shown to be rigid in 5.2 , this is correct. Thus the applications in the remainder of the proof of Proposition 5.3 are valid.

University of Washington
Seattle, WA 98195

AND
University of Oregon
Eugene, OR 97403

# ERRATA <br> CORRECTION TO SUMS OF PRODUCTS OF POWERS OF GIVEN PRIME NUMBERS 

R. Tijdeman and Lianxiang Wang

Volume 132 (1988), 177-193

Lemma 3(b) is false and hence the proof of Theorem 3 needs revision. We present a corrected version of Lemma 3(b) and a proof of Theorem 3 based on it.

Lemma 3(b). If $3^{b} \mid 2^{a}+1$, then $a \geq 3^{b-1}$.
Proof. If $3^{b} \mid 2^{a}+1$, then $2^{2 a}-1=\left(2^{a}+1\right)\left(2^{a}-1\right) \equiv 0\left(\bmod 3^{b}\right)$. Since 2 is a primitive root of $3^{b}$ for any $b \in \mathbf{N}, \varphi\left(3^{b}\right) \mid 2 a$ where $\varphi(x)$ is the Euler's function. Hence $3^{b-1} \mid a$.

Proof of Theorem 3. Without loss of generality we may assume that $x \geq 1, y \geq 0, z \geq 2, w \geq 1$. By (1.3) and Lemma 3(b), we have $x \leq z$ and $z \geq 3^{\min (y, w)-1}$. We derive from (1.3) that $2^{x} \mid 3^{w}-1$ and therefore $2^{x-2} \leq w$. Hence

$$
x<(\log 2)^{-1} \log w+2 .
$$

We distinguish between two cases.

Case 1. $y \leq w$. Since (1.3) implies $3^{w}<2^{z}$, we have $w<0.631 z$ and

$$
\begin{equation*}
\left|2^{z}-3^{w}\right|<2^{x} 3^{y}<4 w 3^{y}<2.524 z 3^{y} . \tag{1.11}
\end{equation*}
$$

If $z>11$, then, from (1.11) and Lemma 1 , we obtain for nonexceptional pairs $(z, w)$,

$$
\frac{\exp \left(3^{y-1}(\log 2-0.1)\right)}{3^{y-1}} \leq \frac{\exp (z(\log 2-0.1))}{z}<2.524 \times 3^{y} .
$$

Thus we have $3^{y}<11.2 y$ and hence $y \leq 3$. From (1.11) and Lemma 1 we see that

$$
z(\log 2-0.1)<\log z+4.3
$$

and so $z \leq 11$, which yields a contradiction. For each exceptional pair $(z, w)$, the number $2^{z}-3^{w}+1$ has some prime factor greater than 3. Thus there are no solutions in this case with $z>11$.

If $2 \leq z \leq 11$, then $0 \leq w<0.631 z<6.95$, hence $1 \leq x \leq 4$. By checking these ranges for $x, y, z, w$ we find the solutions: $(1,0,2,1)$, $(1,1,3,1),(1,1,5,3),(3,0,4,2),(3,1,5,2),(4,1,7,4),(4,3,9,4)$.

Case 2. $w<y$. It follows from (1.3) that

$$
\left|2^{z-x}-3^{y}\right| \leq\left|3^{w}-1\right| / 2 .
$$

If $z-x>11$, then we obtain from Lemma 1 for non-exceptional pairs ( $z-x, y$ ) that

$$
(z-x)(\log 2-0.1) \leq w \log 3,
$$

and so

$$
3^{w-1} \leq 2(w+\log w+1) .
$$

Thus $w \leq 3$, and $x \leq 3,\left|2^{z-x}-3^{y}\right| \leq 13$. Therefore

$$
z \leq \frac{3 \log 3}{\log 2-0.1}+x<9
$$

which yields a contradiction. It is easy to check that $\left|2^{z-x}-3^{y}\right|>13$ for each exceptional pair $(z-x, y)$. Thus each solution of (1.3) in this case satisfies $z-x \leq 11$, hence $z \leq 14$. If $2 \leq z \leq 14$, then by (1.3), $0 \leq y \leq 9$. We find only one solution with $y>w$, namely $(1,5,9,3)$.

We conclude that (1.3) has exactly eight non-trivial solutions $(x, y, z, w) \in \mathbf{N}_{0}^{4}$, namely
$(1.12)(1,0,2,1),(1,1,3,1),(1,1,5,3),(1,5,9,3)$, $(3,0,4,2),(3,1,5,2),(4,1,7,4), \quad(4,3,9,4)$.

The argument for solutions with some negative values is similar to that in the proof of Theorem 1. Using (1.12) we obtain only one additional non-trivial solution in $\mathbf{Z}^{4}$, namely $(3,-1,1,-1)$.

Finally we note that the following should be added to reference [3] (W. J. Ellison): On a theorem of S. Sivasankaranarayana Pillai, Same Séminaire, Exp. 12, 10 pp.

