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A LOCALIZED ERDOS-WINTNER THEOREM

P.D.T.A. ELLIOTT

In this paper I show that a form of the well-known Erdds-Wintner
theorem for additive arithmetic functions holds, even if the informa-
tion is only given on widely separated intervals.

For y > x > 2 let

(1) vx,y{n\f{n)<z)

denote the frequency amongst the integers n in the interval {x — y, x],
of those for which the real additive function / ( « ) does not exceed z.

THEOREM. Let c > 1. Let Nj be an increasing sequence of positive
integers for which Nj+i < Nj. Let Mj be a further sequence of integers,
Mj < Nj, logMj/log Nj —• 1, as j —• oo.

In order that the frequencies

(2) Z^.M,(«;/(«) <z)

converge weakly, as j —>• oo, it is necessary and sufficient that the three
series

(%\
p p ' 2^ p

\/(p)\>i \f(p)\<i \f(p)\<i
converge.

When Nj = j , Mj = j this is the well-known theorem of Erdos,
Erdos and Wintner [5]. For Nj = j and any Mj which satisfies
MjjNj —• 0, together with the above condition logA/7 ~ logiV), it
was proved by Hildebrand [7].

The present argument differs from theirs in many respects.

2. Preliminary results. It is convenient to introduce the Levy-
distance p(F, G) between distributions F(z) and G(z) on the line,
defined as the greatest lower bound of those real h for which

F(z-h)-h< G(z) <F(z + h) + h
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for all z. Convergence in the topology which this induces on the space
of distribution functions, is equivalent to the usual weak-convergence
of measures.

For primes p < x let Yp be independent random variables dis-
tributed according to

{ f{pa) with probability — ( 1 ) , 0<a<yp,
Pa V P )

1
f{py") with probability ——

p/p

where yp = [logx/ logp].
Let

and let Fx(z) denote the frequency distribution function (1).

LEMMA 1. There is a positive absolute constant c so that

\ u ( 1 , 1\ 1
p{Fx,Gx)<c y1 U ( 1 , 1

- + - + e x p - — - l o g - ) + +
a e V 80e el logy logx

ye<q<y
\\f(Q)\>u J

holds uniformly for all u > 0, x > y > x2/3 > 3, xe > (logx)3,
0 < e < I, and f{q), where q denotes a prime-power.

Proof. Inequalities of this type are obtained in Elliott [1] Chapter
12, [2] Lemma 6. In the main they depend upon the application of
a finite probability model constructed with the aid of Selberg's sieve
method. The necessary background results can be found in Elliott [1],
Chapter 3.

For an arithmetic function g, M(g,x) will denote

n<x

For real a, ga will denote the modified arithmetic function n >-•
g{n)nia.

LEMMA 2. Let g be a complex-valued multiplicative function, \g(n)\
< 1 for positive n; and x > y > 3. Then

M(g, x) - M(g, x-y) = M(ga'x) f ria dt + O(yR(x, y))
X J x—y
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where a is any real number, \a\ < x, for which

\M{ga, x)\ = max \M{gp, x)\

and
Iog2x V I / 4

R(x, y) = log
\og2x/y )

Proof. This is Theorem 4 of Hildebrand [7].

LEMMA 3. In the notation of Lemma 2, define the Dirichlet series

Sin)

1/5

ns

Then

M{g, x) < x [T~l + max
1 log* |T|<r

G11

uniformly in all multiplicative functions g with \g{n)\ < 1, and in x,
T>2.

Proof. This result is due essentially to Halasz [6], a detailed proof
may be found in Elliott [1], Lemma (6.10).

LEMMA 4. If

p<x

for some real X, \X\ < x, then X < (log*)""1.

Proof If <J = 1 + 1/logx, then the hypothesis of this lemma asserts
that the Riemann-function £(s) satisfies

log

uniformly in x > 3. The conclusion now follows from application of
the bounds

0((log|f|)2/3) i f (7> l , | f |>2 ,

the proofs of which may be found in Ellison and Mendes-France [4].
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LEMMA 5. Let the bounded function u, defined on the interval [-1,1],
satisfy

\u(t{ + t2) - u(t{) - u(t2)\ < K

whenever t\,t2 and t\+t2 belong to the interval. Then

\u(t)-u(l)t\<3K.

Proof. This is established in Ruzsa [9]. It extends an earlier result
of Hyers [8].

LEMMA 6. Suppose that for a sequence of real numbers an the limit
(as n —> oo) ofexp(itan) exists uniformly on some open interval of real
t-values including t = 0. Then lim an exists (finitely).

Proof. (Cf. Elliott and Ryavec [3].) Since (eita»)2 = exp(i2tan), we
see that the hypothesis holds on every bounded set of /-values. Here
exp(itan) is the characteristic function of the improper distribution
function Hn(z) which has a jump at the point an. It follows from a
standard theorem in the theory of probability that the Hn(z) converge
weakly to a distribution function J(z), say.

