A LOCALIZED ERDÖS-WINTNER THEOREM

P.D.T.A. Elliott

Abstract

In this paper I show that a form of the well-known Erdös-Wintner theorem for additive arithmetic functions holds, even if the information is only given on widely separated intervals.

For $y \geq x \geq 2$ let

$$
\begin{equation*}
\nu_{x, y}(n ; f(n) \leq z) \tag{1}
\end{equation*}
$$

denote the frequency amongst the integers n in the interval $(x-y, x]$, of those for which the real additive function $f(n)$ does not exceed z.

Theorem. Let $c>1$. Let N_{j} be an increasing sequence of positive integers for which $N_{j+1} \leq N_{j}^{c}$. Let M_{j} be a further sequence of integers, $M_{j} \leq N_{j}, \log M_{j} / \log N_{j} \rightarrow 1$, as $j \rightarrow \infty$.

In order that the frequencies

$$
\begin{equation*}
\nu_{N_{j}, M_{j}}(n ; f(n) \leq z) \tag{2}
\end{equation*}
$$

converge weakly, as $j \rightarrow \infty$, it is necessary and sufficient that the three series

$$
\begin{equation*}
\sum_{|f(p)|>1} \frac{1}{p}, \sum_{|f(p)| \leq 1} \frac{f(p)}{p}, \sum_{|f(p)| \leq 1} \frac{f(p)^{2}}{p} \tag{3}
\end{equation*}
$$

converge.
When $N_{j}=j, M_{j}=j$ this is the well-known theorem of Erdös, Erdös and Wintner [5]. For $N_{j}=j$ and any M_{j} which satisfies $M_{j} / N_{j} \rightarrow 0$, together with the above condition $\log M_{j} \sim \log N_{j}$, it was proved by Hildebrand [7].

The present argument differs from theirs in many respects.
2. Preliminary results. It is convenient to introduce the Lévydistance $\rho(F, G)$ between distributions $F(z)$ and $G(z)$ on the line, defined as the greatest lower bound of those real h for which

$$
F(z-h)-h \leq G(z) \leq F(z+h)+h
$$

for all z. Convergence in the topology which this induces on the space of distribution functions, is equivalent to the usual weak-convergence of measures.

For primes $p \leq x$ let Y_{p} be independent random variables distributed according to

$$
Y_{p}=\left\{\begin{array}{l}
f\left(p^{\alpha}\right) \text { with probability } \frac{1}{p^{\alpha}}\left(1-\frac{1}{p}\right), \quad 0 \leq \alpha<\gamma_{p} \\
f\left(p^{\gamma_{p}}\right) \text { with probability } \frac{1}{p^{\gamma_{p}}}
\end{array}\right.
$$

where $\gamma_{p}=[\log x / \log p]$.
Let

$$
G_{x}(z)=P\left(\sum_{p \leq x} Y_{p} \leq z\right),
$$

and let $F_{x}(z)$ denote the frequency distribution function (1).
Lemma 1. There is a positive absolute constant c so that

$$
\rho\left(F_{x}, G_{x}\right) \leq c\left(\sum_{\substack{y^{*}<q \leq y \\|f(q)|>u}} \frac{1}{q}+\frac{u}{\varepsilon}+\exp \left(-\frac{1}{80 \varepsilon} \log \frac{1}{\varepsilon}\right)+\frac{1}{\log y}+\frac{\log \frac{x}{y}}{\log x}\right)
$$

holds uniformly for all $u>0, x \geq y \geq x^{2 / 3} \geq 3, x^{\varepsilon} \geq(\log x)^{3}$, $0<\varepsilon \leq 1$, and $f(q)$, where q denotes a prime-power.

Proof. Inequalities of this type are obtained in Elliott [1] Chapter 12, [2] Lemma 6. In the main they depend upon the application of a finite probability model constructed with the aid of Selberg's sieve method. The necessary background results can be found in Elliott [1], Chapter 3.

