f(68). Thus

Jia
(4.21) I= /0 G(6)J1(») dy
Substituting (4.5) in (4.21) yields
2 jl 1
(4.22) Iy = %/0 g(0)1(y)dy + &5,
where
(4.23) lers| < V2 x 0.0088N /2,

Note that g(0) in (4.22) is a function of y and

d’g _ (g'(ﬂ))’ 1

dy? ~ \f(0)) 1)
Using the facts that both g’ and g” are negative and decreasing in
(0, /2] and g’(0) = 0, we have

d*g 5n
ay? &' \an
for 0 < y < j;,; and N > 50. Expanding g(8) at y = 0 gives

d’g )y2

(4.25) g@)=1+3 (d 3
for some 7 between 0 and y. Inserting (4.25) in (4.22) and making
use of (4.24), we obtain the required result (3.15).

The calculation of I, resembles that of I; for 1 <k < n— 1. Thus,
instead of (4.7), we have

@26) (1)1 = %2 [e(emtta - (-178 (2) 70 (7 (Z))] +2s.

(4.24) < N2 < 0.0835N 2
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where

(4.27) = -1 X2 [ goyas (60 do

T”/
+(=1)? / e12J1(f(6)) df (6);

cf. (3.16). By (4.6), the second integral on the right is less than
V2 x 0.0442N-3Jo(f(n/2)) — Jo(j1.2)|.- Using (2.22) and the facts
that |Jo(x)| < v2/nx and f(0) > NG, it can easily be shown that

(4.28) (-1)" / i e12J1(f(0))df (8)| < V2 x 0.0011N 7572,

The first integral in (4.27) can be estimated as in (4.13)—(4.19). In-
stead of (4.15), here we expand H(y) at y = f(n/2). The analogue
of (4.16) is

/2
(429) (~1)" / £'(8)Jo(f(6))d8

=0 (1 (3)) (7)1 (7 (3))
/2
+(-1)" /J " e (v-1 (%)) #6() dy

for some £, between y and f(7/2). Again using the facts that |/, (x)| <
vV2/nx and f(%/2) > (n/2)N, it can be shown that the first term on the
right is bounded by 0.1025N~3/2, By an argument similar to that for
(4.17), we also have

|H'(&n)| < 0.0350N 3.
This, together with

s (Dl<s(3)-in<ay (1-7) +5m

implies that the second term on the right-hand side of (4.29) is bound-
ed by 0.0052N~3/2, Therefore,

(4.30) ’—‘]/Vz / i g'(0)Jo(f(6))d6| < V2 x 0.1077N5/2.

The estimate (3.18) now follows from (4.28) and (4.30). This com-
pletes the proof of (3.16).
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5. Proof of Lemma 5. From (3.13), we have

n 4
Sy = kZMk + kE[g(rk) — 1M,
=2 =2

Replacing M;, by its asymptotic approximation in Lemma 4, we can
express S, as

(5.1) Sn=Sn1+S52+ 853+ &1,
where
00 \/f Jik i 1 ik
_ V2 ~1/2 _ “324x ),
(5-2) Sn-l ng (Mk n3/2 Jik |x axt 2V2r ‘/jl.k—l * x)
, \/E n J1k _
(53) n2 = ;5—2 Z/ g(‘[k)x 1/2 dx,
k=2 Jii=1
(5.4) 73 == /——1 Xn:/m (te)x = dx
) n3 = 2V2n k=2 Jik—1 &k ’
and
A 00
(5.5) er6 =) l&(tk)— llea+ Y &4
k=2 k=n+1

Since g”(0) is negative and decreasing in [0, /2], it follows from
(3.22) and (2.23) that

1 n (T . 2
g() = DI < 5|¢" (5)| Gra/ NI
A combination of (2.40), (2.22) and (4.10) gives
(5.6) lewg| < 2.2259n3/2 for n > 49.

Note that the infinite series .S, | is absolutely convergent by Lemma 4,
and is a constant independent of n; cf. [6, p. 405].

(A) Evaluation of S, ,.

