SPECTRUM AND MULTIPLICITIES FOR RESTRICTIONS OF UNITARY REPRESENTATIONS IN NILPOTENT LIE GROUPS

LAWRENCE CORWIN AND FREDERICK P. GREENLEAF

Let G be a connected, simply connected nilpotent Lie group, and let AT be a Lie subgroup. We consider the following question: for $n<G G^{A}$, how does one decompose $U \backslash K$ as a direct integral? In his pioneering paper on representations of nilpotent Lie groups, Kirillov gave a qualitative description; our answer here gives the multiplicities of the representations appearing in the direct integral, but is geometric in nature and very much in the spirit of the Kirillov orbit picture.

1. The problem considered here is the dual of the one investigated by us and G. Grelaud in [2]: give a formula for the direct integral decomposition of $\operatorname{Ind}^{\wedge} o, a € K^{A}$. The answer, too, can be regarded as the dual of the answer in [2]. Let g, t be the Lie algebras of G, K respectively, and let g^{*}, t^{*} be the respective (vector space) duals; $P: g^{*}$ - 6^{*} denotes the natural projection. Given $n \hat{€} G$, we want to write

$$
n \backslash_{K c \pm} \stackrel{r e}{I} \quad n\{a) o d v(o)
$$

we need to describe $n\{o)$ and v. To this end, we review some aspects of Kirillov theory. In [7], Pukanszky showed that V can be partitioned into "layers" U_{e}, each $\mathrm{Ad}^{*}(\mathrm{AT})$-stable, such that on U_{e} the $A d^{*}(K)$ orbits are parametrized by a Zariski-open subset $\sim L_{e}$ of an algebraic variety. (See also $\S 2$ of [2].) We can thus parametrize \hat{K} by the union of the $*^{*} L_{e}$ Let @ $n c g^{*}$ be the Kirillov orbit corresponding to n. There is a unique e such that $\left\langle f_{n} n P \sim^{l}\left(U_{e}\right)\right.$ is Zariski-open in $<? n$. Let $£^{*} \mathrm{C} \mathrm{S}_{\mathrm{e}}$ be the set of $/$ e $T_{\cdot e}$ such that $P\left(@_{n}\right)$ meets $K \cdot I^{\prime}$. It turns out that 27 is a finite disjoint union of manifolds. Let k^{*} be the maximal dimension of these manifolds; define v to be A :*-dimensional measure on the manifolds of maximum dimension and 0 elsewhere. Then we will have

$$
\left.\pi\right|_{K} \simeq \int_{\Sigma^{\pi}}^{\oplus} n\left(l^{\prime}\right) \sigma_{l^{\prime}} d \nu\left(l^{\prime}\right)
$$

where a> corresponds to /' G 27 via the Kirillov orbit picture.

It remains to describe $<\left(l^{\prime}\right) \cdot$ For $/ e @_{n \text {, define }}$

$$
\mathrm{T}_{\mathrm{O}}(/)=\operatorname{dim}(\mathrm{G}-/)+\operatorname{dim}\left(\mathrm{A}^{\prime \prime} \cdot P I\right)-26 i m(K \cdot I),
$$

where the action of G, K is the coadjoint action (so that $G l=\left(f_{K}\right.$ and $K \cdot P I$ is the Kirillov orbit in V corresponding to $P i$). This number is a constant, To, on a Zariski-open subset of $@_{\% \text {, }}$, and we have

$$
/!\left(/^{\prime}\right)=00, \quad \text { v-a.e. } I^{\prime} e 27, \quad \text { if } \mathrm{T}_{0}>0 .
$$

When $\mathrm{To}=0$, we have

$$
«\left(l^{\prime}\right)=\text { number of } \mathrm{Ad}^{*}(\#) \text {-orbits in } P_{\sim} \chi\left(K \cdot l^{\prime}\right) n<? n \text {; }
$$

moreover, this number is uniformly bounded a.e. on 27. This is the essential content of our Theorems 4.6 and 4.8. In fact, we note, in Remark 4.7 that To >0 whenever the number of AT-orbits in $P \sim \sim^{\prime}\left(l^{\prime}\right) \mathrm{n}$ $<f_{n}$ is generically infinite.

It may be helpful to consider the simplest example of the theorems, where K is of codimension 1 in G. This situation was investigated in [4]. For $/ € @_{n}$, let $\mathrm{t} /$ be the radical of $/$. There are two cases to consider. If $t / \wedge t$, then P is a diffeomorphism of $<$?,, onto $K \cdot P L C V$, and ($f_{n}=K-1$; furthermore, $7 \Lambda K$ is irreducible, $n \backslash x=o_{P} I$. Thus 27 reduces to a single point (corresponding to $0>/$), and, for l^{\prime} e $P(<? *)$, $P \sim l\left(K-l^{\prime}\right) n \dot{ぬ}_{n}=\&_{n}$, so that $n\left(l^{\prime}\right)=1$. It is easy to see that $\mathrm{T}_{\mathrm{O}}(/)=0$, and that Theorem 4.8 says that $7 \Lambda K \cong Q$, (where $/ € € 2^{71}$ corresponds to $K \cdot P I)$. If $\mathrm{t}, \mathrm{C} t$, then choose $X e g \backslash t$. In this case, $P O_{n}=$ $\mathrm{U}_{\mathrm{rgR}} K-X f P I$, where $x_{t}=\exp t X$ (acting on $P I$ by Ad $\left.{ }_{P}{ }^{2}<\right\}_{n}$ te that K is normal) and the union is disjoint. Furthermore, $P \sim\left(P<j_{n}\right)=\mathbb{ぬ}_{n}$ (i.e., $<9_{n}$ is P -saturated), and $\left.P \sim K \bullet x_{t} \bullet P i\right)=K \bullet x_{t} \bullet I$. Thus

$$
\sim \int_{J_{R}}^{\oplus}{ }^{\circ}{ }_{X,-} n^{d t-}
$$

Again, $\mathrm{To}=0$, and Theorem 4.8 gives this same decomposition. For in this case, 27 consists of representatives for the orbits $<$? ${ }_{t}^{K}=K-\left(x_{t}-P l\right)$. It is easy to see from the formula $P \sim^{l\left(K-x_{r} P l\right)}=K x_{t} l$. that $n\left(l^{\prime}\right)=1$ for $/$ 'representing $<f_{t}^{K}$.

The proof in the general case is in essence an induction applied to this example. (In a sense, it is also dual to the proof in [2].) We construct a chain of subgroups from K to G, each of codimension 1 in the next, and restrict step by step. Keeping track of the geometry, however, soon becomes difficult. To keep matters straight, we introduce a fibration of most of $f f_{n}$. More precisely, we show that a Zariski-open set $U \underline{\mathrm{c}}<$?,, can be fibered into manifolds $U=\backslash i_{\text {exf }} f y$, such that all
points in the fiber $N j$ project to the same AT-orbit in $t^{*}: P \bullet N j=K \bullet P L$ The Ni let us keep track of the way that the tangent space to a A>orbit grows as the Lie algebra grows from t to g. When $\mathrm{To}=0, N /$ is (generically) the AT-orbit of $/$, but when To >0, it is an infinite union of AT-orbits. Our construction of the $N /$ is somewhat ad hoc, and we do not know if they have any further significance. (In some cases, they do depend on the chain of subgroups from K to G.)

Our first decomposition of $U \backslash K$ is as a direct integral over the i Vj . We actually express it as a direct integral over the transversal $X f$. This set is parametrized by a polynomial map $X: R^{k} \longrightarrow<f_{n}$, where $2 k=\operatorname{dim} G l \cdot-\operatorname{dim} A T \cdot P i$ for generic $/ \mathrm{e}<$? $; X$; is a diffeomorphism on a Zariski-open set $A f \underline{c} R^{k}$, and $X f=X(A f)$. Then we prove that

$$
\begin{equation*}
* \widetilde{K=} \int_{N L^{k}}^{\oplus} \sigma_{\left(P_{\circ}\right)(u)} d u ; \tag{1}
\end{equation*}
$$

where $d u$ is Euclidean measure. We also show that $X f$ and the iV) have the following properties:
(i) $l e N$, , $=>l^{\prime} e N_{t}$ (the N_{t} partition O_{n} 入
(ii) for generic l, $\operatorname{dim} \mathrm{TV}=r+k(r=\operatorname{dim} K \bullet P I)$;
(iii) for $I e X f-X(A f), \mathrm{TV}$ and $X f$ are transverse;
(iv) for $/ € * /, N_{i r} \backslash X f=\{l l$;
(v) $\backslash_{l e x} N /$ is an open dense subset of full measure in \& ,,;
(vi) $P\{N i) _C K P l$.

This means that the direct integral in (1) can be taken over $X f$. We show next that if To >0, then $A f$ fibers into manifolds of dimension ≥ 1 that are taken into the same $\mathrm{Ad}^{*}(\mathrm{AT})$-orbit by P o X; this gives the infinite multiplicity case. When $\mathrm{To}=0$, the N are generically the orbits $K \cdot I$, and the number of points in $P_{\sim}{ }^{X}(\mathcal{V}) \mathrm{n} X f$ is the number of $N i$ in $\left.P \sim^{\chi(} V\right) C \&_{n} \backslash$ this, plus some technical work, gives the finite multiplicity formula.