For an arithmetic function $g, M(g, x)$ will denote

$$
\sum_{n \leq x} g(n)
$$

For real α, g_{α} will denote the modified arithmetic function $n \mapsto$ $g(n) n^{i \alpha}$.

Lemma 2. Let g be a complex-valued multiplicative function, $|g(n)|$ ≤ 1 for positive n; and $x \geq y \geq 3$. Then

$$
M(g, x)-M(g, x-y)=\frac{M\left(g_{\alpha}, x\right)}{x} \int_{x-y}^{x} t^{-i \alpha} d t+O(y R(x, y))
$$

where α is any real number, $|\alpha| \leq x$, for which

$$
\left|M\left(g_{\alpha}, x\right)\right|=\max _{|\beta| \leq x}\left|M\left(g_{\beta}, x\right)\right|
$$

and

$$
R(x, y)=\left(\log \frac{\log 2 x}{\log 2 x / y}\right)^{-1 / 4}
$$

Proof. This is Theorem 4 of Hildebrand [7].
Lemma 3. In the notation of Lemma 2, define the Dirichlet series

$$
G(s)=\sum_{n=1}^{\infty} \frac{g(n)}{n^{s}}
$$

Then

$$
M(g, x) \ll x\left(T^{-1}+\frac{1}{\log x} \max _{|\tau| \leq T}\left|G\left(1+\frac{1}{\log x}+i \tau\right)\right|\right)^{1 / 5}
$$

uniformly in all multiplicative functions g with $|g(n)| \leq 1$, and in x, $T \geq 2$.

Proof. This result is due essentially to Halász [6], a detailed proof may be found in Elliott [1], Lemma (6.10).

Lemma 4. If

$$
\operatorname{Re} \sum_{p \leq x} p^{-1}\left(1-p^{i \lambda}\right) \ll 1
$$

for some real $\lambda,|\lambda| \leq x$, then $\lambda \ll(\log x)^{-1}$.
Proof. If $\delta=1+1 / \log x$, then the hypothesis of this lemma asserts that the Riemann-function $\zeta(s)$ satisfies

$$
\log \left|\frac{\zeta(\delta)}{\zeta(\delta+i \lambda)}\right| \ll 1
$$

uniformly in $x \geq 3$. The conclusion now follows from application of the bounds

$$
\zeta(\sigma+i t)= \begin{cases}\frac{1}{\sigma+i t-1}+O(1) & \text { if } \sigma>1,|t| \leq 2 \\ O\left((\log |t|)^{2 / 3}\right) & \text { if } \sigma>1,|t|>2\end{cases}
$$

the proofs of which may be found in Ellison and Mendès-France [4].

Lemma 5. Let the bounded function u, defined on the interval $[-1,1]$, satisfy

$$
\left|u\left(t_{1}+t_{2}\right)-u\left(t_{1}\right)-u\left(t_{2}\right)\right| \leq K
$$

whenever t_{1}, t_{2} and $t_{1}+t_{2}$ belong to the interval. Then

$$
|u(t)-u(1) t| \leq 3 K
$$

Proof. This is established in Ruzsa [9]. It extends an earlier result of Hyers [8].

Lemma 6. Suppose that for a sequence of real numbers α_{n} the limit (as $n \rightarrow \infty$) of $\exp \left(\right.$ it $\left.\alpha_{n}\right)$ exists uniformly on some open interval of real t-values including $t=0$. Then $\lim \alpha_{n}$ exists (finitely).

Proof. (Cf. Elliott and Ryavec [3].) Since $\left(e^{i t \alpha_{n}}\right)^{2}=\exp \left(i 2 t \alpha_{n}\right)$, we see that the hypothesis holds on every bounded set of t-values. Here $\exp \left(i t \alpha_{n}\right)$ is the characteristic function of the improper distribution function $H_{n}(z)$ which has a jump at the point α_{n}. It follows from a standard theorem in the theory of probability that the $H_{n}(z)$ converge weakly to a distribution function $J(z)$, say.

