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AMENABILITY AND KUNZE-STEIN PROPERTY
FOR GROUPS ACTING ON A TREE

CLAUDIO NEBBIA

We characterize the amenable groups acting on a locally finite
tree. In particular if the tree is homogeneous and the group G acts
transitively on the vertices then we prove that G is amenable iff G
fixes one point of the boundary of the tree. Moreover we prove that a
group G which acts transitively on the vertices and on an open subset
of the boundary is either amenable or a Kunze-Stein group.

1. Introduction and notations, Let X be a locally finite tree, that
is, a connected graph without circuits such that every vertex belongs
to a finite set of edges. Let V' be the set of vertices and E the set
of edges. If v; and v, are in ¥V, let [vy, v2] be the unique geodesic
connecting v, to vy; the distance d(v(, v;) is defined as the length of
the geodesic [v(, v2]. Let Aut(X) be the locally compact group of all
isometries of X and, for x € V, let K, be the stability subgroup of x;
K is a compact open subgroup of Aut{X). Let Q be the boundary of
the tree, that is, the set of equivalence classes of sequences of distinct
vertices {s,}, # = 0,1,2,..., such that [s;,s,,] is an edge for every
i=0,1,2,...,n,... (two such sequences are said to be equivalent if
they have infinitely many common vertices). Q is a compact metric
space; every class of Q is called an end of the tree. If x5 € ¥V and
wq € €, there exists a unique geodesic [xp, wg) from xy to wy, that is,
a unique sequence {s,} of distinct vertices {sg,5,,...,5y,...} in the
class wp such that sp = xp. Hence €2 can also be regarded, as the set
of infinite sequences starting from any fixed vertex xo € V.

In the same way, for @, w, € Q with @ # w;, let [w;, w;] be the
unique geodesic joining @) to w»; [w(, @;] 1s a line, that is, a sequence
{sn}, n =0,31,F2,F3,..., of distinct vertices such that [s;, s;.;] is
an edge for every i. Conversely, every line is associated with a pair of
ends of X. The reader is referred to [2, 3] for more details.

For g € Aut{.X), J. Tits has proved in [6] that one and only one of
the following holds:

(1) There exists a veriex v € V such that g{v) = v (in this case g
is called a rotation).
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(2) There exists an edge [x, y] such that g(x) =y and g(¥})=x (g
is called an inversion).

(3) There exist a line {s,} and an integer j # 0 such that g(s,) = 5,4
for every n (g is called a step |j] translation on the line C = {s,}.
Moreover |j| = min{d(v, g(v)):v € ¥V} and C = {v € V:d(v, g(v)) =
|7]}). Furthermore, J. Tits proved in [7] that a solvable fixed point
free group of 1sometrics of a tree leaves invariant an end or a pair of
ends of X. But the stability subgroup of an end or a pair of ends, in
general, is not solvable. In this paper we consider the larger class of
amenable groups and we prove that, if X is a locally finite tree and
G is a closed noncompact subgroup of Aut{X), then G is amenable
iff G leaves invariant an end or a pair of ends of X. In particular,
we deduce that a group G which acts transitively on the vertices of a
homogeneous tree of order r > 2 (that is, a tree where every vertex
belongs to r edges) is amenable iff G fixes one end. In this case we
give another characterization of amenability, and we observe that G
acts transitively on an open subset of the boundary Q.

We recall that a locally compact group G satisfies the “Kunze-Stein
property” if LP(G)*L%(G) ¢ L*(G) for every 1 < p < 2 (a group of
this type will be called a “Kunze-Stein group™). A closed subgroup of
Aut{X) (X is a homogeneous or semihomogeneous tree) which acts
transitively on £ is a Kunze-Stein group [5). In §3 below we show
that if G acts transitively on the vertices and on an open subset of
then G is either amenable or a Kunze-Stein group. If no orbit of G on
{2 is open, then G is not amenable and we conjecture that G is not a
Kunze-Stein group. This amounts to conjecture that, for groups acting
transitively on the vertices, the Kunze-Stein property is equivalent to
the fact that the group acts transitively on the tree boundary Q.

Finally, we prove this conjecture in the special case of a homoge-
neous tree of order three.

This work was done while the author was visiting the Department
of Mathematics of the University “L. Pasteur” of Strasbourg, whose
warm hospitality is acknowledged with pleasure.

We would like to thank the referee for his valuable suggestions and
comments.

2. Amenable groups acting on a tree. We consider the following four
properties:

{P)) G fixes one vertex.

