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THE GEOMETRY OF
SUM-PRESERVING PERMUTATIONS

F. GARIBAY, P. GREENBERG, L. RESENDIS AND J. J. RIVAUD

Geometric characterizations of the semigroup of permutations which
preserve convergence of series are presented.

1. Introduction. A well-known result of Riemann asserts that the
sum of a conditionally convergent series may be changed to any value
by suitably permuting the terms of the series. We introduce geometric
tools to prove, among other results, that the set S of permutations
which do not change the value of any convergent series is exactly the
set of permutations which fix a type of asymptotic density of subsets
of the natural numbers (Theorem 1.6).

Several authors ([Le], [A], see Schafer's survey article [Sch]) have
given characterizations of the set S of permutations. The ideas of
Levi [Le] are combinatoric in nature. Those of Agnew, on the other
hand, come from the theory of summability of series; see e.g. Chap-
ter III of [H], especially Theorems 1-3 of Schur and Toeplitz. In
fact, consideration of Theorem 1 leads to certain geometric notions
(Definitions 1.2 and 2.1) with which we express our characterizations
of S.

1.1. NOTATION. If (a,) is a sequence of real numbers, £ a, denotes
the limit of partial sums lim,,-^ YTk=\ ai- Let f = {(«/): Yl ai e R)
be the set of convergent series.

Let P denote the group of permutations of the natural numbers
TV = {1, 2 , . . . } . If o € P and (a,) is a sequence, a{a{) is the sequence
whose zth term is aa-\^y Let

S* = {a e P: (a,) e f implies a(a ;) € &},

S = {a e S*: (a,-) € f implies

It is proven in [Sch] that S = S*; we see this as Corollary 3.5. Note,
however, that S and S* are clearly semigroups.

Last, #X denotes the cardinality of a set X, and if n, m € N, n < m,
then I(n, m) = {n, n + 1 , . . . , m}.
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We now give definitions necessary for the statement of our main
results.

1.2. DEFINITION. Let JV = {nx < ••• < ns} and M = {mx <

••• < ms}, be subsets of the natural numbers. We say that M and
N are collated if either mi < «j < mi < «2 < • • • < ms < ns or
else n\ < m\ < «2 < ^2 < •• • ns < rns. We say that M and N are
separated if either ms < n\ or ns < m.\. From now on, saying that M
and iV are separated or collated will imply that #M = #N.

1.3. DEFINITION. If 0 € P, a satisfies condition A if there exists
a natural number H so that if N and M are collated, and aN, oM
separated, then #iV = #M < H.

1.4. DEFINITION. Let K — {K\ < K2 < • • •} be an infinite subset
of the natural numbers, and let B C K. Let a € [0,1]. Then the
asymptotic density of B in K is a and we write DK(B) = a if, given
e > 0 there exists N G N such that if m - n > N,

#(*n
m — n

— a < e.

Note that DK(B) may not exist. IfaGP, so that for all pairs B c K so
that DK{B) exists we have DaK(aB) = DK(B), we say that a preserves
asymptotic density.

1.5. THEOREM. If a e P, then a e S if and only if o satisfies
condition A.

1.6. THEOREM. IfaGP, then a G S if and only if a preserves
asymptotic density.

It seems difficult (see Example 1.8 and [St]) to arrive at combinato-
rial descriptions of the group G of elements of S whose inverses also
are in S. However, Theorem 1.6 has the following corollary:

1.7. COROLLARY, a e G if and only if given B C K, DK(B) is
defined if and only ifDaK(oB) is, and DJC(B) = DaK(oB).

1.8. EXAMPLE. Let an: 7(1,2n) —>7(l,2n) be defined by

on(2i+l) = i+l, <rn(2i) = n + i.
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Then an separates the (collated) odd and even numbers in 7(1,2«).
Further, using the graph of a (see 2.1) one sees that a~l never sepa-
rates collated sets whose cardinality exceeds 2.

Let a e P be denned as o\ on 7(1,2), a2 on 7(3,6), CT3 on 7(7,12)
on so on. By Theorem 1.5, a £ S, but a~x e S. (Note also that
7J>N(2N) = \, but that Ds(a2S) is not denned.) Further, let T be
denned as a{ on 7(1,2), a~l on 7(3, 6), er3 on 7(7,12), a~l on 7(13,20)
and so on. Then neither x nor x~x is in S.