The integral (1) (our Theorem 3.5) is, of course, also a direct integral decomposition, though not a canonical one. It is useful, however, because it leads to a proof of the following results:

THEOREM 1.1. Let G be a connected, simply connected complex nilpotent Lie group, and let K be a complex Lie subgroup. Ifne \hat{G}, then $7 \mathrm{Z} K$ is of uniform multiplicity.

THEOREM 1.2. Let Gbea connected, simply connected real nilpotent Lie group, and let K be a Lie subgroup. For $n \mathrm{e} \hat{\mathrm{G}}$, write

$$
n \backslash_{K} \cong \stackrel{\Gamma(®)}{=} n(o) o d v(o) .
$$

Then either

$$
\begin{aligned}
& n(o) \equiv \text { oo, v-a.e., } \\
\text { or } & n(a) \text { is even, v-a.e., } \\
\text { or } & n(a) \text { is odd, v-a.e. }
\end{aligned}
$$

The proofs of these theorems are similar to the proofs of the corresponding theorems for induced representations, given in [1], and we shall not give further details here.

The duality between the results in [2] and those here is, of course, an aspect of Frobenius duality; in particular, the formula for $n(n)$ in Ind ${ }^{\wedge} \mathrm{cr}$ is the same as the formula for $n(a)$ in $n \backslash f$ - There are general results of this form; one is found in Mackey [5]. Mackey's theorem applies to almost all n and almost all a, while our results apply to all $n € \hat{G}$ and all $a \mathrm{e} \hat{K}$ (except that, of course, $n(n)$ and $n(o)$ are den̂ned only a.e.) Mackey's theorem also gives information on the measures in the direct integral decomposition. We hope to be able to say something about these measures on the exceptional set of representations not covered by Mackey's theorem, and about other aspects of Frobenius reciprocity; we defer these topics to future papers.
The outline of the rest of the paper is as follows: in $\S 2$, we construct the Nfs and describe various other algebraic constructions like those in $\S 2$ of [2], but somewhat more complicated. Section 3 is devoted to the proof of the noncanonical decomposition (1), and our main theorems are proved in $\S 4$. We give some examples in $\S 5$, including one of a tensor product decomposition. For a number of proofs, we rely heavily on results of [2]. We also use a number of results concerning semialgebraic sets; a sketch of the main facts about these sets is found in [2]. (See [9] for further details.)
2. Here we decompose g^{*} into sets $U s$ adapted to both G and K; for each $/ € \mathrm{~g}^{*}$, we construct a set $\mathrm{A}^{7 /}$ with a number of useful properties analogous to those for the sets M/ constructed in §2 of [2]. Since the proofs closely follow proofs in [2], we will sometimes be quite sketchy about details.

Let t be a subalgebra of a nilpotent Lie algebra g. We fix a strong Malcev basis $\left\{X \backslash, \ldots, X_{P}\right\}$ for 6 and extend it to a weak Malcev basis $\left\{X_{\left.\ell, \ldots, X_{p}, X_{p+i}, \ldots, X_{p+m}\right\}}\right.$ for g . Let $\mathrm{g}, \quad=\mathrm{R}$-span $\left\{X_{\ell, \ldots, X j}\right\}$,
and let $\left\{I * \ldots, X_{p+m}^{*}\right\}$ c 9^{*} be the dual basis to the given basis for 0 . Note that $G j=\operatorname{expg}_{7}$ acts on both $Q^{*} J$ and 0^{*} by Ad^{*}, and that these actions are intertwined by the canonical projection $P j \bullet-Q^{*}$ - 0^{\wedge}. Also, K acts on each 0^{3}, and these actions commute with $P j$ because $X \backslash, \ldots, X_{p}$ give a strong Malcev basis for t. We often write P for $\boldsymbol{P D}^{\prime} \cdot \boldsymbol{Q}^{\prime \prime \boldsymbol{t}^{* *}}$.

Define dimension indices for / e 9^{*} as follows:

$$
\begin{aligned}
e j(l) & =\operatorname{dim} A d^{*}(K) P j(l) \quad\left(=\operatorname{dim} a d^{*}(t) P j(I)\right) \text { if } 1 \leq j \leq p ; \\
\operatorname{dj}(l) & =\operatorname{dim} A d^{*}(G j) P j(l) \quad\left(=\operatorname{dimad} d^{*}(Q j) P j(l)\right) \text { if } j>p ; \\
e(l) & =\left(e_{1}(l), \ldots, e_{p}(l)\right), \quad d(l)=\left(d_{p+1}(l), \ldots, d_{p+m}(l)\right) ; \\
\delta(l) & =(e(l), d(l)) \subseteq \mathbf{Z}^{p+m} ; \\
\Delta & =\left\{S e Z^{p+m}: € 0^{*} \quad \text { with } 5(l)=S\right\} ; \\
U_{\delta} & =\left\{l \in \mathfrak{g}^{*}: \delta(l)=S\right\} \quad \text { for<SeA. } .
\end{aligned}
$$

(2.1) proposition. Let $\underline{K} C G$ and a basis $\left\{X \backslash \ldots, X_{P}, \ldots, X_{m+p}\right\}$ be given as above. Then:
(a) IfS $=\left\{S, \ldots, d_{m+p}\right)$ e A, then $d j-S j-i=0$ or 1 ifj $\leq p$ and

(b) There is an ordering of $A, A=\left\{<5^{\mathrm{a}^{\prime}}\right.$ each 3 G A , the set $V_{s}=\bigvee_{S, \rightarrow S} U \S$, is Zariski-open ing*.

Proof, (a) For $j \leq p$, this is clear, since the same group K acts on each g_{j}^{*} and $\operatorname{dim} 0_{j}^{*}$ increases by 1 at each step. For $j>p$, we have the coadjoint action of $G j=\exp (\& j)$ on 0^{\wedge}; orbits are even-dimensional and both $G j, 0_{j}^{*}$ increase in dimension by 1 at each step.
(b) Order the e's as in Theorem 1, (b), of [2]. For all $8=(e, d)$ with fixed e, further order the $d^{\prime} s$ as in Proposition 2 of [2]. Now take the lexicographic order on A: $(e, d)>\left(e^{\prime}, d^{\prime}\right)$ if $e>e^{\prime}$ or $e=e^{\prime}$ and $d>d^{\prime}$. The proof of Proposition 2 of [2] is easily modified to show that this ordering has the desired properties.

Now fix $6=(e, d) \backslash$ set

$$
\begin{aligned}
& R_{2}^{\prime}=R_{2}^{\prime}(S)=R_{2}^{\prime}(e)=\{j: l<j<p-\text { and } e j-* ?, \overrightarrow{\#} \# 0\}, \\
& R^{\prime}\left(=R_{2}^{2}(S)=R \mathfrak{z}(d)-\{j: p<j<p+m \text { and } d j-d j-i ? 0\}\right.
\end{aligned}
$$

(where $d_{p}=e_{p}$). Similarly, define

$$
\begin{aligned}
& R \backslash=R \backslash(8)=R \backslash(e)=\left\{j: 1<j<p \text { and } e j=e_{l-}-(\backslash\right. \\
& R^{\prime} I=R^{\prime}\left((S)=R^{\prime} l(d)=\{j: p<j \leq p+m \text { and } d j=d j-i\},\right.
\end{aligned}
$$

and let

$$
\boldsymbol{R}_{2}=R_{2}(S)=R_{2 u R_{2},}{ }^{\prime \prime} \quad R i=R i(S)=R[L) R^{\prime}(
$$

Define corresponding vector subspaces of $g *$:

$$
\begin{aligned}
& \left.E \backslash=\mathbf{R - s p a n}\left\{X_{j}^{*}: j e R \backslash\right\}, \quad E^{\prime}\right\}=\text { R-span }\left\{X_{j}^{*}: j \text { e } R_{1}^{\prime \prime}\right\}, \\
& E_{2}^{\prime}=\mathbf{R - s p a n}\left\{j X^{*}: j e R_{2}^{\prime}\right\}, \quad E_{2}^{\prime}=\mathbf{R - s p a n}\left\{X J: j e R_{x^{\prime}}^{\prime}\right\}, \\
& \left.E_{x}=E\left[® E^{\prime}\right\}, \quad \bullet \quad E_{2}=E_{2}^{\prime} ® E^{\prime}\right\} .
\end{aligned}
$$

Then $R \backslash, R_{2}^{\prime}$ are complementary subsets of $\{1,2, \ldots p\}$, and $R \backslash R 2$ are complementary subsets of $\{1,2, \ldots, m+p\}$. Hence we obtain splittings

$$
Q^{*}=E_{X} ® E_{2}, \quad V=E / ® E_{2}^{\prime} .
$$

If $/ € \boldsymbol{U}_{d}$ and $\boldsymbol{R}_{2}(d)=\boldsymbol{R}_{2}^{\prime} \mathbf{U} \boldsymbol{R}_{z}^{\prime} f^{f}=\left\{\boldsymbol{i}_{i}<\cdots \cdots \bullet<\boldsymbol{i}_{r}<\cdots \bullet \bullet<\boldsymbol{i}_{r+k}\right\}$ (with ir $\leq P<h+\backslash$, as above, a set of vectors $y-\left(Y, \ldots, Y_{r+} \wedge\right) \subset 0$ is called an "action basis at $/$ " if

$$
\begin{gather*}
a d^{*}\left(Y_{j}\right) P_{i j}(l)=P_{i j\left(X^{*} \cdot j\right),} \text { and } \quad \text { if } 1 \underset{\sim}{<}<\mathrm{r}, \quad Y j Z Q^{\wedge} \quad i f r \pm l<j \leq r+k \tag{2}
\end{gather*}
$$

