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NON-TANGENTIAL LIMIT THEOREMS
FOR NORMAL MAPPINGS

Kyong T. HAHN

Let X be a relatively compact complex subspace of a hermitian
manifold N with hermitian distance dy. Let Q be a bounded do-
main with C!-boundary in C”. A holomorphic mapping f: Q — N,
S(Q) C X, is called a normal mapping if the family { foy: y: A — Q
is holomorphic}, A := {z € C: |z| < 1}, is a normal family in the
sense of H. Wu. Let {p,} be a sequence of points in Q which tends
to a boundary point { € 3Q such that lim, .o dn(f(Pn),!) = 0 for
some / € X. Two sets of sufficient conditions on {p,} are given for a
normal mapping f: Q — X to have the non-tangential limit value /,
thus extending the results obtained by Bagemihl and Seidel.

1. Introduction. In [2], F. Bagemihl and W. Seidel posed the follow-
ing question: Given a sequence {z,} in the open unit disc A converging
to some { € A and a meromorphic function f: A — P;(C) such that
lim, .o f(z,) = ¢ for some ¢ € P;(C), under what conditions on f
and {z,} can f have the limit ¢ along some continuum in A which
is asymptotic at {? They answer this question with two interesting
sufficient conditions on f and {z,}.

In this paper we extend their results to the higher dimensional case.
First we shall introduce a few terminologies.

Let Q be a bounded domain with C!-boundary in C™. Then at each
{ € 0Q, the tangent space T;(9Q) and the unit outward normal vec-
tor v, are well-defined. We denote by CT;(6Q) and Cv; the complex
tangent space and the complex normal space, respectively. The com-
plex tangent space at { is defined as the (m — 1) dimensional complex
subspace of T;(9Q) and given by CT;(0Q) := {z € C": (z,w) = 0,
Vw € Cyg}, (z,w) = 7L, 2.

We say that a subset S C Q is asymptotic at { € 0Q if SNQ = {{}
and non-tangentially asymptotic at { if S C I'4({) for some a > 1,
where

(1a) T.(0) = {z€Q:|z - {| < ade(z)},
(1b) 0¢(z) = min{p(z,0Q), p(z, T;(0Q)},
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and p denotes the euclidean distance in C”. In particular, a curve
y:(0,1) — Q is non-tangentially asymptotic at { if y(¢) € I'4({) for
some a > 1 and all ¢ € (0, 1), and lim,_,;_ y(¢) = ¢.

Let N be a connected paracompact hermitian manifold with hermi-
tian metric 4y which induces the standard topology of N. By dy we
denote the distance function associated with Ay.

By Hol(Q2, N) we denote the space of all holomorphic maps f: Q —
N. We say that a mapping f € Hol(Q, N) has an asymptotic limit [
at { € 0Q along the curve y in Q, write lim,5,_,; f(z) = [, if y is
asymptotic at { and lim,_;_dyN(f(y(¢)),]) = 0, a radial limit | at
¢ if lim, o, dn(f({ — evg),l) = 0, a non-tangential limit | at { if
limr (¢)5,-¢ dn(f(2),1) = O for every a > 1 and an admissible limit |
at { if limy )5,.¢ dn(f(2),1) = 0 for every a > 0, where

(2) 4a(0) = {z € Q: [(z = L)l < (1 + @)By(2), |z~ L < ad(2)}.

Let M be a connected complex manifold of dimension m. We
assume that M is hyperbolic, i.e., the Kobayashi pseudometric k,, is a
metric. Denote the infinitesimal Kobayashi metric by K. According
to H. Royden [10], the Kobayashi metric ks is the integrated form
of Kus. M is hyperbolic if and only if for each p € M, there exists a
neighborhood U, and a constant ay > 0 such that

Ku(q, &) > aylé] for (q,&) € U x C™.

DEFINITION. A mapping f € Hol(M, N) is called normal if the
family {f o w: w € Hol(A, M)}, A is the unit disc in C, forms a
normal family in the sense of H. Wu [11].

We remark that the definition of normality adopted here does not
require M to be homogeneous and coincides with that of [7] when M
is homogeneous and N is compact [1], [6]. Therefore, it is a slightly
more general notion than that of [7].

2. Preliminary properties of normal mappings. Let X be a relatively
compact complex subspace of a hermitian manifold N. We shall de-
note by Hol(M, X) the space of all holomorphic maps f: M — N with
f(M) cCX.

LEMMA 1. Let M be a hyperbolic manifold and let X be a relatively
compact complex subspace of a hermitian manifold N with hermitian
metric hy. The family F C Hol(M, X) is normal in the sense of H. Wu
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if for each compact subset E C M there exists a constant C(E) > 0
such that

= sup U (D). 4 (P)O)
3 0f(p) = sup I ESPR < C(E)

Jorallpe E andall f € F.

Due to the compactness of X, the proof of Lemma 1 can be carried
out in the same way as that of Lemma 2.7 of [7]. Therefore, we omit
the proof.

