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A SIMPLE FORMULA FOR CONDITIONAL
WIENER INTEGRALS WITH APPLICATIONS

CHULL PARK AND DAvID SKoOUG

Yeh'’s inversion formula for conditional Wiener integrals is very
complicated to apply when the conditioning function is vector-valued.
This paper gives a very simple formula for such integrals. In par-
ticular, we express the conditional Wiener integral directly in terms
of an ordinary {i.e., nonconditional) Wiener integral, Using this new
formula, it is very easy to generalize the Kac-Feynman formula and
also to obtain a Cameron-Martin type translation theorem for general
conditional Wiener integrals.

1. Introduction. Consider the Wiener measure space (C[0, 7], 5",
m,,;) where C[0, T'] is the space of all continuous functions x on [0, 7]
vanishing at the origin. For each partition r = 1, = {¢;,..., t,} of
0.TYwithO = <t < <, =T, let X;: C[0, T] — R” be
defined by X (x) = (x(#1},...,x(¢n)). Let B" be the g-algebra of
Borel sets in R”. Then a set of the type

I={xeC[0,T]: X;(x)eB}=X;'(B), Be®",

is called a Wiener interval (or a Borel cylinder). It is well known that

(L.1) Mo (I) = [ K(x.&dE
B
where
- o Lo (=8 1)
(1.2) K(T’a={1_[2”(‘i_fj—l)} exp{"z‘ ___________(;'—_;_1)}’
J=1 j=1 TRl

E=(&,....&), and &=0.

my, 18 a probability measure defined on the algebra & of all Wiener
intervals and m;,, is extended to the Carathéodory extension #* of &,
Let & be the g-algebra generated by the set { X !(B): B € #”"} with 7
fixed. Then, by the definition of conditional expectation (see Tucker
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[6] and Yeh [8]), for each Wiener integrable function F(x}

13 wy= [ gy FOImald) = [\ EEITmdx)

X7'(B)
- [B E(F(x)|X:(x) = §)Py.(d8), Bea"

T

where Py (B) = mw(X 1(BY), and E(F(x)| X:(x) = &) is a Borel mea-

surable function of & which is unique up to Borel null sets in R”.
According to Yeh [8], the conditional expectation E(F(x)|X:(x) = &
can be found by the Fourier transform

(1.4) E(F(x)|Xc(x) = é‘)
[de (g)] (23)—.«/" Yy E)E [ UXT)F] mL(dU)

where m; is Lebesgue measure on R". Using the above inversion
formula (changing the conditional expectation into non-conditional
expectation) for the special case X;(x) = x(T), i.e., 7 consists of the
endpoint only, Yeh [9, 10} obtains very useful results including the
Kac-Feynman integral equation and the conditional Cameron-Martin
translation theorem. However, Yeh’s inversion formula (1.4) is very
difficult and complicated to apply for general r’s. Some results are
obtained by Chang and Chang [3] for the latter case using Yeh’s for-
mula (1.4), but these results are somewhat limited in scope and the
calculations are quite lengthy in general.

The main purpose of this paper is to develop a new simple formula
for the conditional Wiener integral when the conditioning function is
vector-valued and then to obtain a general form of the Kac-Feynman
formula and a general conditional Cameron-Martin translation theo-
rem,

We thank the referee for very helpful suggestions, which have led
to the present version of this paper.

2. A simple formula for conditional Wiener integrals. For a given
partition T = 1, of [0, T'] and x € C[0, T'], define the polygonal func-
tion [x] on [0, T] by

(2.0) [x)0) = x(tjo) + 7 ‘fJ'(x(t,) xX(t5-1),

i1 <t<t;, j=1,...,n
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Similarly, for each & = (&,...,&,) € R", define the polygonal function
[€] of & on 0, T] by

(2.2) 11() =¢&; 1+ bl k),

— i
oSttty j=1,..., n and §o = 0.

Then both [x] and {) are continuous on [0, 7], their graphs are line
segments on each subinterval {t;_, ¢;], and [x}(¢;) = x(¢;) and (&) =
¢;jateach t; € 1.