1.9. ACKNOWLEDGMENTS. This work was motivated, in part, by A.
Weil's book [W]. Also, we thank Adrian Alcantar for discussion.

1.10. ORGANIZATION. In §2 we introduce the graph of a permuta-
tion and establish some results. In §3 the idea of total family helps
complete the proof of 1.5. In §4 we discuss asymptotic density, and
its relation with equidistribution.

2. The graph of a permutation.

2.1. DEFINITION. Let a e P. Consider, in the plane R x R
the polygonal path obtained by connecting the points (i,a(i)) and
(i + l,o(i+ 1)) for all /. This path is the graph of a function called
g(o). The path is called the graph of a.

2.2. PROPOSITION. Ifa&P, the following are equivalent:
(i) there exists H € N so that #{g{o)~l{r)) < H for all r e [1, oo).

(ii) a satisfies condition A.
(iii) There exists 77' e N so that, given n, m e N, ifa~lI(n, m) is

written as the union U*=1 7(«/, m ;) with mj < n ;+i - 1, then s < H'
{R. P. Agnew, see [Sch]).

To prove 2.2 we use the following lemma, whose proof we leave for
the reader.

2.3. LEMMA. If a does not satisfy condition A then there is an in-
creasing sequence K\ < K2 < of natural numbers, and sequences
{A(}, {Bj} of subsets ofN so that

(i) Ah Bh a{At), o{Bi) c l{Ki,Ki+x),
(ii) Ai and Bt are collated, and aA[ and oBi are separated, with

aa < ab for a e Ait b € Bit

(iii) #Af < #Ai+{ for all i.
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Proof of 2.2. (i)=^(ii) Let a G P so that a does not satisfy condition
A; there exist {At}, {Bj}, {Kj} as in Lemma 2.3. For each /, let
Mi = min{(j(b): b G Bj} and m, = max{cr(a): a G Ai), and set rt =
(mi + M{)/2. Since o(a) < r, < a(b) for a G ̂ 4/, & G 5/ we have that
g(o)~l(n) > #Ah By 2.3 (iii), 2.2 (i) does not hold.

(ii)=»(i) Let a G P, and consider the function g{o). Local maxima
and minima of g(a) occur only at natural numbers; further, a value
« G N can occur at most once as a local maximum or minimum of
g{a). Thus, given r G [l,oo], we can perturb r slightly, to r', so
that r' is not a local maximum or minimum of g{o), and further

Let g(ff)~l(r') = {x,: / = 1, . . . ,n} with xt< xi+\. For each/, there
exist a, b G N, a < xt< b, so that a (a) < r' < a(b)\ let a; (resp. bj) be
the sup (resp. inf) of all such a (resp. b). Then the sets 4̂ = {o-n+x},
B = {^2;+i} are disjoint, collated and oA and oB are separated, and
#A = #B> %(#g(<j)-l(r'))-l. Thus i f the#^(a)- 'C) are unbounded,
a does not satisfy condition A.

(i)=^(iii) Let o G P, with H as in 2.2 (i), and n, m G N. Suppose
that o~xI(n, m) = \Js

i=l /(«,-, m,) with m, < «,+1 - 1. By continuity,
g(a)~l[n,m] = U^it-^/-^d (where [a,a] denotes {a} if necessary),
and k < s. But

soS< 2H.

(iii)=>(ii) Let a e P, and suppose that A and B are collated, and
oA and oB separated, with o(a) < a(b) for a G A, b e B. Let n =
sup{cr(fl): a G A). Then CT-1/(l,m) = \Jj={I{nj,mj) with 5 > #>4.
Hence if condition A is not satisfied, neither is 2.2 (iii).

This completes the proof of 2.2. We now prove part of Theorem
1.5. Actually, this is the same proof after the first sentence, as given
in [Sch]; we include it because it is short, and for completeness.