(recall that $X_{1}^{*}, \ldots, X^{*} i s_{h}$ the dual basis in g^{*}). Note that the $i j$ depend on 5. Given y at $/$, define a mapping $y / ;: R^{r+k} \longrightarrow 5^{*}$ by

$$
\begin{equation*}
y / t(t)=\left(\exp (t i Y i)---\exp \left(t_{r+k} Y_{r+k}\right)\right)-l \tag{3}
\end{equation*}
$$

where $g l=A d^{*}(g) l$, and set $\left.N /=N^{\wedge} y\right)=y_{t}\left(W^{+k}\right)$. The next result shows that the $N i f(y)$ are independent of the action basis y, partition $U s$, and can be chosen to vary rationally on $U \S$.
(2.2) PROPOSITION. Fixnotation as above andfixd e A; let RijS)=
 on which are defined rational nonsingular $Y_{i t a}: Z_{a-}+Q$ such that
$\left\{Y_{a}(l), \bullet \bullet \bullet, Y_{r+} k_{a}(l)\right\}$ is an action basis at I for every I eUsf) Z_{a}.
IfI $€$ Us andy $-=\left\{Y, \ldots, Y_{r+k}\right)$ is any action basis at I, then
(a) $N,(Y) C \underline{U}_{d n G}-l$,
 $\left.Y_{r+k}^{\prime}\right\}^{\text {is an } y}$
$N_{l}(\mathscr{Y})=N[$ is independent ofy, and Us is partitioned by the sets $N[$.
(c) $N i Q K-l+t^{1}$.
(d) $/ /^{\prime \prime} \operatorname{Prj}, \operatorname{Pr} 2$ are the projections of $\mathrm{g}^{*}=E \backslash E_{2}$ onto E, E_{2} respectively, then $V x_{2}=N / \rightarrow \mathrm{R}^{\mathrm{t}} \hat{\sim}=E_{2}$ is a diffeomorphism. [In fact, $t \mathrm{H}>\operatorname{Pr} 2 y / i(t)$ is a diffeomorphism.)

Proof. We use induction on dimg/6. If $\mathrm{t}=\mathrm{g}$, this is essentially the theorem in [7] on orbits applied to the unipotent action of $K=$ expf on V, with $X \backslash, \ldots, X^{*}$ as the Jordan-Holder basis. Then $\mathrm{TV}=$ $K \bullet I=\mathrm{Ad}^{*}(\mathrm{AT}) / ;$ (b) and (c) are thus trivial, (a) follows because the Us are always Ad* ${ }^{*}(\mathrm{AT})$-invariant, and (d) is one part of Pukanszky's parametrization of orbits in $U \$$.

If dimg/6>0, the proof is a nearby verbatim adaptation of the proof of Proposition 3 in [2].

The following observation about the properties of the action basis generating TV will be useful, and can be proved without going into details of the proof of Proposition 2.2.
(2.3) LEMMA. Let ij e $R_{2}^{\prime \prime}(S)$, let I e U_{s}, and let Y e $\mathrm{g} ;$, satisfy

$$
\operatorname{ad}^{*}(Y) P_{i,}(l)=P_{i,}\left(X_{i,}^{*}\right)
$$

Then $Y E_{0>1}$.
Proof. Since we are projecting onto g_{iJ}, there is no loss of generality in assuming that $g^{\wedge}=\mathrm{g}, i j=m+p$, and $j=r+k$. Writing $r_{2}=r+k$, $n=m+p$, go for $g_{n-\backslash}, P \$$ for $P_{n-\backslash}$, etc., in what follows, we have

$$
\begin{equation*}
\left(a d^{*} Y\right) l=X_{n}^{*}, \quad \text { withy eg. } \tag{4}
\end{equation*}
$$

Obviously Y is determined modt/, the radical of $/$. Because the orbit dimension increases as we pass from $G Q \bullet P o(l)$ to $G \bullet I$, we have

$$
\operatorname{dimt} /=\operatorname{dimg}-\operatorname{dim}^{\wedge} f /=\operatorname{dimg}_{0}-\operatorname{dim} \wedge / \mathrm{y}-1=\operatorname{dimt} / \mathrm{y}-1
$$

it follows easily that $t / \wedge{ }^{t} p_{0(i)} Q 00$ - Thus it suffices to show that there exists $\$ b m e ~ Y \notin$ go such that (4) holds. But if Y is any vector in ${ }_{x} P_{0}(i){ }^{\mathrm{N}}$

$$
l\left([Y, O o \backslash)=(O), \quad /([7,0])^{\wedge}(\mathrm{O}) \quad\left(\text { hence } l\left(\left[Y, X_{n}\right]\right) ? 0\right)\right.
$$

By scaling, we may assume that $l\left(\left[X_{n}, Y\right]\right)=1$; this gives (4) with Ye 00.

Next, we show that the partition of $U g$ into the $T V$ respects the action of $\mathrm{Ad}^{*}(\mathrm{AT})$. (It is easy to check that $\mathrm{Ad}^{*}(\mathrm{AT})$ takes each $U s$ to itself.)
(2.4) lemma. If6 eAandle $U_{s,}$ then $A d^{*}(K) l \subset N_{h}$

Proof. $A d^{*}(K)$ acts unipotently on g^{*} and $X \backslash, \ldots, X_{p+m}^{*}$ is a JordanHölder basis for this action. Therefore, as in Pukanszky's parametrization theorem (see [6]), we may define dimension indices
 the set $e^{K}=\left\{e \mathrm{e} Z^{n}: " e=e(l)\right.$ for some $\left./ € \mathrm{~g}^{*}\right\}$, layers $U f$, and sets of
 "faction vectors" $y_{K}\{l)=\left\{Y i(l), \ldots . Y_{k}(l)\right\}$ c t such that

$$
\operatorname{ad}^{*} Y_{j}\left(P_{i,}(l)\right)=P_{i,}\left(X_{i,}^{*}\right) ;
$$

moreover,

$$
\left.A d^{*}(K) l=\left\{\mathrm{Ad}^{\wedge} \exp ^{\wedge} \mathrm{F}!\bullet \bullet-\operatorname{cxp}_{t_{k}} Y_{k}\right) l: h, \ldots, t_{k} \mathrm{e} \mathrm{R}\right\}
$$

(This last statement is proved on pp. 50-54 of [6].)
Now let / € $U_{s} \mathrm{n} U f$. It suffices to show that $\left.\mathrm{i} ? \mathrm{f}(\mathrm{e}) Q R i i^{\wedge}\right)$, since this will imply that the set $P K(1)$ can be extended to an action basis at / for the action of G. Then (4) and Proposition 2.2 imply that $A d^{*}(K) l \propto N_{h}$ as desired.

So choose / e i?f(e). If $1 \leq / \leq p$, then

$$
\operatorname{dim}\left(K \cdot \mathrm{P}_{\mathrm{f}-(}(f)\right)-\operatorname{dim}\left(\mathrm{A}^{\prime \prime} \cdot \mathrm{P} / _\mathrm{i}(/)\right)=1,
$$

and this implies that $/ e R_{2}^{\prime}(S) \subset i ?_{2}(<5)$ - If $\mathrm{p}+1<1<\mathrm{w}+\mathrm{p}$, then there is an $X € i$ with $\operatorname{ad}^{*}(\mathrm{X}) \mathrm{P}_{(}(/) / 0$ and $\mathrm{ad}^{*}(\mathrm{X}) \mathrm{P} ;!!(/)=0$. Therefore $X € \mathrm{t}^{\wedge \wedge /)}$) and $X £ t p_{t}(i)$. It follows from p. 149 of [6] that $\left.\operatorname{dim} \mathrm{Ad}^{*} \mathrm{G},-(\mathrm{P}(-\mathcal{I}))=\operatorname{dim} \mathrm{Ad}^{*} \mathrm{G}\right) _\mathrm{I}\left(\mathrm{P} / _\mathrm{I}(/)\right)+2$, or that i e $/ \mathrm{J}^{\mathrm{M}}\left(\mathrm{S}^{5}\right) \mathrm{c}$ $R_{2}(\delta)$.
3. Here we give our first decomposition of $n x$ as a direct integral. In this section we let $<?=<f_{n}$. Let 5 be the largest index in A such that Us meets @. Then Us $(\sim)<f$ is Zariski-open in the R -irreducible variety 0.