The argument here parallels that given for S, ; in [6, p. 405], except
that the zeros 6, of the Jacobi polynomial there is replaced by the roots
74 of the equation f(8) = j; x and the O-terms are replaced by explicit
bounds. Thus, in (5.3), we make the change of variable x = N8 and
write

(5.7) g(tk) = g(0) + &'(6)(, — 6) + %g”(f)(fk - 6)%,
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where £ is between 7;, and 6. Since
18"()| < 1g"(=/2)] and (14 —6)* < (Jik — J1k-1)2/N?

for 0 € [j, x—1/N, j1.x/N], the remainder term §g"(&)(t; — )2 in (5.7)
contributes to .S, , an error

(5.8) le7] < 0.3171y/&n'/2N~2  for N > 50.

Here use has been made of (2.33)—(2.34). Substituting (5.7) in (5.3)
then gives

R/ .
(5.9) n2 = ~3lSu) +Sa) 1+ e,
where
(5.10) s Nl/zz / 2(6)6-/2 dp
=2 J1k— l/N
and
(5.11) S& Nl/ZZ / (rk—H)g’(())B‘l/de.

Jik—1/N

Clearly, s .2 " can be written as

. /2 jl,l/N 7[/2
(5.12) S = N2 (/ —/ —/ )g(G)H‘”sz-
! 0 0 Jin/N

For S\), we let ®(8) = ¢'(6)6~"/2 and write

| . 1 . )
T —0= [Tk - fﬁ(h'k +Jl,k—1)] - [0 - jﬁ(ll,k +Jl,k—1)] :
Then

/] . . .lk/N
@) _ w172 _Juk k-1 /’
(5.13) SO =N k}_; (zk o I BRLOL

n jl,k/N . + .
__Nl/2 / (0_]1,/( Jl'k-l)q>(0)d6.
:L:'Z Jis—1/N 2N

Making the change of variable ¢t = 60 — (1/2N)(ji x + Jj1 x—1), €ach
integral in the second sum on the right becomes

(ix—ji1a=1)/2N . )
Jik+J1 k-1
(5.14) /0 t[q;(H. t )

s Skt k-
o (- hethae)]
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By the mean value theorem, this integral is equal to
(Jrk=Jrk-1)/2N )
(5.15) / 2020 (&) dt
0
for some &, satisfying

1 . ) 1 . ;
W(]l,k +j1k-1)—t<& < m(]l,k + J1k-1) + ¢

Since 0 < ¢ < (Jy & — J1k-1)/2N in (5.15), we have j; /N <& <
Jj1.x/N. Furthermore, since |®(&)| < |g"(n/2)|& /2, by using (2.33)-
(2.34), it can be shown that the integral in (5.15) is bounded by
1 y (T 7 “/2( 1.1061\3
VN g (2)|(k 8) =)
From this and (4.10), it follows that the second term on the right of
(5.13), i.e.,

R /N ; ;
Jik + J1k-1
(5.16)  eg=—N/23" / (0 - ——) D(0) do,
= Jiueu/N 2N

N—5/2

satisfies
(5.17) le1g] < 0.095673/2N—2n1/2,

To calculate the first term on the right-hand side of (5.13), we use
Lemma 1 and (2.33). Thus

n . . H N
Juk Five=t\ [N
(5.18) (rk-—'—') / £(6)67112 do
kz;z 2N Jua1/N

n i /N
n /"*/ 1 eya-1/2
= = g'(6)6 do + €9,
2N,§2 Juer/N

where

R . i /N
54 Jir Ji/ , 15
(5.19) £19 = E (-—-—+—-’—-81)/ g'(6)0 12 dg.
s 2N N et /N

Since (1/6)g'(8) is negative and decreasing in [0, 7/2]
1, 2| ,(7m
sle@I <zl (3)]
Using (2.22), (2.33) and (4.10), it can then be shown that
(5.20) lerg] < 0.0588y/AN2,
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Inserting (5.18) in (5.13) and adding the resulting expression to (5.12),
we obtain from (5.9)

Ji, I/N
(5.21) 83, = ——N1/2 g(0)07%de
"2 wd Jun/N

+ ——N-I/ZZ / 2'(0)0-12d6 + e,
Jik-1/N

where

&0 = %[Nl/zfiw + &18] + €17
and by (5.8), (5.17) and (5.20)
(5.22) leao] £ 0.7237n73/2  for n > 49.