(P;) G leaves invariant an edge (that is g{[x, y]) =[x, ¥]).
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(P3) G fixes one end of X.
{P4) G leaves invariant a pair of ends of X.
The main result of this section is the following theorem.

THEOREM 1. Let X be a locally finite tree and G a closed subgroup
of Aut(X). Then G is amenable if and only if G has property (P;) for
somei(i=1,2,3,4).

Proof. Let G be a closed amenable subgroup of Aut(X). Let us prove
that there exists i (1 < i € 4) such that G has property (F;}. Observe
that if ¢ and w are translations on the lines C; and C;, respectively,
and C; N C; = & then the subgroup (¢, w) generated by ¢ and ¥ is
a discrete subgroup of Aut(X) isomorphic to the free group with two
generators. This is a consequence of the following claim: w(C;) N
C, = O for every reduced word w in ¢ and w such that w ¢ (@),
the subgroup generated by ¢. Indeed this implies that, for x € C,
w(x) # x for every reduced word in ¢ and y. A fortiori, w # 1 and
{¢, w) N K, = {1}; this means that {¢, ) is a discrete subgroup of
Aut(X) isomorphic 1o the free group with two generators. We prove
now the claim. Let y, 7, be two lines such that y; Ny, = &, we define
[¥1.72] = [%o0. yo) Where xo € 71, Yo € y2 and d(xp, yo) = d(y1,72) =
min{d(x, y):x € y1, ¥ € 12}

Let ¥ be a line such that y N C;, = y Ny, = O, it is easy to
see that [y, C;] C [7, (3] implies that ™ (y) N C; = y™(y) N Cy =
@ and [¢™(y),. (2] € [w™(y),C)] for every m # 0. Similarly, if
[7, G2l Cly, C1, then ¢™ ()N Cy = ¢™(¥)N 3 = © and [¢™(y), C1] C
[¢™(r). C3].

Since, forevery m # 0, ¢ (C)) = C,, y™"(C)INC, = "™ {CHNCy =
& and [y"(C)),C3] C [w™(C)). C] it follows that w(C)) N C, =
w(C)NCy = @ for w = ¢phyhdhyh ... ¢hyhdl with ji,..., ju, i,
i, ..., Iy, nonzero integers, n > (. This proves the claim. Hence, if
¢, w € G then C; N C; # <. We can suppose that there exists a
translation ¢ € G on C, otherwise G satisfies (P;) or (P;) or (P;) [6,
Prop. 3.4). For every g € G, gpg~! is a translation on the line g(C),
and thus by the argument above C N g(C) # @.

But if C N g(C) is finite for a g € G, then there exists j such that
P(CN(CNN(CNg(C)) = I, and thus, since g(C)N{¢/ (&(C)} # &
would force existence of a circuit joining C N g(C) and ¢/(g(C)),
g(CYn {¢/(g(C))} = @ which is a contradiction. Thus C n g(C)
is infinite for every g € G. We denote by @), w, the two ends of
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C. Then gw; and gw, are the two ends of g(C). If C = g(C),
then gw, = w, and gw» = @ Oor gw, = W, and gw; = wy. If
C # g(C) then the set: A, = {w, w2} N {gw;. gw>} is a singleton
because C N g(C) is infinite. We prove now that A, = A4, for every
g and 4 in G such that g(C) # C # h(C). To prove this, we observe
that if g(C) # C and 4y = {w,} then gw; = w,. Indeed let gws # w;
and A, = {w;}, then gw; = w; and gw; # w;; therefore ggw, = w,
(otherwise ggw; # w; and Az, = & which is impossible). This means
that g is a cyclic permutation of the set {w;,w;, gw;}. We consider
the element ¢g € G; it follows that ¢g(C) # C and ¢gw; = ¢w, =
w3, ¢gwyr # ;3. The reasoning above implies that ¢g is a cyclic
permutation of the set {w;, w;, pgw,}. In particular, $g(Pgw;) = w,
that is, ¢gw, = g7 '¢~lw; = gw,. This is a contradiction because ¢
is a translation on C and ¢w = @ iff @ = @, or @ = w,. This proves
that gw; = w,.