Let

$$
\left.R_{2}(d)=R_{2}=R_{2}^{\prime} U R^{\prime}\right\}=\left\{;,<\cdots \ll_{j_{r}} j_{r+1}<\cdots<j_{r+k}\right\},
$$

with $j_{r} \leqslant p<\mathrm{yV}+\mathrm{i}$. Define ${ }^{\wedge}: \mathrm{R}^{\wedge} \mathrm{x}(f f i \mathrm{nf} / \mathrm{j})->^{\wedge}$ by

$$
\begin{equation*}
<?(«, /)=\operatorname{Ad}^{*}\left(\exp \left(\mathrm{w} \mathbf{X},{ }_{\mathrm{v}+1}\right)--\exp \left(\mathrm{m}^{\wedge}+\mathrm{J}\right) b,\right. \tag{5}
\end{equation*}
$$

and, for fixed $f e \& n U_{s}$, let $X j=f\left(R^{k, l)} \text {. The set } X^{+}\right)_{j}$, may extend outside of $U s^{\prime}$, to deal with this and with technical details of later
arguments, we define a "Zariski-open subset" $X f$ as follows. Let $A f$ be the subset of u e R^{k} such that

$$
\begin{equation*}
i\left(0, \ldots, 0, u_{s, \ldots}, u_{k}, f\right) € U_{d,} \quad \text { for each } s<k \tag{6}
\end{equation*}
$$

Now we define

$$
\begin{equation*}
X_{f}=\xi\left(A_{f}, f\right) . \quad \text { all } f \in U_{\delta} \cap \theta \tag{7}
\end{equation*}
$$

Then $A f$ is a non-empty Zariski-open set in R^{\wedge} because / G $U_{\delta} \cap \mathscr{O}$; $U s \mathrm{n}(f$ is Zariski-open in $\langle f$, and $£$ is polynomial in w with range in ^f. Obviously $X f \mathrm{C}<^{\wedge} \mathrm{n} U g ; X f$ will be the base space in our first decomposition of $n \backslash x$ into irreducibles.
(3.1) proposition. Let $@_{K}$ be an orbit in g^{*}, let 8 G A be the largest
 $j r+k$)
$U_{s n 0} 0_{n .} \quad$ Then:
(a) $£(\bullet, /)$ is injective from A_{f} to X_{f},
(b) Each variety iV in Us meets $X f$ in at most one point.

Proof. Consider two points $/, I^{\prime}$ e $X f$ of the form $/=£(u, /), I^{\prime}=$ $£\{v, f)$ with u, v e $A f$, such that $/ \mathrm{e} \mathrm{TV} / \mathrm{n} X f$. If an action basis
 and part (a) is the special case $/=I^{\prime}$.

We use induction on $\operatorname{dimg} / \mathrm{t}$. When $i=\mathrm{g}$, the result is trivial because $X f=\{/\}$ and $N I=K \bullet I=@_{n}$. Thus we assume the result for $Q_{m+p} \backslash=$ go and prove it for g. Let $J(S)$ be d with the last index removed $\left(J(d)=\left(S \backslash, \ldots, 8_{m+p-}-\backslash\right)\right.$; $J(d)$ is a dimension index for go-

There are two cases.
Case 1. $m+p \notin R_{2}(d)$. Then $P_{o}: \mathrm{g}^{*}->\mathrm{g} £ \operatorname{maps} O_{K}=G \bullet f$ diffeomorphically to ${ }^{\wedge} \mathrm{o}=G_{o-} P o(f)$, and $P_{O}\left(U_{S}\right) Q U_{J l y} y$. Thus y is an action basis at $P_{o(l)}$ in $\left.U_{m, ~ P o V i(t)}^{=} y / P o o i\right)(t)$, and $P_{o(N i)}=N_{P o f n}$. The layer U_{s} is $\mathrm{P}_{0 \text {-saturated: }} P \bar{Q}^{I P_{o}\left(\dot{U}_{3}\right)}=U_{s}$ (since $G \bullet X^{*}{ }_{m+p}=$ $\left.X^{*}{ }_{m+p}\right)$. Therefore $P Q\left(U g C \backslash @_{n}\right)$ is topologically open and dense in Go • $\mathrm{Po} /-\mathrm{Thus}$ if we define the dimension index set AQ for g^{\wedge} using the
 $\{X j \backslash j$ G $R / t S S)\}$ used to define $\hat{\wedge}$ are precisely the ones needed to define £o: $\left.\mathrm{R}^{\text {fc }} \times\left(\& b \mathrm{n} U j^{\wedge}\right)\right) \rightarrow{ }^{\wedge} \mathrm{O}$ - This map satisfies

$$
\begin{equation*}
P_{Q}(£\{u, /))=Z_{O}\left(u, P_{o f}\right) \quad\left(u e R^{k, f £ U_{s} n}\right) \tag{9}
\end{equation*}
$$

We can say more:

$$
\begin{equation*}
P_{0}\left(u_{s} n^{*}\right)=u_{J(i)} n<r_{0} . \tag{10}
\end{equation*}
$$

For if $/ e G f$ and $P_{0}(l)$ e $U_{m} \backslash P_{o-}\left(U_{s}\right)$, then $*$, $(f)=e_{t}$ and $d_{t}(l) d \bar{d} d_{t}$
except that $d_{m+p}(l)=2+d_{m+p-}$. However, the ordering of indices in ($\mathrm{A},>$) satisfies $8^{\prime} \geq 8$ in A if $8 \backslash \geq 8_{t}$ for all i. Then $3(1)>8 \mathrm{e} \mathrm{A}$. But 8 is the largest index with $U s$ meeting $G \cdot f$; this contradiction proves (10).

We conclude from (9) that $A_{f}=A_{P_{j(f i f} ;}$ thus $P_{o(l),} P Q\left(I^{\prime}\right)$ lie in $\operatorname{Po}\{X f)=X p_{o}(f y$ Now the claim that $u=v$ and $I=0$ is immediate by induction, since $P Q$ is a diffeomorphism on $G \cdot f$.

Case 2. $m+p € \mathrm{~J} ?_{2}(<5)$ - We write $u=\left(\kappa^{\prime}, \ll\right)$), with $U Q=\mathrm{M}_{\mathrm{r}+} \wedge$, and use similar notation for v and λ note that $\mathrm{y}_{\mathrm{r}+} \wedge=m+p$. We have iff $f_{(}(t)=I$, which means that

$$
!<\mathbf{W})(0=\mathfrak{£}(*>. /) .
$$

or
$\left(\exp (/ \mathrm{iFi}) \bullet \bullet \bullet \exp \left(t_{r+k} Y_{r+k}\right) \exp \left(u i X_{J r+l}\right)\right.$

$$
\begin{aligned}
\bullet & \left.\cdot \exp \left(u_{k} \wedge i X_{j_{r+k}-t}\right) \operatorname{Qxp}\left(u_{0} X_{m+p}\right)\right) \\
& =\left(\exp \left(v_{1} X_{j_{r+1}}\right) \cdots \exp \left(v_{k-1} X_{j_{+k-1}}\right) \exp \left(v_{0} X_{m+p}\right)\right) \cdot f .
\end{aligned}
$$

Write this as $X \backslash \bullet f=X 2 \bullet /$, and let $R f=\exp \left(\mathrm{t}^{\wedge}\right)$. Then $X \backslash R f{\underset{x}{2}} R_{f}$. Since $/ € U s$, we have ${ }^{*} p_{o}(f) 2$ ty; thus ty $\mathrm{c}_{-} \mathrm{g}_{0}$ and $X \backslash G Q-x_{2} G_{0}$. From Lemma 2.3, we have $Y j$ eg,,,- C g_{0} for all 7 , so we get

$$
\exp \left(u_{0} X_{m+p}\right)=\exp \left(\wedge_{0} \mathrm{X}_{\mathrm{m}+\mathrm{p}}\right) \quad \operatorname{modC} ? \mathrm{o},
$$

We show next that $/(\mathrm{J})$ is the first index J_{0} e Ao such that $U_{\text {gat }}$ meets Go - $/ 0-$ Since we are in Case 2 , the set $G Q \bullet \wedge$ is Po- ${ }^{\text {saturated }}$ and $P Q \backslash G Q \bullet \wedge \rightarrow G o \bullet 1 o$ is a surjective open mapping. Hence $U j^{\wedge}$ meets \& $O=G Q \cdot 10$ in a nonempty open set. The first layer $U s_{0}$ to meet Go • 10 intersects in a Zariski-open set; hence $8 Q=J_{i} 8$). Therefore $\left\{X i_{j: ~}: r+1 \leq 7^{*} \leq r+A-1\right\}$ is the set of vectors corresponding , te $R^{\prime}(J(3))$, and these are the vectors used to define the map $£ 0: R^{k \sim}$ $\left.\left(\wedge 0 \mathrm{n} U_{J / S}\right)\right)-\wedge 0\left(=G_{Q} \cdot P_{o f i}=G Q \cdot /(0)\right.$ and the variety $X_{f o}=X_{P o f r}$ Since $P Q$ intertwines the actions of G on g^{*} and $\$ \mathbb{Q}$, we have

$$
\left.P_{0}\left(\xi\left(u^{\prime},<0 ; /\right)\right)=\text { ZoW. Poifi) }\right) . \quad \text { all } u^{\prime} \mathrm{GR}^{\wedge}{ }^{1} .
$$

In particular, for our u, v we have

$$
\begin{align*}
& P_{0}(l)=\operatorname{Pat}(u, f)=Z o\left(u^{\prime}, \operatorname{Po}(f i)\right)=\&\left(«^{\prime} . / \mathrm{o}\right) \tag{11}\\
& P_{0}\left(l^{\prime}\right)=\xi_{0}\left(v^{\prime}, f_{0}\right)
\end{align*}
$$

These lie in $\left\langle\mathrm{f}_{0} \mathrm{n} U j^{\wedge}\right)$ - If $P=\left\{Y, \ldots, Y_{r+k}\right\}$ is an action basis at
 since $m+p$ e $R_{-}^{\prime \wedge} i S$), and thus

$$
\mathrm{A}<\mathrm{T}\left(\mathrm{x}_{0} \cdot \exp \left(R Y_{m+p}\right)\right) l=x_{0} \cdot I+R X^{\wedge}+p, \quad \text { all } x_{0} \mathrm{e} \mathrm{G}_{\mathrm{o}}
$$