2.4. PROPOSITION. Ifo G P and a satisfies condition A, then a eS.

Proof. We show that if o satisfies 2.2 (iii), then a G S. So, let
H' G N so that i f n , m e N and a~xI{m,n) = Uy=1/(w7-,«y) with
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mj < iij+\ — 1, then s < H'. Let a > 0; we show that there exists an
N G N so that if n > N,

i=\
'(0

i=\

< e.

Since J2 cij e R, there is some M so that if n, m > M, \J2"=m
 a\ <

e/2H'. Let N = ma\{a(l),a{2),...,a(M),M}. Note that if n > N,
we can write CT~1/(1, n) as the disjoint union cr~1/(l, n) = 7(1, my) U

*< "/) where M < mx < n. Further, K < H'.
Therefore, if n > N we have

U/=2

n
\^ n

i=\

<

n

; = 1

n

E «-

=

+ E
7=2

Mil

; = 1

i=nij

< e/2H' + H'e/2H' < e. D

3. Complete families. Recall that g7 = {(a,): Y,ai e R l -

3.1. DEFINITION. If B Q W, B is a complete family if given a e
P, a <£ S there exits
unequal to

such that undefined or

3.2. DEFINITION. Let (a;) be a sequence, and K = {KJ: Kt e N,
Ki < Ki+i} an infinite subset of N. By K{at) we mean the sequence bt,
where bt = a} if / = Kj, b, = 0 if i £ K. Let E{at) = {K(ai): K c N
infinite}.

(a,) e ^ so that (|a,|) ^.^.Ifa does not
K <zN so that a{K(a,)) <£ W.

3.3. PROPOSITION.

satisfy condition A,

Proof. We can assume that ai} > 0, a2j+\ < 0; if not, insert zeros
in the sequence (a,), obtaining (by "dilution", [H]) a (&,) = K(a{) so
that bjj > 0, bij+\ < 0. Let j n , n > 1, be the smallest natural number
so that Yli<jn

a2i > n and 2Zt<ja
a2i+i < ~n- S i n c e lim/7_>ooa/7 = 0,

lim(j« -7 n _ i ) = oo. By Lemma 2.3, there exist pairwise disjoint
subsets 4 , 5 n C N s o that An, Bn are collated, oAn, oBn are separated,
so that #An > j n - jn_i, and such that if a e ^4/, a' € Ai+X, b e Bj,
b' e Bi+X then a < a', b' and b < a1, b1. Let / „ : I{2Jn_, + 1,2;J -^
/4n U £„ be an order preserving one to one map taking even numbers
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to An and odd numbers to Bn. Let K — \J^=X Image(/n). It is not hard
to see that the points of accumulation of the partial sums of aK(ai)
include 0 and 1. •

Proof of 1.5. This is immediate from 3.3 and 2.3, as are:

3.4. COROLLARY. If{a{) e &, (\at\) <£ & then E{a{) is a complete
family.

3.5. COROLLARY. S = S*.

With respect to 3.4, the E{af) are not minimal complete families.
(For example, E{ai) - {N} is complete.) However, we have the fol-
lowing:

3.6. PROPOSITION. There are no countable complete families.

Proof. Let, for j > 1, j 6 N, (a{) € <g. We will prove that there
exists a e P, a £ S so that for all j , J2ai-^i) - Y^aj-

First note that by Theorem 1.5, given any infinite subset K C N
there exists a e P, a <£ S so that o{j) = j if j ^ K. Thus, it suffices
to find a sequence K\ < Ki < • • • such that for all j , the series J2aK,
is absolutely convergent.

Now let # i be the smallest natural number so that |aj^| < j .
Assuming K\,... ,Ki_x defined, let Kj be the smallest natural num-
ber, Ki > Ki\ so that \al I, \a\ I , . . . , \aL I < 2~l'. Then for all /,

' * i i I A / 1 ' I A/1 ' A / 1 * / '

4. Density. In one direction, the proof of Theorem 1.6 is a straight-
forward application of Lemma 2.3.

4.1. PROPOSITION. Ifa&P, a £S then there exists K CN, A c K
so that DK(A) = \ but DaK{oA) is not defined.

Proof. Let An, Bn as in Lemma 2.3. Set K = \J™=1 {An U Bn), and
A = {JAn. Then DKA = \, but DOK{OA) is not defined. •

The following completes the proof of 1.6.
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4.2. PROPOSITION. If a e S then ifACKQN and DK(A) = a e
[0,1] then DaK{oA) = a.