The proof of the fact that 4, = {w,} implies that gw; = w,; is
similar, We suppose now that there exist g and 2 in G such that
Ay = {w,} and 4;, = {w,}, then ghw, # w; and ghw, # w, which
implies that gh(C) = C and so ghw, = w, and gw; = w;, contrary
to the assumption that gw; = w,. Thus 4, = A, for every g and A
such that g(C) # C # #(C), say A; = {w2}. Therefore for any given
g in G, we have the following two mutually exclusive possibilities: (1)
gwa = wa; (2) gwy = w; and gw, = w,. Hence G has property (Ps3)
or (P4) because it is easy to see that if there exists an isometry of type
(2) then gws = w;> implies gw, = w;. Conversely, we now prove that
every group which has property (7;), i = 1,2,3,4, is amenable. If G
is the stability subgroup of a vertex or of an edge then G is compact
because X is locally finite. Now, let G be the stability subgroup of an
end wy € Q. Let {59, 5),-..,5n,--.} be the geodesic from s, to @y and
B the group of all isometries b such that b(s,) = s, for n sufficiently
large. Then B ¢ G and B = |J;2o Bx where B, = GN Kj,; since
B, is compact open in G the group B is a closed amenable subgroup
of Aut(X), open in . B is the subset of rotations of G: indeed, if
g € G fixes a vertex v, it also fixes the geodesic [v, wg), hence g € B.
Moreover, by definition, (f contains no inversions. Therefore, if G # B
there exists a step j translation ¢ on C = {s,} and we can choose ¢
in such a way that j is smallest possible. In particular if G contains
translations of step j/ then j* is a multiple of j. Hence G = (¢) B where
(¢} is the group generated by ¢. Because BN (¢) = {1} and Bis a
normal amenable subgroup of G, it follows that G is amenable. Finally,



KUNZE-STEIN PROPERTY FOR GROUPS 375

let w;,w; € Q with w, # w; and denote by C = {s,}, n € Z, the
geodesic joining @, to w3, and by G the group which leaves invariant
the set {w,,w;}. Let Kg = {h € G h(sy) = s, for every n}; by [6,
Proposition 3.4] we can suppose that there exists a step j translation
¢ on C and j is smallest possible. Then Ky{¢) is an amenable closed
subgroup of G (K, is compact normal in Ky{¢})). It is easy to see that
Ko{¢) is the set of isometries of G such that gw, = w; and gws = ;.
Hence, if G # Ky{¢) then Ky(¢) is a closed normal amenable subgroup
of index 2 in G. Then G is amenable and the theorem is proved.

REMARKS. 1. The first part of Theorem 1 holds for a general tree;
in other words a closed amenable subgroup of Aut(X), where X is a
general tree, has property (P;) for some i = 1,...,4. But the converse
is not true for a general tree. Indeed, let X; be the tree with vertex set
V =NU{oco} and edge set E = {{n,00}:n € N}. Xj is not a locally
finite tree and Aut(Xy) = Ko ~ S{N), the group of all permutations
of N, is not amenable.

2. We shall say that a vertex v is of homogeneity / if v belongs
to exactly / edges. A semihomogeneous tree X;, is a tree such that
every vertex is of homogeneity / or ¢ and two adjacent vertices are
of homogeneity / and g, respectively. Let S; [respectively .S,;] be the
subset of X, , of vertices of homogeneity / [respectively g]. If = ¢ =
r, then X; ; is a homogeneous tree of order r. Let X be a homogeneous
tree and  be a closed subgroup of Aut(X) acting transitively on the
vertices, or alternatively let X = X;, and G be a closed subgroup of
Aut(X;,) acting transitively on S;. It follows from Theorem 1 that G
is amenable iff G fixes one end. In fact, if G has property (P,), (P;) or
(P4} then, for some vertex v, the orbit Gv is either finite or contained
in a line,

3. We can deduce from the proof of Theorem 1 that a closed non-
amenable subgroup of Aut(X) contains a discrete subgroup isomorphic
to the free group with two generators. Indeed if ¢ is not amenable,
Proposition 3.4 of {6] implies that G contains a translation ¢ on C.
The proof of Theorem I shows that if g(C)N C # O for every g
in G, then G is amenable. Therefore there exists g € & such that
g(CYN C = @, and so the subgroup of G generated by ¢ and gpg~!
is a discrete group isomorphic to the free group with two generators.

4. In [6] J. Tits proved that a solvable subgroup of Aut(X) has
property (Py), (P3) or (P4); but the vice-versa is not true. For example,
the stabilizer of a vertex or an end, and the stabilizer of an edge or
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a pair of ends of a homogeneous or semihomogeneous tree are not
solvable. Since this group contains subgroups of type K¢ = {g: g(x) =
x for every x € C} where C = {s,:n € Z} is a line, it is enough to
prove that K is not solvable. Let E,, be the following set:

Ey={y € X:d(y,sp) = m and [s, y] N C = {50}}

form >0, and K,, = {g € Kc: g(y) = y for every y € Ep}.