THEOREM 1. Let M be a hyperbolic manifold (not necessarily
homogeneous) and let X be a relatively compact complex subspace of
a hermitian manifold N. The following statements are equivalent for
f € Hol(M, X).

(a) f is normal.

(b) There exists a constant Q > 0 such that

Qf :=sup{Qf(p): PeM} Q.
(c) There is no P-sequence {p,} in M possessed by f, i.e., there
is no sequence {qn} in M such that limy ..o kyr(Pn,gn) = O but
limy o0 dn(f (Pn), f(qn)) 2 € for some € > 0.

Proof. (a) = (b): Assume that {f o ¥: ¥ € Hol(A, M)} is a normal
family. By Lemma 1, for each compact E C A, there exists a constant
Q = Q(E) > 0 such that

(4) hn(fow(0),(fow)(0) <Q

for all ¥ € Hol(A, M). By the definition of K, at (p,&) € M x C™,
there exists ¥ € Hol(A, M) such that y(0) = p, y'(0)a=¢ fora> 0
and a/2 < Kps(p, &) < a. Therefore, from (4),

hn(f(p).df (P)§) < 20K (D, <)
for all (p,&) € M x C™. Namely, Qf < 2Q.

(b) = (c): If (c) fails to hold, then there exists a sequence {p,}

and {g,} in M with limy_,o ks (Pn, n) = O but imdy(f (pn), f(an))
> ¢ for some ¢ > 0. It contradicts (b), because (b) implies that

dn(f(pn), f(@n)) < Qkre(Pn, Gn)-

(c) = (a): If (c) holds, then for every ¢ > 0 there exists a > 0 such
that for all z, w € A, ka(z, w) < d implies dy(fow(z), fow(w)) <e
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for all ¥ € Hol(A, M), since otherwise there exists an ¢ > 0 such
that for all n € N there exist sequences {z,} and {w,} in A with
ka(zn, wn) < 1/n but dy(f o y(zn), f o w(wy)) > & for some y €
Hol(A, M). This means that {z,} is a P-sequence for f o y. Since

ky(W(zn), W(wn)) < ka(zn, wn) < 1/n— 0,

{w(z,)} is also a P-sequence for f in M which contradicts (c). There-
fore, {f o y: ¥ € Hol(A, M)} is an equicontinuous family and hence
normal since X is compact. This proves (a).

Theorem 1 is also proved in [6] for compact N and in [3] for N =
the Riemann sphere.

3. Boundary behavior of normal mappings.

THEOREM 2. Let X and N be given as in Theorem 1, and let Q
be a bounded domain with C'-boundary in C™. Suppose that S is an
arbitrary asymptotic continuum at { € Q such that

(6a) lim 242 C%0 _

saz-; r(v(z)) =0,

where r(v(z)) denotes the radius of the largest ball in QN CT,,), cen-
tered at v(z), the orthogonal projection of z to Cvy and CT,(;) is the
hyperplane through v(z) that is parallel to CT;(0Q). If f € Hol(Q, X)
is a normal map such that limgs,_; dy(f(z),1) = 0 for some | € X,
then limr ¢y, ¢ AN (f(2),1) = 0 for all o > 1.

Proof. By the definition of r(v(z)), QNCT,, ) contains the euclidean
ball B(v(z),r(v(2)))|cr,.,, the restriction to CT,,).

(=)?

The distance-decreasing property of the Kobayashi metric implies

7 ko(z,v(z)) < tanh™! V_—M

(7) a(z,¥(2)) < )
and hence,as S 3z — {, n:=v(z) — { along v(S) := {v(z) : z € S}
from (7). Since f is normal, by Theorem 1, there exists a number
Q > 0 such that

(8) dn(f(2), f(v(2)) < Gka(z,v(2)).

Therefore, lim, (gy5y—¢ dn(f(n), 1) = 0. Let Q; be the connected com-
ponent of QNCuy; with { € 8Q;. Then the restriction f|q, is a normal
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map from the plane domain €, into X. Therefore, it follows from
Theorem 4 of [5] with a slight modification that

_lim  dy(f(n),)=0 foralla>1,
IN(ET 4

where I',(¢) :=T,(0) NCr;. The rest of the proof can easily be carried

over from the proof of Proposition 8.2 of [7] to this case with X

replaced by dy.

COROLLARY 1. Let X and N be given as in Theorem 1 and let Q
be a bounded domain with C%-boundary in C™. Let S be an arbitrary
asymptotic continuum at { € 8Q such that

2

im p*(z,Cyy) _
§32-¢ p(z,CTy)
If f € HOl(Q, X) is a normal map such that limgs,_,-dy(f(2),]1)=0
for some | € X, then

li d , D=0 /i 1.
r,.<¢§§§—»c n(f(2),1) Jor all a >

(6b) 0.