The following theorem gives an interesting observation for the pro-
cess x(t) — [x}(¢). While the process [x]}(?) has been widely used to
approximate the Brownian motion x(¢), recognizing x(¢) — [x)(¢) as
a Brownian bridge on each subinterval is new as far as the authors
know.

THEOREM 1. If {x(¢),0 < t < T} is the standard Wiener process,
then the process {x(t)—[x)(1), 0 <t £ T} and X (x)=(x(ty),....x(tx))
are (stochastically} independent.

Proof. In view of (2.1), we may write for i1 St

(2:3) x(0) = [x100) = (x(8) = x(1)) = =2 x(t) = x,0)

j-
Note that x(f) — [x](¢) is a Brownian bndge process on {f;_;, ;] van-
ishing at #;_; and ¢;, Thus ¥ = {x(f) — [x]{t), tj-1 <t < 1} is
independent of the process {x(¢): ¢ € [0,¢;(]U{¢;, T1}. In particular,
Y is independent of X;(x) = (x(¥;),...,x(¢y)). Since j was arbitrary,
the proof is complete.

CoRrROLLARY 1. If {x(¢),0 < t < T} is the standard Wiener process,
then {x(t) = [xY(¢), t;-y <t < 4}, J = 1,2,....n are independent
Brownian bridge processes.

The following theorem is one of our main results:

THEOREM 2. Let F be any Wiener integrable function on C[0, T].
Then, for every Borel measurable set B in R”,

(2.4) weiB)= [ g, FOIMa(d)

T

- L E[F(x — [x]+ [])1Px.(d®).
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Proof. First assume that F is the characteristic function of a Wiener
measurable set 4, i.e., F(x) = x4(x). Then

f gy KA () = Mo (A0 X7 (B)
= /B My (x € Al X:(x) = E)Px (dE)
= /B My (x — [x] + €] € A|X:(x) = E) Py (d&).

But, x — [x] and X;(x) are independent by Theorem 1. Thus,

[ xAﬂmMM0=fnmu-HLHﬁeAﬁxM@
'(B) B

-

=meu—m+mmmuy

Thus, the result holds for the characteristic function of any Wiener
measurable set. The general case follows by the usual arguments in
integration theory.

If F is a Wiener integrable function on C{0, 7], then from (2.4),
the Radon-Nikodym derivative of u, with respect to Py_is

“wa E[F(x - [x] + [E])]

for a.e. £ in R". But {1.3) yields

@Wﬂ E(F(x)|Xa(x) =

for a.e. & in R”. Thus E(F(x)|X:(x) = &) and E[F(x — [x]+ [ED]
are equal a.e. on R”. However, while E(F(x)|X:(x) = &) is always
Borel measurable in & by definition, E[F{x — [x] + [5])] i1s Lebesgue
measurable in & but not necessarily Borel measurable as the following
example shows.

EXAMPLE 1. Let G be a Legesgue measurable null set in R that is not
Borel measurable. Then the function f(£) = yg(&) is Lebesgue mea-
surable but is not Borel measurable. Let 4 = {x € C[0,T]: x(T) €
G}. Then my(A) = 0. Define F: C[0,T] — R by F(x) = y4(x).
Then F(x) = x¢(x(T)) and

E[F(x — [x] + [ED] = E[xe(x(T) — [xKT) + [FHT)H)]
= E[x6()] = x6(&) = f(£).
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However, if f(&) is Lebesgue measurable on R”, then there exists
a Borel measurable function f(£) such that /(&) = f(&) almost ev-
erywhere. Moreover f (6) is unique up 1o Borel null sets. Thus the
following definition makes sense.

DEFINITION 1. If F is a Wiener integrable function on C[0, T'], then
by E[F(x ~ [x] + [£})] we mean any Borel measurable function of &
which is equal to E[F(x — [x] + [€])] for a.e. £ in R".

We thus have the following useful formula, which is much simpler
to apply than the inversion formula (1.4).

THEOREM 3. If F is a Wiener integrable function on C[0, T), then

(2.5) E(F(x)|X:(x) = &) = E[F(x - [x] + )}
In particular, if F is also Borel measurable then
(2.6) E(F(x)|X:(x) = & = E[F (x - [x]+ &)}

The equality in (2.5) (and in (2.6)) means that both sides are Borel
measurable functions of & and they are equal except for Borel null sets.