K, 1s a closed normal subgroup of K and Ko/K,, is isomorphic
to S{E,,), the group of all permutations of E,,.

When m is sufficiently large, |E,,| > 5 and S(E,,) is not solvable.
This implies that X is not solvable.

Now we give another characterization of amenability for groups
acting transitively on a homogeneous tree X. For x € V and for an
integer n > O let S = {y e V:d(x,y) = n}.

We define the folliowing “local property (x)™:

(+) For every x € V there exists X € V with d(x, ) = 1 such that:

(1l GnK,y g GNK;y,

(2) GN K acts transitively on ST\{X}.

THEOREM 2. Lef X be a homogeneous tree of order r > 2 and G a
closed subgroup of Aut(X) which acts transitively on the vertices, then
the following are equivalent.

(a) G is amenable.

(b) G fixes one end of X.

(c) G has property (*).

Proof. As observed in Remark 2, (a)<=(b) follows from Theorem
1. If (+) holds then for every x € V there exists a unique y = X such
that GN Ky ¢ GN Ky; in particular x # X. This implies that there
exists a unique G-invariant path C, = {sg,81....,8p,...} starting at
5o = x such that s;,, = §; for every i. To prove that G fixes one end
of X it is enough to prove that C, N C, is infinite for every x,y € V..

If x,y € V and d(x, y) = 1 then Cx N C, is infinite because X = y
or ¥ = x. In fact, let W, = S¥\{%}. Because g(X) = [g(x)]™ for
every g € G and x € V, we have the following two mutually exclusive
possibilities: (1) ¥ = x for every v € W, and for every x € V;
(2) # # x forevery v € W, and forevery x € V. Butif x € V
satisfies (2) then © satisfies (1) because ¥ # v (by property (+)) and
v € Wy, This means that every vertex x € V satisfies (1). In particular
y = X or x = j. By induction on the distance d(x, y) we have that
Cx N Cy is infinite for every x, y € V, and (c)=(b). Conversely, we
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now show that (b)=(¢). Let G be a closed amenable subgroup of
Aut(X) which acts transitively on the vertices. Let 5o € V. Then
G must fix some end @ = [{5p,51,52,...}]. We claim (x) holds with
§p = 51. The fact that GN K, ¢ Gn K, follows from the fact that
G fixes w. Suppose u,v € S{°\{s;}. There exists g € G such that
g{u) = v because G acts transitively on the vertices. Since g fixes
the end @ = [{,50.81....}} = [{v,5.51....}], & € Ks; proving (2)
of (x). The argument above implies that &N K, acts transitively on
ST\{s2} 3 so. If the tree is homogeneous of order > 2, then there exists
an element w € S7'\{sg, 52}, this implies that there exists k € GN K,
such that k(sg) = w # sp. This means that GN K, # GNK,,. Since G
acts transitively on the vertices, property (x) holds.

REMARK 5. If G and ¢ are as in the proof of Theorem I then
G = {¢)Ko{p). Since G{sp) = V and {$)(s9) = {s4:n € Z}, it follows
that, for every v € V with d(sg,v) = n and v # s_,, there exists
k € Ky such that k(s_,) = v. In other words, G acts transitively on an
open subset of €2, in fact on Q\{wg} where @y is the fixed end of X,

3. Groups acting transitively on an open subset of £2. In this section
we prove the following result:

THEOREM 3. Let X be a homogeneous tree and let G be a closed
subgroup of Awt(X) which acts transitively on the vertices and on an
open subset of Q. Then either G fixes one end of X (i.e. G is amenable)
or G acts transitively on Q (L.e. G is a Kunze-Stein group).

Proof. It is enough to prove that there exists wy € £ such that G
acts transitively on Q\{wo}; then the theorem follows from Theorem
2 and {5].

It follows, by [6], that there exists a translation ¢ € G on a line
C = {s,}. In this proof we realize € as the set of all infinite paths
issued from so. Then the sets: E(x) = {{t,} € Q:t; =x} withx e V
and d(sg, x) = j form a basis for the topology of Q. Also, we observe
that, for wy € Q, the orbit Gwy is open iff (G N K )wp is open: this
foilows from Baire’s theorem and the fact that G/(GNKj,) is countable.

In particular G n K, acts transitively on a set E(x). Let A € G
such that /#(sp) = x. Then A¢h~! is a translation and, without loss
of generality, we can suppose that ¢ is a translation on C = {s,} and
Gn K, acts transitively on $E(s_;). Let wg = {sp,5_1,5_3,... }.