(B) Evaluation of S, ;.

The analysis here is similar to that of S 25 and is in fact simpler.
We first make the change of variable x = N0 in (5.4) and then replace
g(tx) by g(0) + g'(&)(tx — 6); cf. (5.7). The result is

R 1
(5.23) $13= =5 7= NS, + el
where

(1)° JuIN -3/2
(5.24) Sy 3 E / g(0)6732de

Jik-1/N
and
(5.25) en = Z / ¢'&)(w — 6)0~ db.
Jia—1/N

£ being between 1; and . By integration by parts

. . -1/2 . —1/2
(e _ Ji,1 Ji,1 Ji,a Ji,n
(5-26) S"'3"2g(N)(N) 2g(N)<N)

Jia/N
+2 g'(0)071/2 4e.
Jui/N
Note that the last integral on the right-hand side is equal to the finite
sum in (5.21). Since |g"(8)| < |g"(n/2)| for 6 € [0, /2] and j;; <
5n/4, by a two-term Maclaurin expansion we have

(5.27) g (%) =1+ey, |exn|<1.1035N2.
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Put #(0) = (cot(6/2))!/2. Since g(6)9-1/2 = (1/ﬁ)(cot(0/2))1/2, by
the mean-value theorem

o0 1(3) () "~ i -no (3]

where 7 is between j; /N and n/2. Furthermore, since 4'(9) is neg-
ative and increasing in (0,2n/3) and n(1 — 7/4N)/2 < j; /N, we
also have |h'(n)| < |h'(%)|, where 7 = (1 — 7/4N)/2. From this, we
conclude that

- c o\ —1/2 1 -
(5.29) g (JJI\’;') <]17,n) = ﬁ(l +&33), €| < 0.4504-]—V—

for n > 50. Inserting (5.27) and (5.29) in (5.26) and coupling the
resulting expression with (5.23) gives

(530)  Sis= - i+ Z}N"”

- \/%_nzv—l/z /, i Y 06712 d6 + e,
where
(5.31) ey = —\/;_]~1/2822 + W_N“/Zan - %N"l/zan.

To estimate &1, we note that j, /N < 74 < j; /N and

o1 <2y (3)] orocfo]
Thus, as in (5.20), it can be shown that
(5.32) le21] < VI - 1.1162N—3/21/2,
A combination of (5.27), (5.29) and (5.31) yields
(5.33) le2a| < 0.8256n3/2 for n > 49.
Observing that the sum S, ; in (5.2) can be written as

1 | S
(5.34) Sn1 =BV + worik 12,
where B(()l) is given in (3.20), it follows immediately from (5.1), (5.21)
and (5.30) that

. \/i 7[/2 jl,l/N 7[/2 _
(5.35) S,,=B((,l)+mN‘/2 /0 —/0 _/, g(6)67'/2do

jia/N

1
4+ ~—=N"1/2 + &16 + &30 1+ €24.

2vn
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Recall from (3.22) that

Ll n (52| g2 sz
|g(6) llsz\g (4N) 6%, 0<6< %
Hence
Jit/N Jut
(5.36) / 2(6)0-1/2dg = N-1/2 / X2 dx + &5,
0 0
where
(5.37) le2s| < 0.4791N3/2  for N > 50.

Coupling (5.35) and (5.36), we obtain (3.19) with

V2
&9 = €16+ &30 + €24 — le/zazs.

This completes the proof of Lemma 5.
6. Calculation of LS,Z). By Corollary 1,

22 [ # 1/2 1/2 X
6.1) L&2)=% /o (M) (tang) To(£(0))] 8 + &,

f10)
where
) /2 i(fl 172 0 12
6.2) 1és| < /0 <f’(0)) (tan2) \£| d.

Since 0 < tan(8/2) < 1 and 0 < £(6) < NO for 6 € [0, n/2], it can be
shown that

(6.3) |és| < 0.0141N~3/2  for N > 50.