Proof. Equation (2.5) is obvious by the discussion following The-
orem 2 and Definition 1. If F is also Borel measurable, then by the
Fubini Theorem, E[F (x — {x]+ [£])] is 2 Borel measurable function
of &€, and hence (2.6) holds.

3. Examples. The following examples show that Theorem 3 above
is indeed quite powerful and very simple to apply.

EXAMPLE 2. Let F(x) = [ x(2)dt, x € C[0, T). Then by (2.6) we
have:

T . T o
E ( [0 (1) dt| Xo(x) =é) =E[ [ 0xt0) - 15100 + 100 dr]
T . T -
= [ Efx(t) - [x](¢) + ()0} dt = [ (1) de

-Z[ (c,l+ L - ) d

= EZ({.‘} +Ei-)t — )
j=1
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In the above calculation, we used the Fubini Theorem to interchange
the order of integration. In particular when n =1,

T 1
E ( /0 x(8)di|x(T) = e) = 38T

which was computed by Yeh [9, pp. 629-631] using (1.4) with n = 1;
the computation was rather lengthy.

ExaMmpLE 3. Let F(x) = f] (x(2))2dt, x € C[0, T]. Then, again by
(2.6)

T -
E ( [ (1)) di|Xo(x) = 6)
0
T —
-E [ [ (x() - [x1(0) + [E1()? dr]
0

T -
= /0 E[(x (1) + ([x1(0))* + ([€)(1))? = 2x(){x (1)
+ 2x(DIE)2) — 2Ax)DEND1 dr.

Using the properties E[x(¢)] = 0 and E[x(s)x{¢)] = min{s, ¢} repeat-
edly, we obtain:

T -
E ( [ (x())2 dt| X (x) = &E)
0

T n
= / {t = Z x[ﬁ—'-‘;](t)

T2 1
= 5 = 3 20+ 20— 4y-)
j=1

(1 —t;_1)?

tioy +
T =t

+ ([é‘](t))z} dt

F 3G+ 8+~ 1)
j=1

In particular when n = 1, E(f{ (x(2))? dt|x(T) = &) = T2/6 + £2T/3,
which agrees with Yeh’s computation [9, 631-632].
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ExAMPLE 4. Let F(x) = exp{fOT x(t)dt}, x € C[0,T]. Then

T
E (exp{f x(f)df} X (x) =5)
0

T =
=E [exp {jo (x(1) = {x1(e) + [ﬁ](f))dtH

T T
= exp {/0 &1 dt} E [exp {/0 (x(t) — [x](t))dt}] .

It is interesting to note that for each fixed 4 € C[0, T], we have, as
expected,

. T T
“11”1305' (exp {/0 x(t) dt} X (x) = X,(u)) = exp{/o u(t)dr}.

Some of the above examples are also considered by Chang and Chang
[3] using the inversion formuia (1.4); their computations are very com-
plicated.

4. A generalization of the Kac-Feynman formula. Under the assump-
tion that V' is a nonnegative continuous function on R satisfying the
condition

f V(E)e ¢ dE < 00 for every t >0,
R
Yeh {9] has shown that the function U defined on R x (0, co) by

1)  UEH=E (exp {- /0 V) ds} bx(f) = f)
-(2nt)" Y2 exp (—i—z)

t
satisfies the Kac-Feynman integral equation

(42) UEy= _\/;73—&/21

- [ oo -5
-V(n)U(rz,s)dr;] ds,

whose solution is given by
[v s}

UEn=3 (DU, (&1 eRx(0,0)

k=0
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where the sequence {U,} is defined inductively by

1 _
U, 1) = me 52,:"2:,

Uk+1(6, 1)

_ [ 1 % _E-n?
—/0 (—m f_mexp{ Ty } V(rr)Uk(?LS)dn) ds

for Kk = 0,1,2,.... Thus E(exp{- fé V(x(s))ds}|x(¢) = &) can be
found using (4.1).