Proof. Since Q is a bounded domain with C2?-boundary in C™,
there exists an ¢ = ¢&({) > 0 such that the euclidean ball B;:=
B({—ev, ¢) is contained in Q and tangent to 9L at { from inside. The
order of tangency in this case is not worse than along the admissible
region A, given in (2). In fact, there exists a constant C > 0 such that

r(v(z)) 2 CI{ —v(2)|'/?
for z € S. See Example 1 of [4]. Therefore,
2 - 2 2
) [Cp(z,Cvg)] < |z —v(z)]| < D (z,Cuc).
r(v(z)) I -v(z)] = p(z,CTy)
Corollary 1 now follows from Theorem 2 or directly from the Proof

of Proposition 8.2 of [7] with minor adjustments.
We now prove the following extensions of the results given in [2].

THEOREM 3. Let X and N be given as in Theorem 1. Let Q be a
bounded homogeneous domain in C™ and let {p,} be a sequence of
points in Q which tends to a boundary point { € 0Q where the outward
normal vy exists, such that

(a) there exists a constant M > 0 with kq(pn, Pn+1) < M for all n,

. p(pn,Cry)
() o )
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If f € Hol(Q, N) is a normal map which omits | € X in Q but

1_"(g;nz_'{d;y(f(z), D=0 foralla>1.

Proof. Let ¢, € Aut(Q2) be such that ¢,(pg) = p, for some fixed
point py € Q. Then the family {g,}, g, = f o @, omits / for all n and
forms a normal family, since f is normal.

For R > M, let By (pg, R) := {p € Q : kqa(po, p) < R}. Since Q is
homogeneous, kq is complete and, hence By (pg, R) is a compact sub-
set of Q. So, {g,} has a subsequence {g,,} which converges uniformly
on B, to g € Hol(Q, N). Since each g, omits / on By, by the Hur-
witz theorem [8], either g(z) #/ or g(z) =1 on By(po, R). But since
dn(&m(po).l) = dn(f(pm).1) — 0, g(z) = [ for all z € By(po, R).
This implies that f(z) = [ for all z € Bi(pm,R) and all m, ie.,
f(z)=1lon;,_; Bx(Pm, R). Since

—1 [Dm —v(Dm)| _,
ka(Pm.v(pm)) < tanh o om) 0

as n — oo, there exists m such that for all m > mg kq(pm, v(pm)) < R
which implies v(pp) € Bi(pm,R) for all m > my. Let S := Cyy N
Umzm, Bi(Pm, R).

Then condition (6a) in Theorem 2 is trivially satisfied and also
limgs,_,, dn(f(2),1l) = 0. Therefore, we have

lim d 1)=0
ram_ dv(f(2).])

for all & > 1 by Theorem 2.

THEOREM 4. Let X and N be given as in Theorem 1. Let {p,} be
a sequence of points in a bounded domain Q C C™ which tends to a
boundary point { € 0Q where the unit outward normal v, exists such
that

(a) Jim kq(Pn, Pt1) =0,
(b) tim 22nC%) _

nooo r(v(pn)

If f € Hol(Q, X) is a normal map such that lim, .., dy(f(pn),l) =0
for some | € X, then limr (p)5,.; dn(f(2),]) =0 for all a > 1.
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Proof. Let {qn}, gn = v(pn), be the orthogonal projection of {p,}
to Cy;. Then

(10) ka(gn. n+1) < ko(Pn, Pn1)

so that kq(gn, gn+1) — 0 as n — oo. Let y be a curve in QNCy; joining
dn and g, by shortest curves. Since kg is an inner metric, such curves
exist for sufficiently large n. Since f is normal, by Theorem 1, there
exists @ > 0 such that

(11) dn(f(pn), f(4n)) < Qka(pn, qn).
Therefore, condition (b) together with (7) implies

Jim dy(f(pn). f(gn)) =0,

and hence,

(12) lim dy(f(gn),1) =0

by the triangle inequality. We wish to show:

(13) lim dy(f(2),])=0.
y2z—¢

Suppose there is a sequence {q,} on y converginé to { for which f
fails to have the limit /. By the compactness of X there must be a
subsequence {g;,} such that

(14) lim_dw(f(g}). 1) =0

for some I’ € X, I' # . We may assume that g/, are all distinct from
the points g,,. For each m, there exists an index n,, such that g, lies
on the geodesic segment of y that joins g,, and g, .;. By (10),

kQ(qn,,,: q;n) < kQ(qnmqn,,,+1 -0

as m — oo. Since f is normal, for some Q > 0 we have

dn(f(4n,). f(am)) < Qka(dn,.dm) — 0

as m — oo. From this and (12) we conclude lim,,—..c dn(f(g},). 1) = 0,
contradicting (14). Therefore we have (13). Since condition (6a)
of Theorem 2 holds trivially in this case, Theorem 4 follows from
Theorem 2.

We remark that if the domain Q in Theorems 3 and 4 is assumed
to have C2-boundary, then both theorems hold when condition (b) is
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replaced by

(b')

lim pz(pn’ CVC) _

=0
n—oo p(pn, CTy)

in both cases.

Introducing the notion of hypoadmissible limit, J. Cima and S.
Krantz have proved the Lindelof Principle for normal meromorphic
functions on domains in C" with C2-boundary in [3]. The author
wishes to thank the referee for pointing this out to him.
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