Here we wish to point out that the function f;(8) = 3 tan(0/2)—(2/6—-
cot(6/2)) in (2.15) and all its derivatives are positive and increasing in
[0, #/2]. Furthermore, the functions f(6) = N@ — (1/16N)f; (9) and
(1/0) £1(0) are also increasing in that interval. Following (3.9), we
split the interval of integration in (6.1) at 1, the root of the equation
f(6) = Jok- (Note that jo_k/N< T < jO,k+l/N-) Thus

1

@__ 1
(6.4) LY = >

m—1
I+ (-Dkh + (—l)mim} + &,
k=1
where

6.5) I = / e

&

A 1/2 1/2
7(6) [ ,
(f'(o)) (tan 2) Jo(f(0))de,

k=0,1,...,m—1,
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and

. n/2
(6.6) I = /
i

m

1(6)
For convenience, we have set 75 = 0.

In view of the identity xJo(x) = [xJ,(x)], the integral I, can be
expressed as

N 1/2
<f (6) ) (tan %) v Jo(f(8)do, m=n-n.

(6.7) f= [ " G(0) L7 O) 1 (F(O))],
where
A 1 o\ . 3/2

. = = o ! - 0 0
(6.8) 6(6) = - ( f(o)) L7 (0)1%22(6)
and

. 2 0 1/2

(6.9) g(0) = (5 tan 5) :

Note that the function £(@) is increasing in [0, #/2]. The result cor-
responding to (4.5) is

o 1 o .
(6.10) G(6) = —ﬁN 25(0) + é12,
where
(6.11) |é12] < 0.2650N—* for N > 50.

Inserting (6.10) in (6.7) and applying an integration by parts, we ob-
tain, upon summing up,

m—1
R 1 .
6.12) Y " (=1)¥ [ = —=N"2$;
( )k=l( )< Iy 7 p
| R SN PPN . .
+ EN 2[2(31) My — 8(3m)Mm] + é13 + 14,

where M, is as given in (1.12) and

m
(6.13) Sp=>" 2(}) M.

k=2
The error terms €3 and &,4 correspond to those given in (4.9) and
(4.12), respectively. It can be shown, as in §4, that

(6.14) |13] < 0.1830N~3/2



184 C. K. QU AND R. WONG

and

(6.15) |é14] < 0.9712N 5/

for n > 50. The analogues of (3.15) and (3.16) are

6.16)  Ip= %N‘Z /0 B To () dy + & = %N‘ZM, +&
and

(6.17) (=1)"In
= 71_21\1—2 [g(fm)Mm +(-1)"g (%) 7 (%) i (f (3:2_))]

where
(6.18) |é7] < 0.0019N%/2 and |&| < 0.1927N /2

for N > 50. In a manner similar to Lemma 5 (cf. (3.19)), it can also
be proved that

. . n/2 n/2
(6.19) S =Dy— M + —\g—N”Z (/ —/ ) 2(0)6'2 do
732 0 .
Jom/N
1 )
N e,
where

(6.20) |&g] < 3.489N"1/2

and Dy has the same meaning as given in (2.50). The final asymptotic
formula for Lﬁ,z), given in (3.30), is obtained by combining the results
in (6.12), (6.16), (6.17) and (6.19).

Observe that the coefficient in the approximation (6.10) for G(8)
is 1/4/2, whereas the corresponding coefficient for G(8) in (4.5) is
v2. Thus, the approximations differ by a factor of two. Compar-
ing equations (3.12), (3.15) and (3.16) with the corresponding equa-
tions (6.12), (6.16) and (6.17), one notices that this difference carries
through the calculations of Lﬁ,l) and Lﬁ,z). This explains why the error
E, in (3.28) is approximately twice as large as that in (3.30).