It follows that $\left.N_{t} f y\right)=P_{r}{ }^{l} N p_{o(l)}\left(p_{o} y\right.$, in particular, $\left.P_{o(l} l^{\prime}\right)$ e $N_{P o f l)}$. The induction hypothesis applies once we show that $P Q\{1), P Q\left(I^{\prime}\right)$ are
 showing that $u^{\prime}, v^{\prime} e .-4 \nrightarrow(/),, Q R^{k \sim}$ v^{\prime} is nearly identical. Since Me^{\wedge}, we have

$$
\wedge\left(\mathrm{O}, \ldots, \mathrm{O}, \ll 5, \ldots, \mathrm{Mjfc}_{-} \mathrm{i},<_{\circ} ; /\right) \text { e } U_{s}, \quad \text { alls. }
$$

Hence

$$
\begin{aligned}
& \xi_{0}\left(0, \ldots, 0, u_{5}, \ldots, u_{k-1} ; P_{0} f_{1}\right) \\
& \quad=\quad P_{0 i\left(0, \ldots, 0, u_{s, \ldots}, \ldots, u_{k-1}, u_{0} ; f\right)} \quad € \quad U_{J(6)}
\end{aligned}
$$

for all s, and this means that $u^{\prime} €^{\wedge} 4 \mathrm{p}_{\mathrm{o}}(/)-$,
Since ad Y_{r+k} acts trivially modker/o, we have

$$
\psi_{\xi_{0}\left(u^{\prime}, f_{0}\right)}^{0}\left(t^{\prime}\right)=\xi_{0}\left(v^{\prime}, f_{0}\right)
$$

By induction, $u^{\prime}=v^{\prime}$ and $I^{\prime}=0$. But now we have $u=v$, and

$$
I=I^{\prime}=\mathrm{Ad}^{*}\left(\mathrm{ex}_{\mathrm{Pr}_{\mathrm{o}} \mathrm{r}_{\mathrm{r}+/ \mathrm{t}}}\right) /=/+t_{o x^{*}}{ }_{m+p}
$$

Therefore to $=0$, and we are done.
(3.2) PROPOSITION. Let $\&=@_{n}$ be on orbit ing ${ }^{*}$, let S be the largest index in A such that Us meets (f_{n}, and fix a base point $f €$ Us $\mathrm{n} \&_{n}$. Define the varieties $N ;, I \mathrm{e} U s$, as in Proposition 2.2, and for any set $S \underset{C}{ } U_{S}$ define its saturant [S] to be $V_{\{ }\left\{N_{t}: I\right.$ eS\}. Define X_{f} c $U_{s} \mathfrak{\eta} \wedge$ as in Proposition 3.1. Then [Xf] is semialgebraic and is topologically dense in @ ${ }_{n}$, hence it contains a dense open set in $@_{n}$ and is co-null with respect to invariant measure on $<9 n$.

Proof. Any semialgebraic set S has a stratification (see, e.g., [9]); that means, among other things, that S can be written as a finite disjoint union of manifolds that are also semialgebraic sets. Let $\operatorname{dim} S$
be the largest dimension of any manifold in the stratification; this is independent of the stratification. If $T \underline{c} S$ is semialgebraic and dense, then necessarily $\operatorname{dim}\left(5^{\prime} \backslash 7\right)<\operatorname{dim} S$; this follows from the fact that S has a stratification compatible with T. In particular, $S \backslash T$ is null with respect to (dim5')-dimensional measure on S. Thus the proposition will follow once we show that $[X f]$ is semialgebraic and dense in S.

Since $X f$ is the polynomial image of a Zariski-open set in $R^{k,} k=$ $R^{\prime}((S)$, it is semialgebraic. We can cover $U g$ by finitely many Zariskiopen sets $Z_{a} \mathrm{C} \mathrm{g}^{*}$ on which are defined rational nonsingular maps $\left\{Y f(/), \ldots, Y^{*}{ }_{t k}(l)\right\}$ that give an action basis at each I e $Z_{a n} U_{s}$ (Proposition 2.2). Let

$$
y_{Q}(l, t)=\exp \left(t_{t} Y f(f)\right) \cdot \cdots \operatorname{cxp}\left(t_{r+k} Y ?_{+k}(l)\right) \quad I, \quad l e Z_{a, t e} R^{r+k},
$$

Let $S_{a}=Z_{a n} U_{s r l} X_{f_{\text {f }}}$ Then $\left[S_{a}\right]=y_{a}\left(S_{\rho} R^{r+k)}\right.$ is semialgebraic, and $[X f]$, the union of the $S_{a,}$ is also semiaggeraic.

To prove the density of $[X f]$, we work by induction on $\operatorname{dim}(\mathrm{g} / \mathrm{t})$; the result is clear if $g=i$. In general we have two cases, as in previous proofs; the first, where $m+p^{\wedge} \operatorname{Ri}(8)$, is easy because the projection map $P Q$ is a diffeomorphism for all the objects under consideration.

Thus we assume that $m+p$ e $R i\{S)$. We know that $A f$ is Zariskiopen in R^{k} and 0 e A_{f}. Hence $S i=\left\{t e \mathrm{R}:(0, \ldots, 0, /) € A_{f}\right\}$ is nonempty and Zariski-open in R, and

$$
t \in S_{1} \Rightarrow f_{i}=\xi(0, \ldots, t ; f)=\operatorname{Ad}^{*}\left(\exp t X_{m+p}\right) f \in U_{\delta}
$$

where ${ }^{\wedge}: R^{k}$ x (Us $\mathrm{n}(?)$ — \& is as in (5). Also, <9 is a disjoint union of Go-orbits in g^{*},

$$
d ?=\underset{l \in \mathbb{R}}{=\int} \mathrm{Ad}^{*}\left(G_{o}\right) f t \text { (disjoint); }
$$

see pp. 147-150 of [6]. For each $t, G Q \bullet f$ is $\mathrm{P}_{0 \text {-saturated, }}$ and $P_{o}: G Q$ $f t \rightarrow$ Go • ^(/J) is surjective and intertwines the actions of Go. By the open mapping theorem for homogeneous spaces, this map is also open. The union of the $\mathrm{Ad}^{*}(\mathrm{Go}) / ?, t$ e $S \backslash$, is dense in \&.

Fix $/ €<9$. We want to show that $[X f]$ contains points arbitrarily close to $/$. Given $e>0$, there is a t e Si such that dist $(/$, Go $\cdot f t)<$ $\mathrm{e} / 2$, where we take Euclidean distances on $\mathrm{g}^{*}, \mathrm{~g}^{\wedge}$ compatible with the
 An argument like the one in Proposition 3.1 now shows that $U j(\$) \mathrm{H}^{\wedge} \mathrm{P}$ is Zariski-open in @f and that $3(5)$ is the largest index $8 \$$ e Ao with $U_{\delta_{0}} \cap \mathscr{O}_{l}^{0} \neq \varnothing$.

 and Zariski-open; it is also easy to verify that

$$
{ }_{B f}, \wedge A P_{O(f, y}
$$

Let

$$
\begin{aligned}
X_{P_{0}\left(f_{f}\right)} & =\left\{\xi_{0}\left(t^{\prime}, P_{0}\left(f_{t}\right)\right): t^{\prime} \in A_{P_{0}\left(f_{t}\right)}\right\}, \\
Y_{P o(f l)} & \left.\left.\left.=\{\text { Pattf, } t-J): f \mathrm{G} B_{f}\right\}=\{\& \mathrm{C} . \mathrm{W} /)\right): t^{\prime} e B_{f}\right\} .
\end{aligned}
$$

where $£ 0$ is deñed as in (5), but on go- We have $Y p_{o}(f) Q, X p_{o}(f$,$) , \wedge$
 the proof of Proposition 3.1)

$$
i^{\left.N i\left(t t^{\prime}, t ; f\right)^{\prime}-t^{\prime} € B_{f}\right) \text { dense in } G_{o} \cdot f_{t .} .}
$$

Therefore there exists $\left(t^{l,}, t\right)$ e $A f$ and Λ e $\left.N^{\wedge^{\prime}} \cdot r j\right)$ with $\operatorname{dist}(/, h)<e$, as required.