Now, under the same assumptions of V', using Theorem 3, we pro-
ceed to find the multi-conditional expectation

E (exp{—/: V(x(s))ds} |x(t;)=¢&;., i= 1,...,n) ,

where 0 < ¢ < ¢ < -+ < t, = ¢. First consider the conditional
expectation for 0 < ) < ¢,

i
(4.3) I=E (exp {— ! V(x(s)) ds} |x(2) =&, x(8) = é) .
Then, by Theorem 3, (2.1) and (2.2),

44) I=E [exp {—/{l vV (x(s) —x(t) — H(x(t) —x(f1))

2fe-a) ash].

Since the Brownian motion x(¢) has stationary increments, it fol-
lows from (4.4) that

I=E [f.-xl:r{—fof_II vV (x(u) - I—_E‘Tl(x(t - )+ &)
+%(¢—él)) du}]
=E (exp{—/:_EI V(x(u) +¢f.)du} |x(¢ —#1) =5"fl)

=i
=E (exp {— A W(x(u))du} |x(t —8)=¢& - dfl) )
where W(x(u)) = V(x(u) +&,). Next, let

+& +

_(«:-w}_

U.E~& 1 - 1) = 1Rt = )] exp { - S50
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Then, applying (4.1} and {4.2) to (4.5), we obtain that
UG.E-¢&1.t~ 1)
2
_ =12 _{§-¢&) }
[2r(t —t1)]” /“exp { 2 =1

~ [ 2r -1 - w2
Ll

e & 2
-[wexp{—%éﬁ:ﬁ%} W{mU&,nu)dn| du

Since W{(n) = V(n+¢&,), we may use the transformation y = n+ ¢, to
obtain

Udi.¢~-q.t—1)
Ry
- - e - E262

_ /0 o [[2::(:—:1 _wy?

00 _ a2
-/ﬂmexp{—-z—(é%hy_)_—m} V(r)U(&1.y ~ &1, u)dy| du.

But this equation is similar to the Kac-Feynman integral equation,
and hence its solution is given by

oo

UE~¢&.t-) =) (-DFUEE- &, - 1),

k=0
where

- 2
Up(é1,& =&t — 1)) = [2n(t — t; — w)| /2 exp {‘(zé(: fi?) }

and
Ueni,s =611 - 1)

- /OH' [[2::(: - w1 /: exp {‘2(5%%}

V) UEL? - &1 1) dy] du

for k = 0,1,2,.... In particular the solution U({,¢) of the Kac-
Feynman integral equation (4.2) is a special case, namely

U )y=U(0,¢ 1)
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We are now ready to write out an expression for the multi~condition-
al expectation. Using the Markov property of the conditional process
and the multiplicative nature of the exponential function, we may
write

(4.6) E (exp {_./f V(x(s))ds} x(t) =&, i=1,2, n)
(exp{ " V(x(S))dS} (ti-1) = 8-, x(8) =§:‘)

[

L E Y2
oo §502)

UG, & —Em i — i),

Also, we have

(4.7 E (exi){_/’ V(x(s))ds} la; <x(t;) < by, i=1,2,..., n)
[ /a HU(ff—l,ff—Cf_l,tf-tf_l)dgl . dE,.

I =1

5. Translation of multi-conditional Wiener integrals The Cameron-
Martin Translation Theorem [2, 7] states that if xo(z fo h(s)ds for
all t € [0, T) with 2 € L?[0,T], and if T; is the transformauon of
C[0, T} into itself defined by

Tix)=x+xg forxeC[0,T],

then for any Wiener integrable function F on C[0, T']) and any Wiener
measurable set I’

() [Fomaldy)= [ Fx 300 xo, xm(ds)
r (I

where

N _}- T 5 _ T
(5.2) J(xg,x)—exp{ 2/0 (h(£)) dt}exp{ /(;h(t)dx(r)}

and fOT h(t)ydx(t) is a stochastic integral with mean zero, and variance
fOT(h(t))2 dt. In particular, if I' = C[0, T'], then (5.1) becomes:

(5.3) ETF(y)] = E[F(x + x0}J (X0, X)].
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Yeh [10] gives a conditional version of (5.3) which states that under

the same conditions as above,
(5.4) E(FW)¥(T)=2¢) = E(F(x+ xo)J (X0, x}}x(T) = § — xo(T))

2
- eXp {_x%(]’.f’) } exp {xO:(I,T)é} .