It is now not difficult to deduce that the α_{n} are bounded uniformly for all n, that $J(z)$ is itself improper, with a jump at β, say; and that $\alpha_{n} \rightarrow \beta$ as $n \rightarrow \infty$.

Lemma 7. Let $P_{j}(x)$ be polynomials in x with complex coefficients, and d_{j} distinct real numbers, $j=1, \ldots, k$. If

$$
\theta(t)=\sum_{j=1}^{k} P_{j}(t) e^{i d_{j} t}=0
$$

on a proper interval of real t-values, then the polynomials are identically zero.

Proof. Without loss of generality $0=d_{1}>d_{2}>\cdots>d_{k}$. As a function of the complex-variable $t, \theta(t)$ is everywhere analytic. After the hypothesis, analytic continuation shows that $\theta(t)$ is identically zero. We set $t=-i y$ for real y, and consider

$$
\lim _{y \rightarrow \infty} y^{-m} \theta(-i y)
$$

where m is the degree of P_{1}.
The terms $P_{j}(-i y) \exp \left(d_{j} y\right)$ with $j \geq 2$ converge exponentially to zero, whilst $y^{-m} P_{1}(-i y)$ approaches $(-i)^{m}$ times the coefficient of x^{m}
in P_{1}. Since the value of this limit is zero, $P_{1}(x)$ is identically zero. An argument by induction completes the proof of the lemma.
3. Proof of the theorem: (3) implies (2). Define independent random variables Z_{p} by

$$
Z_{p}= \begin{cases}Y_{p} & \text { if } Y=f(p) \\ 0 & \text { otherwise }\end{cases}
$$

The convergence of the three series at (3) is precisely Kolmogorov's condition that the series $Z_{2}+Z_{3}+\cdots$ be almost surely convergent. Moreover,

$$
\sum_{p} P\left(Z_{p} \neq Y_{p}\right) \leq \sum_{p} \sum_{m=2}^{\infty} \frac{1}{p^{m}}<\infty,
$$

so that by the Borel-Cantelli lemma, $Y_{2}+Y_{3}+\cdots$ is also almost surely convergent. This is equivalent to the weak convergence of the distribution functions $G_{x}(z)$ appearing in Lemma 1. The relevant background results from the theory of probability may be found in Elliott [1], Lemma (1.18).

We apply Lemma 1 with $x=N_{j}, y=M_{j}$. Since the series $\sum p^{-1}$ taken over those primes p for which $|f(p)|>u$ converges for each positive u,

$$
\underset{j \rightarrow \infty}{\limsup } \rho\left(F_{N_{j}}, G_{N_{j}}\right) \leq c\left(\frac{u}{\varepsilon}+\exp \left(-\frac{1}{80 \varepsilon} \log \frac{1}{\varepsilon}\right)\right)
$$

for all $u>0,0<\varepsilon<1$. Letting $u \rightarrow 0+, \varepsilon \rightarrow 0+$ we obtain the weak convergence of the frequencies (2).

In this direction no restriction upon the rate of growth of the N_{j} need be assumed.
4. Proof of the theorem: (2) implies (3). The characteristic function of a typical frequency (2) is given by

$$
\phi_{j}(t)=M_{j}^{-1} \sum_{N_{j}-M,<n \leq N_{j}} g(n),
$$

where $g(n)=\exp (\operatorname{itf}(n))$ is a multiplicative function, and t is real. If the frequencies (2) converge weakly to a distribution function with characteristic function $\phi(t)$, then by a standard result in the theory of probability, $\phi_{j}(t) \rightarrow \phi(t)$ as $j \rightarrow \infty$, uniformly on any bounded interval of t-values.