The induction hypothesis tells us that $\left[X_{P_{g}}{ }^{\wedge}\right]$ is dense in $\wedge \mathrm{f}$. It suffices, therefore, to show that $\left[1 \mathrm{~V}_{\mathrm{O}}(/),\right]$ is dense in $\left[X_{P_{0}} \wedge\right]$. Suppose that ($p^{\prime} € N_{n, q}, q Q$ G $X_{P o}(f y$ Choose rationally varying maps on a Zariski-open set Z \subset go* to get an action basis $\langle\mathrm{K}(q\rangle)$,..., $Y_{r+k} \backslash(p)$)
 $t_{o}^{\prime} \mathrm{G} A_{P o}\left(f y\right.$ Then for some $u \mathrm{G} W^{+k}$

$$
\varphi^{\prime}=\psi\left(u, \xi_{0}\left(t_{0}^{\prime}, P_{0}\left(f_{l}\right)\right)\right)
$$

 converging to $c p^{\prime}$, as desired.
(3.3) THEOREM. Letg be a nilpotent Lie algebra, t a subalgebra, G" 2 K the corresponding simply connected Lie groups, and $P: \mathrm{g}^{*}-V$ the naturalprojection. Let $n E \hat{G}$, and let $\&=\&_{K}$ be the corresponding orbit ing*. Fix a basis $X \backslash \ldots, X_{p, \ldots}, X_{m+P}$ through I as in Proposition 2.2, anddefine

$$
\mathrm{A}, U_{3,} £: \mathrm{R}^{*} \mathrm{x}\left(<? \mathrm{n} U_{s}\right)->\cdot\left(9 \quad\left\{k=\operatorname{card} R_{2}^{\prime \prime}(\delta)\right)\right.
$$

Fix any $f \mathrm{G} \& \mathrm{n} U \$$, and define the sets $A_{f-\mathrm{c}} R^{k}, X_{f}=£(A f, f)$ as in Proposition 3.1. Let dpi on Xf be Euclidean measure on Af (or R^{k},
transported via the map $£$. Then
where $a_{9} E \hat{K}$ is the representation corresponding to $<p E t^{*}$.
Proof. We use induction on dimg/fc, the case $t=g$ being trivial. As usual, let $g o=9 m+p-i>{ }^{\text {anci }}$ let $P Q: \mathrm{g}^{*}$ — gf be the natural map. The inductive step divides into the usual two cases. Case 1, where $m+p \$. R 2(d)$, is easy: $7 \Lambda G_{0}$ is then irreducible, and $X f$ projects difFeomorphically to $X p_{o(f)}$, since $\left.P Q /<9 \mathrm{n} U \xi\right)=P Q^{\prime}(\odot) \mathrm{n} U J^{\wedge}$) (see the proof of Case 1 of Proposition 3.1). In Case $2, \mathrm{~m}+p € R 2 I S$) and we know (see, e.g., Lemma 6.3 of [4]) that

$$
\mathrm{TT}_{\mathrm{co}} \stackrel{I_{J_{\mathrm{R}}}^{-}}{=} \quad n^{\circ}{ }_{P o(f s)} d s, \quad f_{s}=A d^{*}\left(\operatorname{exps} X_{m+p)}\right) f .
$$

Let $k=\operatorname{cardR}^{\prime} 2^{\prime}(\wedge)$, let $P^{\prime}: Q^{*} \longrightarrow t^{*}$ be the canonical projection, and let $S i=\left\{\right.$ te $R:\left(0, \ldots, 0,0\right.$ e $\left.A_{f}^{0}\right\}$, so that l, $=i(0, \ldots, 0, t ; f)$. For each $t E S i, d o=J(6)$ is the largest index in AQ such that $\mathbb{K} \$$, meets
 Proposition 3.2. The corresponding maps $£ o, t^{\prime}-R^{k \sim}$ ffi_{0}, are all deaned in the same way, using the vectors $\left\{X_{i j}: 1<j \leq\right.$ $k-1\}$ corresponding to $R_{2^{\prime}}(J(S))$:

Thus for $u^{\prime} G R^{k \sim^{l}}$

$$
\xi_{0, /}\left(u^{\prime}, P_{0} f_{t}\right)=P_{0} \xi\left(u^{\prime}, t ; f\right) .
$$

The inductive hypothesis says that for $t E S i$, we have
since ${ }^{\prime} \mathrm{Po}=P$ - Thus (13) (plus the fact that $S i$ has full measure in R) gives

$$
* K \cong \int_{J R}^{(®)} \int_{J R^{k-<}}^{r(B)} G p z\left(u^{\prime}, t j\right)^{d W d t}={ }_{J R^{\prime}}^{r^{*}} \quad a_{P i(u \cdot f)} d u .
$$

As Jy^{\wedge} is Zariski-open in R^{k}, the rest of the theorem is clear.

We note two important facts about our constructions. Fix $/$ e $\&_{n} n$ $U s$ and define $X f$ as above; cover $U \$$ with Zariski-open sets $\mathrm{Z}_{\mathrm{a}} \mathrm{c} \mathrm{g}^{*}$ equipped with rational maps $\left\{\operatorname{Ff}(/), \ldots, Y f_{+k}\{l)\right\}, k+r=\operatorname{card}\left(1 ?_{2}\left(<^{*}\right)\right)$, that provide an action basis at each $/ \mathrm{e} U g \mathrm{n} Z_{a}$ and thus generate the variety $\mathrm{J} /$ through /. Recall our labeling of the jump indices: $j \backslash<\cdots \bullet j r<\cdots \cdots<j_{r+k}$, where $j_{r}<p<j_{r+k}$
(3.4) Lemma. For every I e $X_{f} C \mathrm{C}_{a}$, the vectors $\left\{Y f(/), \ldots, \boldsymbol{Y}^{\circ}{ }_{+l c}(l)\right.$, $\left.X j_{r+1, \ldots,} X j_{r+k}\right\}$ are linearly independent and span a complement to the radical t . In particular, the map $X(u)=£(«, /)$ has rank k at $u=0$ and is a local diffeomorphism into $@_{n}$ near $u=0$.

Proof. If $\mathrm{g}=t$, then $k=0$ and we have Pukanszky's parametrization of $<?_{a}=K \bullet I=N_{h}$ so that the lemma holds. We proceed by induction; we have the usual two cases.
 diffeomorphically onto $G Q \cdot P o f$, carrying $U s C X$? onto $U j^{\wedge} \mathrm{n} G \$ \cdot P Q /$ and $X f$ onto $X_{P o f}$. We have $A f=A_{P o f}=A$ (say), and $\left.£_{o(u, P o f}\right)=$ $P\left(i £\{u, f)\right.$, all $u € A$. Since $\mathrm{g} \backslash$ go contains an element of $t /{ }^{\prime}(t / \pm$ go because $\mathrm{t} / \mathrm{ngo} Q \mathrm{t}_{0}$ and a computation gives $\operatorname{dimt} /=\operatorname{dimt}_{\mathrm{o}}+1$), the inductive step is now easy.

Case 2. $m+p$ e R.2(S)- Then $X j_{r+k}=X_{m+P, ~ t / ~ h a s ~ c o d i m e n s i o n ~} 1$ in

 lemma is now clear. At $u=0, \mathrm{~A}(0)=\ell$; from the way that c_{p} part defined by the $\left\{X_{j i}, r+1 \leq i \leq r+k\right\}$ at $/$, we have $\operatorname{rank}(\mathrm{fiW})_{0}=k$.
(3.5) Remark. Let $X \underline{D} Y$ be semialgebraic sets in U_{s}. As the argument at the start of Proposition 3.2 shows, their saturants $[X]$, $[Y]$ are semialgebraic. Furthermore, if Y is dense in X (in the relative Euclidean topology), then
(i) $[Y]$ is dense in $[X]$;
(ii) $\operatorname{dim}[\mathrm{X}]=\operatorname{dim}[7]>\operatorname{dim}([X N Y])$.

In particular, the canonical measure classes for $[X],[Y]$ are the same. (If $\operatorname{dim}[\mathrm{X}]=m$, the canonical measure class for $[X]$ is m-dimensional measure on the submanifolds of dimension m in a stratification of [**•)
4. In this section, we give the geometric interpretation of the direct integral decomposition in Theorem 3.3.

Let \& $=<f_{n}$ be the orbit in g^{*} for $n \mathrm{~GB}$, and let c g be a subalgebra. Fix a basis $X \backslash \ldots, X_{p}, \ldots, X_{m+P}$ for g through t as in $\S 2$, and define $A, d=(d, e), U_{d,} k=\operatorname{card}^{\prime} f(S), r=\operatorname{css} d R^{\prime}{ }_{2}\{S), £: R^{k x}\left(\& n U_{s}\right) \rightarrow 0$, etc., as in §3. Fix / G $U g C\left(f_{n}\right.$ and let $X: A f — X f$ be given by $X(u)=\mathfrak{f}(\mathrm{w}, /)$. We need some information about $X f$, which acts as the base space in the decomposition of Theorem 3.3. We already know that the varieties $N I(I \mathrm{G} X f$) are transverse to $X f$ in the set-theoretic sense; we need a differentiable version of this fact.
(4.1) lemma. In the above notation, there is a Zariski-open set Bf \mathfrak{c} Af, containing 0 , such that:
(a) $X: B f — Y y=£(B f, f)$ is a bijective local diffeomorphism on
(b) $\operatorname{dimXf} \backslash Y f<\operatorname{dim} Y f=k$ (thus $X f$, Yf have the same canonical measure classes);
(c) For all I $€$ Yf, thefollowing result holds between tangent spaces:

$$
T_{l}\left(\mathscr{\theta}_{\pi}\right)=T_{l}\left(Y_{f}\right) \oplus T_{l}\left(N_{l}\right)
$$