It is now not difficult to deduce that the an are bounded uniformly
for all n, that J(z) is itself improper, with a jump at /?, say; and that
an —> P a s n —• oo.

LEMMA 7. Let Pj(x) be polynomials in x with complex coefficients,
anddj distinct real numbers, j = 1,... ,k. If

7=1

on a proper interval of real t-values, then the polynomials are identically
zero.

Proof. Without loss of generality 0 = d\ > d2 > • • • > dk. As a func-
tion of the complex-variable t, 6(t) is everywhere analytic. After the
hypothesis, analytic continuation shows that 6(t) is identically zero.
We set t = —iy for real y, and consider

lim y~m6(-iy)
y—H3o

where m is the degree of P\.
The terms Pj(-iy)exp(dj-y) with j > 2 converge exponentially to

zero, whilst y~mP\(-iy) approaches (—i)m times the coefficient of xm
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in P\. Since the value of this limit is zero, P\ (x) is identically zero.
An argument by induction completes the proof of the lemma.

3. Proof of the theorem: (3) implies (2). Define independent random
variables Zp by

YP if Y = f(p),
z =

p \ 0 otherwise.
The convergence of the three series at (3) is precisely Kolmogorov's
condition that the series Zi + Z3 + • • • be almost surely convergent.
Moreover,

p P m=2 y

so that by the Borel-Cantelli lemma, Y2 + Y$ -\— is also almost surely
convergent. This is equivalent to the weak convergence of the distri-
bution functions Gx(z) appearing in Lemma 1. The relevant back-
ground results from the theory of probability may be found in Elliott
[1], Lemma (1.18).

We apply Lemma 1 with x = Nj, y = Mj. Since the series YlP~X

taken over those primes p for which \f(p)\ > u converges for each
positive u,

Nj,GNj) < c 0 + exp ( -

for all u > 0, 0 < e < 1. Letting u —• 0+, e —»• 0+ we obtain the weak
convergence of the frequencies (2).

In this direction no restriction upon the rate of growth of the iV,
need be assumed.

4. Proof of the theorem: (2) implies (3). The characteristic function
of a typical frequency (2) is given by

where g{n) = exp(itf(n)) is a multiplicative function, and t is real.
If the frequencies (2) converge weakly to a distribution function with
characteristic function <j>(t), then by a standard result in the theory
of probability, <j)j{t) —> 4>{t) as j —• 00, uniformly on any bounded
interval of /-values.

If we temporarily use x, y to denote Nj, Mj respectively, then it
follows from Lemma 2 that

(4) <f>(t)=x-1M(ga,x)y-1 f v'iadv + o(l), x -> 00,
Jx-y
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for some real a, \a\ < x. Since (f)(t) is continuous in t, and <f)(0) = 1,
there is a proper interval \t\ < r, on which |<?!>(0l - 1/2. On this
same interval \M(ga,x)\ > x/4 for all sufficiently large x (= Nj). The
parameter a may depend upon both t and x.

Applying Lemma 3 with T = log* gives

M(ga,x)«xexp | ~^T/~^)P 1 +x(logx)-1/5

for some real ^, \y/{x) -a\< logx. Thus |^(JC)| < x + logjc. In view
of the lower bound for \M(ga, x)\

We first show that ^ = y/(t) is essentially linear in t.
Let

Then since |Sin(a + ̂ ) | < |Sina| + |SinZ>|,

(5) S(fx+f2)<2{S{f,) +

With g(p) = exp(itf(p)),

Re(l - g{p)piv) = Re(l - cxp(i(tf(p) + yr(t)logp)))

so that
S(tf+ y/(t) log) ̂  I

uniformly for \t\ < x.

In view of the inequality (5), whenever \tj\ <x,j = l,2, \t\ +t2\ < T,

S({y{ti +12) - \i/{tx) - y/{t2))\o%) < l,

so that by Lemma 4

V(h + h) - '

We can now apply Lemma 5, to deduce that

y/(t) =



LOCAL ERDOS-WINTNER 293

Then

piWh\ < \¥{t) - ty/(x)lx\ J2
p<x P p<x P

uniformly for \t\ < T. Thus

(6) S(t(f-co(x)log))<l

holds, uniformly for |/| < T, for some function co(x) of x alone.
Up until this point the proof has followed Elliott [2]. The relative

sizes of the Nj now comes into play.
For all sufficiently large integers j , the interval (2cJ ,2cJ+l] contains

at least one member, r7 say, of the sequence of JV,-. Since rj+2 > rc-,
by induction

for all m > n > (some fixed) HQ.
From their definition rm+i < r£. By an elementary estimate from

number theory

so that

p
rm<p<rm+,

P<rm
 P

holds for both co = co(rm), and co — oi{rm+{). Another application of
Lemma 4 yields