If we temporarily use x, y to denote N_{j}, M_{j} respectively, then it follows from Lemma 2 that

$$
\begin{equation*}
\phi(t)=x^{-1} M\left(g_{\alpha}, x\right) y^{-1} \int_{x-y}^{x} v^{-i \alpha} d v+o(1), \quad x \rightarrow \infty \tag{4}
\end{equation*}
$$

for some real $\alpha,|\alpha| \leq x$. Since $\phi(t)$ is continuous in t, and $\phi(0)=1$, there is a proper interval $|t| \leq \tau$, on which $|\phi(t)| \geq 1 / 2$. On this same interval $\left|M\left(g_{\alpha}, x\right)\right| \geq x / 4$ for all sufficiently large $x\left(=N_{j}\right)$. The parameter α may depend upon both t and x.

Applying Lemma 3 with $T=\log x$ gives

$$
M\left(g_{\alpha}, x\right) \ll x \exp \left(-\frac{1}{5} \operatorname{Re} \sum_{p \leq x} \frac{1-g(p) p^{i \psi}}{p}\right)+x(\log x)^{-1 / 5}
$$

for some real $\psi,|\psi(x)-\alpha| \leq \log x$. Thus $|\psi(x)| \leq x+\log x$. In view of the lower bound for $\left|M\left(g_{\alpha}, x\right)\right|$

$$
\operatorname{Re} \sum_{p \leq x} \frac{1-g(p) p^{i \psi}}{p} \ll 1
$$

We first show that $\psi=\psi(t)$ is essentially linear in t.
Let

$$
S(f)=\sum_{p \leq x} p^{-1}\left(\operatorname{Sin} \frac{f(p)}{2}\right)^{2}
$$

Then since $|\operatorname{Sin}(a+b)| \leq|\operatorname{Sin} a|+|\operatorname{Sin} b|$,

$$
\begin{equation*}
S\left(f_{1}+f_{2}\right) \leq 2\left(S\left(f_{1}\right)+S\left(f_{2}\right)\right) \tag{5}
\end{equation*}
$$

With $g(p)=\exp (i t f(p))$,

$$
\begin{aligned}
\operatorname{Re}\left(1-g(p) p^{i \psi}\right) & =\operatorname{Re}(1-\exp (i(t f(p)+\psi(t) \log p))) \\
& =2\left(\operatorname{Sin} \frac{1}{2}(t f(p)+\psi(t) \log p)\right)^{2}
\end{aligned}
$$

so that

$$
S(t f+\psi(t) \log) \ll 1
$$

uniformly for $|t| \leq \tau$.
In view of the inequality (5), whenever $\left|t_{j}\right| \leq \tau, j=1,2,\left|t_{1}+t_{2}\right| \leq \tau$,

$$
S\left(\left(\psi\left(t_{1}+t_{2}\right)-\psi\left(t_{1}\right)-\psi\left(t_{2}\right)\right) \log \right) \ll 1
$$

so that by Lemma 4

$$
\psi\left(t_{1}+t_{2}\right)-\psi\left(t_{1}\right)-\psi\left(t_{2}\right) \ll(\log x)^{-1}
$$

We can now apply Lemma 5, to deduce that

$$
\psi(t)=t \psi(\tau) / \tau+O\left((\log x)^{-1}\right)
$$

Then

$$
\sum_{p \leq x} \frac{1}{p}\left|p^{i \psi(t)}-p^{i t \psi(\tau) / \tau}\right| \leq|\psi(t)-t \psi(\tau) / \tau| \sum_{p \leq x} \frac{\log p}{p} \ll 1
$$

uniformly for $|t| \leq \tau$. Thus

$$
\begin{equation*}
S(t(f-\omega(x) \log)) \ll 1 \tag{6}
\end{equation*}
$$

holds, uniformly for $|t| \leq \tau$, for some function $\omega(x)$ of x alone.
Up until this point the proof has followed Elliott [2]. The relative sizes of the N_{j} now comes into play.
For all sufficiently large integers j, the interval ($2^{c^{j}}, 2^{c^{+1}}$] contains at least one member, r_{j} say, of the sequence of N_{i}. Since $r_{j+2} \geq r_{j}^{c}$, by induction