7. The sum of Lﬁ,l) and Lﬁ,z). From (3.28) and (3.30), we have

2
(7.1)  Ly=I; +I; +I{ + By + ﬁN“/Z +DyN~' + E, + E,,
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where

. 2 12 n/2 0 -1/2 0 1/2
(7.2) If = WN [/0 sin 5 c0s 5 do

n2 g\ 12 g\ ~1/2
+ /0 (smi) (cosz) de},

_ /2
' 2 2| (™ (28) " (c0s2)
(7.3) I = "nT/z'N / [/j.,n/N Smf cos 3 deo

n/2 0 1/2 0 -1/2
+ / (sin—) (cos—) dae|,
Jom/N \ 2 2
and

(7.4) I =0"e(3) % (7 (3))
P (5)7 (3) 0 (7 (3)

By letting & = 7 — ¢ in the second integral in (7.2), the two integrals
there can be combined into the single integral

r -1/2 1/2
(7.5) / (sin Q) (cos Q) do =v2 .=,
0 2 2
Thus, since N = n + 1, (7.2) can be expressed as
e _2V2 1 \/5 12 ax
(76) Il = 7_7—t—n + ;n +81;

where |e}| = 0.1995n~3/2. By the same argument, the two integrals in
(7.3) can be combined into the single integral so that

(2 g [TRN 02
(77) 12 = _F/—ZN h/jj”/N Coti de.

Since both limits of integration tend to /2 as n — oo, we expand the
integrand h(6) = (cot(6/2))!/? at 0 = n/2:

(7.8) (cot g.) s W) (6 - g) ,

n being between 6 and n/2. Note that both j, ,/N and jj /N are
less than /2, and hence that the upper limit in (7.7) is indeed greater
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than the lower limit of integration. Inserting (7.8) in (7.7), we obtain
by the argument following (5.28)

. 2 Jom _Jin
(7.9) 12=—WN/[ vl val

with |e3| < 0.7555N~3/2. Here use has also been made of the inequal-
ity #/2 — n/4N < jom/N. From Lemmas 2 and 2’, it follows that

* 2 - *
(7.10) I = —ﬁN 12 1 g3,
where |e3] < 0.7933n73/2,
To approximate I3, we first recall the asymptotic approximation

(7.11) Jo(x) = \/%cos (x—— %) + &3,

where

[2 1 4
*| & — . /2 X
(7.12) lez] < — g x>0

Next we observe that if n is even, then

ol )=l (1-3)

1 3
—1y/2 — - =
+ (-1) cos[4N<1 n)]}
and that if n is odd, then

/)51 -2

+ (=1)+1/2 sin [ﬁ (1 - %)] }

The last two equations can be combined to give
(=1)"2 t g2, n is even,

n
7.13 =
(7.13)  cos [f (2) 4] \/_{ (-1)(+D/2 4 er,  nisodd
with |e%| < 0.0080N L. Since g(n/2) = \/7/2 and

with |eg| < 0.0029N ~3/2, a combination of these results gives

/A

(7.14) (—1)”+1g(g)Jo(f(§))—( 1)"+1\/_2__N“1/2+87,
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where |¢3| < 0.0495N~3/2, In a similar manner, one can show that

(=" 1,4 (T (T ATV _ (5D 2, e
(015 5N"2(3) ()0 (7 (3)) = N+ 4
where |ej| < 0.2314N~3/2, Note that the leading terms in (7.14) and
(7.15) differ only by a minus sign, and hence that

(7.16) Iy =& +¢;.
By (2.51), we also have
(7.17) DyN~! = Dyn~! + &},

where |ej| < 0.3849n~3/2, The final result (1.10) now follows upon
adding (7.6), (7.10), (7.16) and (7.17) together. The error term &(n)
in (1.10) is given by

e(n)=¢e]+e3+e;+e3+e5+ E + Es,
and hence satisfies the estimate (1.14).

8. Conclusion. In this paper we have found an error bound for
a four-term asymptotic expansion of the Lebesgue constants for
Legendre series. From this we have also shown that these constants
are indeed monotonically increasing, a conjecture of Szeg6é which dates
back to 1926. The development of error theories for asymptotic ap-
proximations has been advocated by F. W. J. Olver [11] for some
time. The present paper is another demonstration of the usefulness
of a well-constructed error bound.

Although Szegé’s conjecture is now proved, the present approach is
far too complicated. A more satisfactory approach would be to search
for an alternative expression for the Lebesgue constants from which
the monotonicity of these constants is evident. This is the approach
which Szegé had used to show that the sequence of differences of
the Lebesgue constants for trigonometric Fourier series is completely
monotonic. We shall, however, leave this problem to the experts in
orthogonal polynomials.
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