Proof. We first reduce to the case where K — N, as follows. If K C N
is any infinite subset, let /#: K —» N be the unique order preserving
bijection. Given a G P, define cr̂  e P by cr/r = ia{K)a^'• ^° satisfies
condition A, so does OK\ thus a —• a^ is a function from 5" to 5, a
homomorphism of semigroups if K — oK. Further, if DK(A) = a,
DN(iKA) = a and DaK(oA) = a if and only if DN(aK(iKA)) = a.

So assume that K — N, and i C N with Asi(^) = a, and let cr e S.
We begin with a lemma: let H' be the bound guaranteed in Proposition
2.2 (iii). Let m,n e N and write a~lI(n,m) = U/=i^(wc"() w* t n

n, < W/+i - 1. Let JVeN, and let LN = {/: «, - m, + 1 < JV}. (Note
that #/(m,«) = n - m + 1.)

4.3. LEMMA. Given e > 0 there exists M e N such that ifn-m+1 >

1 ^(/i/-/w/+l)<e.
n-m+l.

ieLN

Proof. Pick M > H'N/e. Since #Ljv > H',

J* (m - mi + I) < ~H'N<e. •
' nm + i

J (m mi + I) <
n-m + l *-^K ' n-m

ieLN

Now we proceed with the proof that D^(oA) = a. That is, let s > 0.
We show that there exists N so that if n — m > N then

#{aAr\I(m,n))
- a < e.

n — m + 1

Since Ds(A) = a, there exists an N' so that if n - m > N' then

(4.4) \#{A n I(m,»))/(« - m + 1) - a| < e/3H'.

By Lemma 4.3 there exists an M so that if n — m > M, then

(4.5)
r

n-m+l
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Let N = max(N', M). Since ]Cf=i «/ — m, + 1 = n — m + 1, we obtain
the following estimation:

k
#oAnl(m,n))

n - m + 1
1

n — m +

M - m + 1

E

E

•E

M — m + 1 E M/ - W/ + 1

« - m

« — m + 1

#(AnI(mhnj))

+ a

«/ - m,- + 1

«/ + m, + 1

n — m + 1

M - m + 1

< e/3 + H'e/3H' + e/3 = fi.

where (4.4) is used to estimate the first and third terms, and (4.5) for
the estimation of the second term. •

For examples of sets of natural numbers with arbitrary asymptotic
density, let us consider the circle, as [0,1] with 0 and 1 identified. If
a,b G [0,1], let [a, b] be the interval from a to b in the circle. If a < b,
the length l[a, b] = b-a, while if b < a, l[a, b] = \-a + b. Let r e R,
and let nr e [0,1] be the value of nr modulo 1. Let

J{ab] = {neN:nre[a,b]}.

4.6. PROPOSITION. Ifr is irrational, DN(JL M)
 = I[a> &]•

Proof.

# (/(m, n) n J[ab]) ^ #{k. m<k<n,kre[a, b}}
n — m + 1 n — m + 1

The fact that, as n - m tends to oo the latter expression approaches
l[a, b] is the Weyl Equidistribution Theorem when m = 1; the same
proof works for general m (see e.g. [DMc, p. 54]).
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4 . 7 . D E F I N I T I O N . L e t a e P, a,b e [ 0 , 1 ] , a n d r e R i r r a t i o n a l . L e t

when the limit exists.
The theorem of Weyl asserts that if a is the identity, nar[a, b] =

4.8. THEOREM. If a e S, nar[a, b] = l[a, b].

Proof. As in the proof of Proposition 4.6,

n

n-*oo n
= l[a, b] by Proposition 4.6.

One might well ask: What is the set of o € P such that fiar[a, b] =
l[a, b]1 For which a does jua>r extend to some measure; when is the
limit in 4.7 well defined? And if so, when is the measure continuous,
smooth, etc., with respect to the usual Lebesgue measure?
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