$$
\begin{equation*}
\frac{\log r_{m}}{\log r_{n}} \geq(\sqrt{c})^{m-n-1} \tag{7}
\end{equation*}
$$

for all $m \geq n \geq$ (some fixed) n_{0}.
From their definition $r_{m+1} \leq r_{m}^{c^{2}}$. By an elementary estimate from number theory

$$
\sum_{r_{m}<p \leq r_{m+1}} \frac{1}{p}=\log \left(\frac{\log r_{m+1}}{\log r_{m}}\right)+O\left(\left(\log r_{m}\right)^{-1}\right) \ll 1
$$

so that

$$
\operatorname{Re} \sum_{p \leq r_{m}} \frac{1}{p}\left(1-g(p) p^{i t \omega}\right) \ll 1
$$

holds for both $\omega=\omega\left(r_{m}\right)$, and $\omega=\omega\left(r_{m+1}\right)$. Another application of Lemma 4 yields

$$
\left|\omega\left(r_{m+1}\right)-\omega\left(r_{m}\right)\right| \leq \frac{D}{\log r_{m}}
$$

for some D and all positive m.
Employing our lower bound (7), an argument by induction shows that

$$
\begin{equation*}
\left|\omega\left(r_{m}\right)-\omega\left(r_{n}\right)\right| \leq \frac{2 D}{\log r_{n}} \sum_{n<k \leq m} c^{-(k-n-1) / 2} \tag{8}
\end{equation*}
$$

uniformly for $m \geq n \geq n_{0}$. In particular the $\omega\left(r_{m}\right)$ form a Cauchy sequence, and converge to a limit, A say. Letting $m \rightarrow \infty$ in (8) gives

$$
\omega\left(r_{n}\right)-A \ll\left(\log r_{n}\right)^{-1}
$$

for $n \geq n_{0}$.

Since every large enough N_{j} lies in an interval $\left(r_{m}, r_{m+1}\right)$,

$$
\omega\left(N_{j}\right)-A \ll\left(\log N_{j}\right)^{-1}
$$

for all j. In the way that we replaced $\psi(t)$ by $t \psi(\tau) / \tau$ we replace $\omega\left(N_{j}\right)$ by A, to obtain

$$
S(t(f-A \log)) \ll 1
$$

uniformly for $|t| \leq \tau$, for all sufficiently large (underlying) N_{j}.
Again we argue as in Elliott [2]. Let d denote $\pi /|\tau|$. The inequality $|\operatorname{Sin} \theta| \geq 2|\theta| / \pi$ holds for $|\theta| \leq \pi / 2$. With $h(p)=f(p)-A \log p$, $x=N_{j}$, we deduce that

$$
\frac{\tau^{2}}{\pi^{2}} \sum_{\substack{p \leq x \\|h(p)| \leq d}} \frac{|h(p)|^{2}}{p} \leq S(\tau h) \ll 1 .
$$

Moreover,

$$
\begin{aligned}
\left(1-\frac{1}{\pi}\right) \sum_{\substack{p \leq x \\
|h(p)|>d}} \frac{1}{p} & \leq \sum_{p \leq x} \frac{1}{p}\left(1-\frac{\operatorname{Sin} \tau h(p)}{\tau h(p)}\right) \\
& =\frac{1}{2 \tau} \int_{-\tau}^{\tau} S(t h) d t \ll 1 .
\end{aligned}
$$

Together these inequalities imply the convergence of the series

$$
\begin{equation*}
\sum_{|h(p)|>u} \frac{1}{p}, \sum_{|h(p)| \leq u} \frac{h(p)^{2}}{p} \tag{9}
\end{equation*}
$$

for each positive u. We shall use this to estimate $M\left(g_{\alpha}, x\right)$ for all large x, whether of the form N_{j} or not.