Proof. From Proposition 2.2, the $N /$ are defined by rationally varying families $\left\{\mathrm{Y}(l), \ldots, Y_{r+k}(l)\right\}$ defined on Zariski-open sets Z_{a} that cover Us- Fix an index a such that $/$ e Z_{a}. Lemma 3.4 says that
 maximal rank is achieved on a nonempty Zariski-open set $B I \in A f$ containing 0 , since k is polynomial. Thus $\left.Y_{\lambda}=X(B\rangle\right)$ is a dense open subset of $X f$ (in the relative Euclidean topology), and $X: B^{1^{\wedge}} \xrightarrow{\square}$ is a bijective local diffeomorphism. At $/=X(0)$ G 71, the tangent space to $Y \nmid$ is $7 /(7\})=\mathrm{R}$-span $\left\{\mathrm{ad}^{*} X_{i t}(f): \mathrm{r}+1 \leq / \leq r+k\right\}$, as one sees by direct calculation. (This need not hold elsewhere.) From the definition of the sets of jump indices $\left.R_{2}^{\prime}(S), R^{\wedge}{ }^{\wedge} i S\right)$, we know that $r+2 k=\operatorname{dim}^{\wedge}$; by the definition of the N_{h} we have $\operatorname{Ti}(N)=$, R- $\operatorname{span}\left\{\mathrm{r} /(/): 1_{-} \leq i_{-}<k+r\right\}$, all/ G $U_{8} \mathrm{n} Z_{a}$. Taking $/=/$, we have

$$
T_{f}\left(\mathcal{O}_{\pi}\right)=T_{f}\left(Y_{f}^{1}\right) \oplus T_{f}\left(N_{f}\right)
$$

by Lemma 3.4. But $\operatorname{dim} T i\left(<f_{n}\right)=r+2 / c$ everywhere on \wedge, while the subspaces $T /(Y)$), 7\}(iVI) have respective dimensions fc, $\mathrm{r}+\mathrm{fc}$, and vary rationally on $Y j-C Z_{a}$. Since transversality is generic, there is a Zariskiopen set $B_{f} \mathrm{c}$ tfj-rU-HZa) such that 7$\left.\left.\}(\wedge)=7\right\}(\mathrm{F}\}\right) \odot \mathrm{r},(\mathrm{JV}$,$) for all$ $/=\mathrm{A}(\mathrm{w})$, w G $5 /$. This proves (a) and (c), and (b) follows because $Y f$
is dense in $X f$ and both are semialgebraic.(See the start of the proof of Proposition 3.2 for a similar argument.)

We now consider the maps shown in Figure 1:

FIGURE 1
Here, $P: \mathrm{g}^{*}-\mathrm{f}^{*}$ maps $\left(/ \$ \mathrm{Sinto}_{e} £ / *\right.$ (where $\mathrm{d}=(e, d)$); Uf is a layer in 6^{*} for the strong Malcev basis $\left\{X \backslash, \ldots, X_{p}\right.$). (Since $P \sim^{l}(U f)$ contains

 for this layer (see [7]), and $n \$, n x$ are the projections splitting $t^{*}=$ $\operatorname{Vr}(e)$ © $\mathrm{Ks}(\mathrm{e})$ - Define

$$
\begin{aligned}
& \varphi=\pi_{T} \circ P_{e}^{-1} \circ P: \mathscr{O}_{\pi} \cap P^{-1}\left(U_{e}^{K}\right) \rightarrow \Sigma_{e} ; \\
& \Phi=\varphi \circ \lambda: A_{f} \rightarrow \Sigma_{e} ; \\
& \tilde{\varphi}=\varphi \mid X_{f}: X_{f} \rightarrow \Sigma_{e} .
\end{aligned}
$$

Note that $\left(f_{n} D P^{\prime l}(U f) 2{ }^{\wedge} \mathrm{rn} U_{s}\right.$; both are Zariski-open in $<$? ${ }_{n}$. These maps are rational and nonsingular. Fix a stratification \& of X^{\wedge} (it has dimension $\left.=\operatorname{dimX} 9_{j}-k\right)$, and define

$$
\begin{align*}
K & =\max \left\{\operatorname{rank}(\wedge) /: / € U_{s} \mathrm{D}<?{ }_{n}\right\} \tag{14}\\
& =\max \left\{\operatorname{rank}(d \varphi)_{l}: l \in P^{-1}\left(U_{e}^{K}\right) \cap \Theta_{\pi}\right\}, \\
k o & =\max \left\{\operatorname{rankc} /(\wedge \mid 5) /: I e S, S \mathrm{G}^{\wedge} . \operatorname{dim}^{\wedge}=k\right\}, \\
k & =\max \left\{\operatorname{rank}(\mathrm{dM}>)_{\mathrm{M}}: u \mathrm{G} A f\right\} .
\end{align*}
$$

As the maximal rank of $d(Q) s) i$ is attained on an open subset of $S_{\mathrm{it}} \mathrm{e}^{\text {s. }}$, and as the pieces of maximal dimension in 3^{s} are open in $X f$, it follows that ko, does not depend on the stratification 3° Alsa, d $\$ \$$ In staing rank k on a Zariski-open set in R^{k}. Since $S^{*}=\mathcal{L}$, and since A is a local diffeomoris open in $X f, A^{\downarrow}\left(S^{*}\right)$ is open in R^{k}, and phism on the Zariski-open set $B f$, we conclude that $k o=k$ It is now easy to see that

$$
k o=k y \leq k^{*} \quad \text { and } \quad k _<k=\operatorname{dim} X f .
$$

More is true, in fact.
(4.2) LEMMA. In the above situation, $\mathrm{A}^{*}=k \backslash=k_{0 _}<k=\operatorname{dimXf}$.

Proof. In view of the above remarks, we need only show that $k^{*}=$ $k \backslash$ Let 9° be a stratification of $X f$ compatible with $Y f$, as defined in Lemma 4.1. All k-dimensional pieces of $\&$ lie in $Y f$, since $\operatorname{dim}(X f \backslash Y f)<k$. From Proposition 2.2(c) and Lemma 2.4, $K \bullet I _\mathrm{c} J,$, c $K \bullet I+\mathrm{e}^{\mathrm{x}}$ for any $/ € U_{3}$. Thus $\mathrm{P}(\mathrm{JV})=,K \bullet P I$ and $<p$ is constant on each $\mathrm{JV} /$ with $/<\mathrm{E} U s C \backslash f_{n}$.

Consider a Zariski-open set $\mathrm{Z}_{9} \mathrm{Cg} *$ containing / and such that the action bases $\left.\left\{Y x(l)_{t \ldots,}, Y^{\wedge \wedge} l\right)\right\}$ are rationally defined on $Z_{a r} \backslash U s$ (see Proposition 2.2). Define

$$
\begin{aligned}
P(u, t)= & y_{a}(i(u, f), t)=y / a(A(u), t), \\
& t \in \mathbf{R}^{r+k}, u \in E=\xi^{-1}\left(Z_{\alpha}\right) \cap B_{f}
\end{aligned}
$$

where $y / a(l, t)=i / / j(t)$, as in (3); note that 0 e E and that E is Zariskiopen in $B f$. Clearly Range(/?) $=\left[Z_{a}\right.$ n $Y f /$, since X is bijectike xor ${ }^{\prime} \mathcal{B}^{\prime} f$.
 Lemma 3.4 (plus an easy computation) shows that $\operatorname{Rank}(\mathrm{d} / ?)_{(0,0)}=$ $r+2 k$. This rank is clearly maximal and is achieved on a Zariski-open set $S \underline{\mathrm{C}} E \times \mathrm{R}^{\mathrm{r}+\mathrm{fc}}$; furthermore, $(0,0) € 5$. Then $S_{x}=\operatorname{Sn}(E \times\{0\})$ is a Zariski-open set in $\mathrm{R}^{\wedge} \times\{0\}$ containing $(0,0)$. The maximality of rank implies that $/ ?: S — \&_{n}$ is a local difFeomorphism and that $b^{\circ}(>S)$ is open in $<f_{n}$. Let (wi,0) e Si , and let $\mathrm{JV}=/ \times J \subset R^{k} \times \mathrm{R}^{1+}$ rectangular neighborhood on which $f t$ is a diffeomorphism onto some open neighborhood of $/ \mathrm{j}=f i(u i, 0)$ in ${ }^{\wedge}(S) \underset{\sim}{c}\left[Z_{a} \cap Y_{f}\right] \perp \wedge$. We have $/ \mathrm{j} \mathrm{G}_{\mathrm{Q}} \mathrm{n} Y_{f}$.

As we remarked earlier, $<p$ is constant on each JV/; thus $<p$ o fl is constant on $\{u\} \times /$ for all u e I. Therefore $<p o p\rangle_{N}$ is determined by $\varphi \circ \beta\rangle_{I \times\{0\}}$, and

$$
\begin{align*}
\max & \left\{\operatorname{rankd}(0>\mathrm{o} / ?)_{\mathrm{M} ?)}:(u, t) \text { e JV }\right\} \tag{15}\\
& \left.-\max \left\{\operatorname{rank}\left(\left.\mathrm{p} \circ \mathrm{yS}\right|_{\mathrm{x}\{\mathrm{O}}\right\}\right)(\mathrm{M}, \mathrm{o}):<\mathrm{e} /\right\} \\
& =\max \left\{\operatorname{rankc} /(\wedge \circ \mathrm{A})_{\mathrm{M}}: \mathrm{M} \mathrm{G} /\right\} \\
& =\max \left\{\operatorname { r a n k } \left\{\left(/(9 » o X)_{u}: \mathrm{M} 65 /\right\}=\mathrm{fci} .\right.\right.
\end{align*}
$$

The penultimate equality holds because the maximum is achieved on a Zariski-open set and hence on any open set. As $<p / N)$ is open in $U_{s} \mathrm{n}^{\wedge} \mathrm{r}$, (15) implies that

$$
K=\max \left\{\operatorname{rank}^{\wedge}\left(\$?^{\circ} P\right)(u, t)^{\prime}-\{u, t) \text { e } N\right\}=k_{x}
$$

as desired.