- co(rm)\ <

for some D and all positive m.
Employing our lower bound (7), an argument by induction shows

that

(8) \co{rm) - co{rn)\ < ^
n n<k<m

uniformly for m > n > HQ. In particular the w{rm) form a Cauchy
sequence, and converge to a limit, A say. Letting m —• oo in (8) gives

for n >
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Since every large enough Nj lies in an interval (rm, rm+\],

co(Nj) - A < (logNj)~l

for all j . In the way that we replaced i//(t) by ty/(x)/x we replace
co(Nj) by A, to obtain

S(t(f-A\of>))<l

uniformly for |/| < T, for all sufficiently large (underlying) Nj.
Again we argue as in Elliott [2]. Let d denote nj\x\. The inequality

|Sin0| > 2\B\l% holds for \6\ < n/2. With h{p) = f(p) - Alogp,
x = Nj, we deduce that

4
p<x

\h(p)\<d

Moreover,

p<X p<X
\h(p)\>d

Together these inequalities imply the convergence of the series

\h(p)\>uy \h(p)\<u

for each positive u. We shall use this to estimate M(ga,x) for all large
x, whether of the form Nj or not.

Let

p<x
|A(P)I<1

If JC1/2 < to < x, u > 0,

|ju(x) - fi(w)\ <

\h{p)\>u \h{p)\<u

P ^ P
w<p<x w<p<x

\
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as x —• oo. Since u may be chosen arbitrarily small, n(x) - (i{w) —> 0
as x —• oo, uniformly for JC1/2 < w < x.

In the same way that the convergence of the three series (3) im-
plies the weak convergence of the distribution functions Gx(z), the
convergence of the two series at (9) implies the weak convergence of

P<X

where the random variables Zp are denned like the Yp, but with f(pa)
everywhere replaced by f(pa) — A logpa.

Another application of Lemma 1, this time with y = x, and to the
function f(n) - Alogn, shows that

vx,x(n;f(n) - Alogn - n(x) < z) =>• H(z), x -+ oo,

for some distribution function H(z). If h{t) is the characteristic func-
tion of H(z), we can express this last assertion in the form of the
asymptotic estimate:

x-lM(g_A,x)e~itftM ^h(t), x^oo ,

uniformly on every bounded set of ̂ -values.
An integration by parts shows that

= xi{a+At^M{g_A,x)-i{a + At) f v^a

The integral term is small. In fact, from our hypothesis (4) (with
x = Nj),

p<x

and we have shown that a similar relation holds with a replaced by
-At. Arguing with the function S (as earlier), we see that a + At <
(logx)"1, x = Nj. Thus as x {= Nj) -> oo,

M{ga, x) = xh{t) exp(/(a + At) logx + itju(x)) + o{x).

Combining this result with that of (4),

( 1 — (\ — -\>/y-\l-'a\ sh(t\

(\-ia)y/x J h(t)' X °°'
uniformly on a proper interval \t\ < to. Here x = Nj, y = Mj.
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Suppose now that for a sequence of 7-values, Mj/Nj —> p. Then
for this sequence of values the coefficient of the exponential at (10)
converges to

p~\\ - ( 1 - p)l+iAt) if p^O; 1 + iAtif p = 0.

This convergence is uniform on some bounded interval of /-values
which includes t = 0. Here we have again applied the estimate a +
At < (log*)"1. It follows from this and an application of Lemma
6, that on this same sequence of ./-values, fi(p) = lim(Ju(x) + A log JC)
exists. Moreover, for all sufficiently small t,

if p > 0, with a similar (modified) relation if p = 0.
We next show that the value of /?(/>) does not depend upon p.
Assume that for an interval of real /-values

(11) pileitfil(l - (1 - pi)l+iAt) = ^ V ' * ( l - (1 - p2)
i+iAt),

where each pj is positive and < 1. Suppose that ji\ / fa- Then A^Q,
and the coefficient of e"^2 on the right-hand side is p-T1. It follows
from Lemma 7 that

which is impossible. A similar argument may be made when the re-
strictions upon the values of p\, pi are removed.

We have now proved that

exists, the variable j running through all positive integers. By an ele-
mentary estimate

so that A log Nj <C log log Nj for all j , and A = 0. A look back at (11)
shows that A = 0 removes the possibility of comparing the values of
px and p2.

Thus the series
1 y- £{£?
p' ^
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converge, and

Mm

exists. Since every sufficiently large real w lies in an interval (Nj, Nj+i],
and (now with A — 0) /i(Nj+i) - fi(w) —• 0 as j —* oo, uniformly for
Nj <w < Nj+i, the series

/(£)

also converges.
The proof of the theorem is complete.
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