Let

$$
\mu(x)=\sum_{\substack{p \leq x \\ h(p) \mid \leq 1}} \frac{h(p)}{p} .
$$

If $x^{1 / 2} \leq w \leq x, u>0$,

$$
\begin{aligned}
|\mu(x)-\mu(w)| & \leq \sum_{\substack{w<p \leq x \\
|h(p)|>u}} \frac{1}{p}+u \sum_{\substack{w<p \leq x \\
|h(p)| \leq u}} \frac{1}{p} \\
& =o(1)+O\left(u \log \left(\frac{\log x}{\frac{1}{2} \log x}\right)\right)
\end{aligned}
$$

as $x \rightarrow \infty$. Since u may be chosen arbitrarily small, $\mu(x)-\mu(w) \rightarrow 0$ as $x \rightarrow \infty$, uniformly for $x^{1 / 2} \leq w \leq x$.

In the same way that the convergence of the three series (3) implies the weak convergence of the distribution functions $G_{x}(z)$, the convergence of the two series at (9) implies the weak convergence of

$$
P\left(\sum_{p \leq x} Z_{p}-\mu(x) \leq z\right)
$$

where the random variables Z_{p} are defined like the Y_{p}, but with $f\left(p^{\alpha}\right)$ everywhere replaced by $f\left(p^{\alpha}\right)-A \log p^{\alpha}$.

Another application of Lemma 1 , this time with $y=x$, and to the function $f(n)-A \log n$, shows that

$$
\nu_{x, x}(n ; f(n)-A \log n-\mu(x) \leq z) \Rightarrow H(z), \quad x \rightarrow \infty
$$

for some distribution function $H(z)$. If $h(t)$ is the characteristic function of $H(z)$, we can express this last assertion in the form of the asymptotic estimate:

$$
x^{-1} M\left(g_{-A}, x\right) e^{-i t \mu(x)} \rightarrow h(t), \quad x \rightarrow \infty
$$

uniformly on every bounded set of t-values.
An integration by parts shows that
$M\left(g_{\alpha}, x\right)=x^{i(\alpha+A t)} M\left(g_{-A}, x\right)-i(\alpha+A t) \int_{1-}^{x} v^{i(\alpha+A t)-1} M\left(g_{-A}, v\right) d v$.
The integral term is small. In fact, from our hypothesis (4) (with $x=N_{j}$,

$$
\operatorname{Re} \sum_{p \leq x} p^{-1}\left(1-g(p) p^{i \alpha}\right) \ll 1
$$

and we have shown that a similar relation holds with α replaced by $-A t$. Arguing with the function S (as earlier), we see that $\alpha+A t \ll$ $(\log x)^{-1}, x=N_{j}$. Thus as $x\left(=N_{j}\right) \rightarrow \infty$,

$$
M\left(g_{\alpha}, x\right)=x h(t) \exp (i(\alpha+A t) \log x+i t \mu(x))+o(x)
$$

Combining this result with that of (4),

$$
\begin{equation*}
e^{i t(\mu(x)+A \log x)}\left(\frac{1-(1-y / x)^{1-i \alpha}}{(1-i \alpha) y / x}\right) \rightarrow \frac{\phi(t)}{h(t)}, \quad x \rightarrow \infty \tag{10}
\end{equation*}
$$

uniformly on a proper interval $|t| \leq t_{0}$. Here $x=N_{j}, y=M_{j}$.

Suppose now that for a sequence of j-values, $M_{j} / N_{j} \rightarrow \rho$. Then for this sequence of values the coefficient of the exponential at (10) converges to

$$
\rho^{-1}\left(1-(1-\rho)^{1+i A t}\right) \text { if } \rho \neq 0 ; \quad 1+i A t \text { if } \rho=0
$$