The following is the multi-conditional version of (5.3). Its proof
is very simple and straightforward because our “inversion formula”,
Theorem 3, is so simple and easy to apply.

THEOREM 4. Let xo(t) = [y h(s)ds for all t € [0,T) with h €
L2[0,T). If F is any Wiener integrable function on C[0, T), then for
any partition t = {t,,...,t,} of [0, T},

E(F(»)ly(t))=¢&;, j=1....,n)
= E(F(x + x0)J (x0, X)|x(t;) =& —xp(t)), f=1.....,n)

T —(xo(t;) — xo(tj—1))? . (xolt;) = xo(t;- )W — &—1)
Eexp{ 2(!}'—'{]'_1) + i — 1t }

where J{(xy, x) is given by (5.2).

Proof. By use of Theorem 3 we see that
(5.5)  EFWIy(;) =&, j=1.....n) = E[F(y - [y1 + [E])}

Now applying (5.3) and noting that {x + xo}(¢) = [x](#) + [x0](f} we
have

(5.6) E[F(y —[y]+[ED] = ELF (x + xo — [x] = [x0] + [E)J (x0. %)].

Next we rewrite J{xp, x) in the form

1 T
(5.7) J(xox,) = exp{—~2—f0 (h(t))zdt}

T .
- exp {—/D h(t)d(x(t) = [x}o) + [€)(e) - {xol(f))}

T
exp {— [o h(s)d[x](r)}

T -
- exp {[0 h(2)d([EX1) - [xo](f))}-
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But
T
5.8) [ moydixio
- Z [ b0 (x(tj-0) + =10 = x(60))
= Z xo(fij - z')_(t"_l)(x(rj) = x(tj-1)).
Similarly,

T =
(5.9)/0 h(2) d((£)(2) — [x0)(D))

_ Z JCO(I} xo(t)- I)[(fj -‘éj—l) - (xo(fj) - xO(Ij_l))]

L —1j-1

On the other hand,

E [exp{—/‘:h(t)d[x](f)”

= xo(t;) — xolt;—1) x(1;} — x(tj—1)
= F - . .
[exp{ zl VE— - Vii— i }]

J‘=

Since

{x(r,) x(t_1) ie1 n}

Vi T
1s a set of independent identically distributed standard normal random
variables, we have that

T
(5.10) E [exp{— /0 h(r)d[x](r)}]
T (xo(t;) — xo(t;-1))?
_gexp{ G =) }

Now using the expression (5.8}, one can easily see that fOT (O d[x)(t)
is independent of the process {x(¢) — [x)(?): 0 <t £ T}. Thus,

F(x + X0 — [x] - [xo] + [€])

T .
- exp {—[) h()d(x(¢) — [x1(0) + [S1(5) — [xol(f))}
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and exp{— fOT h(t) d{x](¢)} are independent. Hence, using (5.7), (5.9),
and (5.10), it follows that

E{F (x + xo — [x) = [x0] + [E)J (xp. x)]

= E |F(x + xg — [x] - [x0] + [£])

T . =
. exp {—[) () d(x(t) — [x](¢) + [E](e) — [xo](t))}]
1 T - (x0(2;) — xo(tj—1))?
ol oo (gt

TLexe {22200ty - 1) - o) - so(t-01}
=1

ti—1ti-1

Therefore, by usinlg (2.5)
E[F (x + xp — [x] ~ [x0] + [€1)J (x0, X)]

T
=E (F(x+x0) exp {—/0 k(r)dx(r)} lx(¢;) = &; = xo(t;).

Jj=1,... ,H)
T
- eXp {—%/0 (h(1))? dt}

T _ (xolt)) — xo(tj-1))*
Hexp{ 2(fj—fj_1)

, Goo(ti) = Xo(t;-1))(&; = &i-1) } ‘

Ij—tj_l

This, together with (5.6) and (5.5), completes the proof.
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