Since G contains the translation ¢, then G acts transitively on
CE(s_») for every n > 0, hence on Q\{wo} = J,500E(s-n).
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REMARK 6. The same statement holds, with the same proof, for
semihomogeneous tree X;, and groups acting transitively on S;.

Theorem 3 means that if there exists an open orbit of G on Q then
G is either amenable or a Kunze-Stein group. What happens if no
orbit is open? As observed in Remark 5, G is not amenable.

We conjecture that G is not a Kunze-Stein group. However, we are
able to prove this conjecture only in the special case of a homogenecous
tree of order three.

Denote by I' the simply transitive subgroup of Aut(.X) isomorphic
with Z» * Zy # - -+ Z r-times considered in [1, 4].

LEMMA 1. Let G act transitively on the vertices of a homogeneous
tree. Then G contains a step one translation iff G # T

Proof. By [1, 4] it is enough to prove that if GNK # {1} then there
exists a step one translation in G.

If GNK x # {1} then there exists k € GNK; and a # b witha, b € §7
such that k(@) = b; this follows from the fact that G acts transitively
on the vertices. Choose g in G such that g(x) = b. Then g is either a
step one translation or an inversion. If g is not a step one translation
then g(b) = x; hence gk is a step one translation because gk(a) = x
and gk(x)=b.

In particular this translation exists if G is not discrete or if G is
amenable.

LEMMA 2. Let G be a closed subgroup of Aut(X), let ¢ € G be a
translation onaline C = {s,} and w an end of C. If the orbit (GNK ;) )w
is finite, then G is not a Kunze-Stein group.

Proof. Let K' be the stabilizer of @ in GNK,. Let H be the subgroup
of G generated by K’ and ¢. By assumptions (G N K, )/K’ is finite,
therefore X’ is open in GN K, hence in G. This implies that H is
open in G and closed in Aut(X). By Theorem 1, H is amenable.

Therefore H is an open amenable noncompact subgroup of G. The
result now follows from the facts that amenable noncompact groups
are not Kunze-Stein groups and that every open subgroup of a Kunze-
Stein group is a Kunze-Stein group.

PROPOSITION, If G is a closed Kunze-Stein group which acts transi-
tively on the vertices of a homogeneous tree of order three, then G acts
transitively on Q.
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Proof. Let G be a closed Kunze-Stein subgroup of Aut(X) which
acts transitively on the vertices of X. Then G contains a step one
translation ¢ on a line C = {s,} and (G N K;,)wy is infintte (here
wo = {Sg,5¢,...} € Q). This foliows from Lemma ! and Lemma 2.

As @y is an accumulation point of the orbit (Gn K, )wg, then there
exists a sequence 7n,, — +o0o and a sequence &, € GnN Kj, such that
ky, (Sy,) = Sp,, but ky, (s, +1) # Sp,+1. Now the rotations ¢k, ¢~ in
GNK,, fori=0,1,...,ny, vield a sequence k, € G K;, such that
fen(8n) = Sy DUt kn(Sy41) # Spet for every n > 0. The same argument
applies to every point @' = kwyg of the orbit (GNK )wq by replacing C
with k(C) and ¢ with the step one translation k¢k~! on k{C). Since
G N K, is compact, the orbit (G N K )wy is closed. If r = 3, the
argument above shows that wy is an interior point of this orbit. Thus
the orbit is open and, by Theorem 3, G acts transitively on Q.

REMARK 7. Finally, we provide an example of a nondiscrete sub-
group of Aut{X) acting transitively on the vertices and such that no
orbit on  is open. Let E| be a subset of edges of X such that there
are no two adjacent edges in E; and every vertex belongs to exactly
one edge of E,. Let G, be the stability group of E|; then it is easy to
see that G, is a closed subgroup of Aut(X) which acts transitively on
the vertices but G, is not discrete because G; N K is infinite.

If ¢ € G; and w € Q is a path which contains a finite number of
edges of E; then also gw contains a finite number of edges of Ey, in
particular no orbit of & on Q is open.

Observe, also that G, is not amenable, hence it does not satisfy the
local property (*) of Theorem 2. On the other hand, it satisfies the
following property (#x):

(++) For every x € V there exists X € V with d(x, ¥) = 1 and such
that:

(HGNKy=GnK;,

(2) GN K acts transitively on S{\{Xx}.

In this case, if y = X then 7 = x.
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