This convergence is uniform on some bounded interval of t-values which includes $t=0$. Here we have again applied the estimate $\alpha+$ $A t \ll(\log x)^{-1}$. It follows from this and an application of Lemma 6 , that on this same sequence of j-values, $\beta(\rho)=\lim (\mu(x)+A \log x)$ exists. Moreover, for all sufficiently small t,

$$
e^{i t \beta(\rho)} \rho^{-1}\left(1-(1-\rho)^{1+i A t}\right)=\phi(t) h(t)^{-1}
$$

if $\rho>0$, with a similar (modified) relation if $\rho=0$.
We next show that the value of $\beta(\rho)$ does not depend upon ρ.
Assume that for an interval of real t-values

$$
\begin{equation*}
\rho_{1}^{-1} e^{i t \beta_{1}}\left(1-\left(1-\rho_{1}\right)^{1+i A t}\right)=\rho_{2}^{-1} e^{i t \beta_{2}}\left(1-\left(1-\rho_{2}\right)^{1+i A t}\right) \tag{11}
\end{equation*}
$$

where each ρ_{j} is positive and <1. Suppose that $\beta_{1} \neq \beta_{2}$. Then $A \neq 0$, and the coefficient of $e^{i t \beta_{2}}$ on the right-hand side is ρ_{2}^{-1}. It follows from Lemma 7 that

$$
\beta_{2}=\beta_{1}+A \log \left(1-\rho_{1}\right), \quad \beta_{1}=\beta_{2}+A \log \left(1-\rho_{2}\right)
$$

which is impossible. A similar argument may be made when the restrictions upon the values of ρ_{1}, ρ_{2} are removed.

We have now proved that

$$
\lim _{j \rightarrow \infty}\left(\mu\left(N_{j}\right)-A \log N_{j}\right)
$$

exists, the variable j running through all positive integers. By an elementary estimate

$$
\left|\mu\left(N_{j}\right)\right| \leq \sum_{p \leq N_{j}} \frac{1}{p} \ll \log \log N_{j},
$$

so that $A \log N_{j} \ll \log \log N_{J}$ for all j, and $A=0$. A look back at (11) shows that $A=0$ removes the possibility of comparing the values of ρ_{1} and ρ_{2}.

Thus the series

$$
\sum_{|f(p)|>1} \frac{1}{p}, \quad \sum_{|f(p)| \leq 1} \frac{f(p)^{2}}{p}
$$

converge, and

$$
\lim _{j \rightarrow \infty} \sum_{\substack{p \leq N_{j} \\ \mid f(p) \leq 1}} \frac{f(p)}{p}
$$

exists. Since every sufficiently large real w lies in an interval (N_{j}, N_{j+1}], and (now with $A=0$) $\mu\left(N_{j+1}\right)-\mu(w) \rightarrow 0$ as $j \rightarrow \infty$, uniformly for $N_{j}<w \leq N_{j+1}$, the series

$$
\sum_{|f(p)| \leq 1} \frac{f(p)}{p}
$$

also converges.
The proof of the theorem is complete.

References

[1] P.D.T.A. Elliott, Probabilistic Number Theory, Grund. der math. Wiss., 239 (1979), 240 (1980), Springer-Verlag, New York, Heidelberg, Berlin.
[2] , Localised value-distribution of additive arithmetic functions, J. für die reine und ang. Math., 379 (1987), 64-75.
[3] P.D.T.A. Elliott and C. Ryavec, The distribution of the values of additive arithmetical functions, Acta Math., 126 (1971), 143-164.
[4] W. J. Ellison and M. Mendès-France, Les Nombres Premiers, Hermann, Paris, 1975.
[5] P. Erdös and A. Wintner, Additive arithmetical functions and statistical independence, Amer. J. Math., 61 (1939), 713-721.
[6] G. Halász, On the distribution of additive arithmetic functions, Acta Arith., 27 (1975), 143-152.
[7] A. Hildebrand, Multiplicative functions in short intervals, Canad. J. Math., 39 (1987), 646-672.
[8] D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 222-224.
[9] I. Z. Ruzsa, On the concentration of additive functions, Acta Math. Acad. Sci. Hungar., 36 (1980), 215-232.

Received May 22, 1986 and in revised form March 15, 1988. Partially supported by N.S.F. contract DMS-8500949.

University of Colorado
Boulder, CO 80309