The number k (the generic rank of $d_{f}(p o X)$ on $B f$) is an important constant for our geometric analysis of multiplicities. It is convenient to introduce the "defect index"

$$
\begin{align*}
\mathrm{To}= & \operatorname{dim}^{\wedge} \mathrm{r}-2\left(\text { generic dimension }\left\{K \bullet I: I \text { e } \&_{n}\right\}\right) \tag{16}\\
& + \text { generic dimension }\left\{K \bullet P I: I \text { e } t f_{n}\right\} .
\end{align*}
$$

We will show that $k=k \mathrm{o}-\mathrm{T} 0=0$.
The definitions of r and k show that $\operatorname{dim}<\$_{n}=r+2 k$. The generic ($=$ maximal) dimension of $K \cdot I, I €$. @ ${ }_{n}$, is achieved on a Zariski-open set; hence it equals the (constant) dimension of $K-1,1$ e $U \S W\left(9_{n}\right.$. Similarly,

(17) generic dimension $\left\{K \cdot P I: I e<{ }_{n}\right\}=\operatorname{dim}\{\mathrm{AT} \cdot(p: c p € U f\}=r$. Since $\operatorname{dim} N I=k+r$ for generic $/ \mathrm{e} @_{n}$, we have
(18) $\operatorname{dim}^{\wedge}+\operatorname{dim}$ is: $\cdot \mathrm{P} /-2 \operatorname{dim} \mathrm{~A}^{y}=0 \quad$ for generic $/ \mathrm{e}<f_{x} \mathrm{n} U_{\text {s. }}$. An immediate consequence is:
(4.3) LEMMA. We have $r_{Q}=0$ iff $^{\prime} N_{t}=K \cdot$ Ifor generic $I e @_{n} \mathrm{n} U_{s}$.

Proof. Formulas (16) and (18) show that $\mathrm{To}=0 \mathrm{iff} \operatorname{dim} N I=\operatorname{dim} K l$ for generic /. From Lemma 2.4, $K l \mathbf{C} \mathbf{T V}$ /, since both of these varieties are graphs of polynomial maps, they have the same dimension iff they are equal as sets.

We need another lemma to relate To and k
(4.4) TRANSVERSALITY LEMmA. Let $S^{\prime \prime}=\{I$ e [/jfK?,: $\operatorname{ank}(d \varphi)\rangle$ is maximal). Then $\operatorname{ker}(d<p) i=\mathrm{ad}^{*}(\mathrm{~g}) / \mathrm{n} \mathfrak{E}_{(/)}$for all $I € S^{\prime \prime}$, where

$$
\mathfrak{r}_{P(l)}=\left\{X \in \mathfrak{t}: \operatorname{ad}^{*}(X) P l=0\right\}
$$

and the annihilator is taken in g^{*}.
Proof. There are Zariski-open sets $Z p \underline{\mathrm{C}} t^{*}$ covering $U f$, plus rational nonsingular maps $Q p$ defined on them, such that on $Z p$ n $U f$, $Q p=P_{e^{*}}{ }^{x}\left(P_{e}\right.$ is the Pukanszky parametrizing map described earlier
 sets ing* covering $P \sim \sim^{l(U \bar{f})}$, and $Q p o P=P \sim_{z}^{l}$ oP on $\left.U p f\right) P-$
 we have $S^{\prime \prime} Q P \sim(U f)$ automatically.)

Fix / e $S^{\prime \prime}$. Since rank(aty>) is constant on $S^{\prime \prime}$, a standard result (see Lemma 1.3 of [8]) shows that $S^{\prime \prime}$ foliates into leaves on which (p is constant; at $/$, there is a rectangular coordinate neighborhood $N=$ $I \times J$ in $5^{\prime \prime \prime}$ (with / a /^-dimensional cube and / a \wedge-dimensional cube, say), such that $(t) \times J$ is the intersection of a $<p$-leaf with N and values of $<p$ are distinct on each $(t) \mathrm{x} /, t \mathrm{e} /$. Since $\left(p \backslash s><=T I T^{\circ} P j \sim *{ }^{\circ} \mathrm{P} \backslash \mathrm{s}^{n}\right.$ and

$$
\begin{aligned}
\{l & \left.\in P^{-1}\left(U_{e}^{K}\right): \pi_{T} \circ P_{e}^{-1} \circ P\left(l^{\prime}\right)=\pi_{T} \circ P_{e}^{-1} \circ P(l)=\varphi(l)\right\} \\
& =\{l \mathrm{G} p-\backslash U f): K-P V=K P l\}=P \sim K o P l),
\end{aligned}
$$

we see that the \#>leaf through / is contained in $P \sim \wedge(K \cdot P I)$. The

$$
\begin{equation*}
\operatorname{ker}\left(d(p) i=\text { tangent space to } \$? \text {-leaf through } / £ x j-\mathrm{n} \mathrm{t}^{\wedge}, .\right. \tag{19}
\end{equation*}
$$

On the other hand, if / e $5^{\prime \prime \prime}$, then we can find an index $/$? with $I € U p$. On $t \mathrm{gg} \mathrm{n} S^{\prime \prime},\left(p\right.$ is the restriction of $\% T^{\circ} \mathrm{Q}^{\wedge}{ }^{\circ} P$, defined on $U p$. It is easy to see that

$$
\left.\operatorname{ker}(d<p) i D \text { (tangent space to } S^{\prime \prime} \text { at } / \text {) } \mathrm{n} \operatorname{kerd(nr}{ }^{\circ} Q p^{\circ} P\right) i-
$$ But $n j$ o $Q p$ o P is constant on t^{\wedge} fi $\mathrm{P}^{-1(K \cdot P I) \text {, and so }}$

$$
\begin{equation*}
\operatorname{ker}(\wedge), \mathrm{Dt} /-\mathrm{nr} \mathrm{r}^{\wedge} . \tag{20}
\end{equation*}
$$

Comparing (19) and (20) gives the lemma.
(4.5) corollary. With notations as above, we have

$$
k-k_{x}=\quad{ }_{j}^{1} \tau_{0} .
$$

In particular, $N I=K \cdot I$ iffk $=k$, i.e., generic rank $\left\{d<p i^{m, I}\right.$ e $\left.t f_{x}\right\}=$ Card $R^{\prime}(S)$.

Proof. Lemma 4.4 says that for all generic /,

$$
\operatorname{ker}(d<p) i=x j-\mathrm{n} \mathrm{t}^{\wedge}=\left(t_{l}+\mathrm{tp},\right)^{1}
$$

Hence, for all such /,

$$
\begin{aligned}
\operatorname{dim} \operatorname{ker}(d \varphi)_{l} & =\operatorname{dim} 9-\operatorname{dimt} /-\operatorname{dimt} />/+\operatorname{dim}\left(\mathrm{t} / \mathrm{nr}_{\mathrm{w}}\right) \\
& =\operatorname{dim} \mathscr{\theta}_{\pi}+\left(\operatorname{dimt}-\operatorname{dimr} r_{\mathrm{P} /}\right)-\left(\operatorname{dimt}-\operatorname{dim}\left(\mathrm{t} / \cap \mathfrak{t}_{P l}\right)\right) \\
& =\operatorname{dim} \mathscr{\theta}_{\pi}+\operatorname{dim}(K \cdot P I)-\operatorname{dim}(K \cdot I),
\end{aligned}
$$

and

$$
\begin{aligned}
k_{x}=k^{*}= & \text { generic } \operatorname{rank}\left\{\operatorname{ker}(\mathrm{ofy}>) /: / \mathrm{e} @_{n}\right\} \\
& =\operatorname{dimtfx}-\operatorname{generic} \operatorname{dim}\left\{\operatorname{ker}(\mathrm{cfy}>): / \mathrm{e} \&_{n}\right) \\
& =\operatorname{dim} K \bullet I-\operatorname{dim} K \bullet P I \quad\left(\text { for generic } l e @_{n}\right) .
\end{aligned}
$$

Since $k={ }^{\wedge}(\operatorname{dim} \wedge f /-\operatorname{dim}(K \bullet P I))$ for generic $/$, see (17), we see that To $=2(k-k)$. The final claim now follows from Lemma 4.3. D
 infinite multiplicity, as we will see. Regard $<p=H J^{\circ P}$ on $P \sim^{x}(U f)$, and not just on $\&_{n} \mathrm{nC}(j$ as above. Let

$$
\begin{align*}
I_{,}^{J t} & =\varphi\left(\mathscr{F}_{\pi} \cap P^{-1}\left(U_{e}^{K}\right)\right) \tag{21}\\
\Sigma^{\delta} & =\varphi\left(\mathscr{O}_{\pi} \cap U_{\delta}\right) \\
2 / & =9\left\{X_{f}\right)
\end{align*}
$$

These are semialgebraic sets with $27 D U^{5} D 2 /$; hence $Y 7^{1}$ has a stratification $<?>$ compatible with $\sim L^{s}$ and $1 /$. Notice that dimE* $=$ $\operatorname{dim} \Sigma^{\delta}=k \backslash=k^{*}=$ generic $\operatorname{rank}\left\{(\mathrm{flyy}>) /: / \mathrm{G}<f_{n}\right\}$.
(4.6) THEOREM. Let g be a nilpotent Lie algebra, i a subalgebra; let $\left\{X i, \ldots, X_{p, \ldots}, X_{m+P}\right\}$ be a basis ofg through t as in §3. Let $n € G$ and let @ ${ }_{n}$ be its coadjoint orbit. Define $d=(e, d)$, as in §2, to be the
 map; define T_{0} as in (16), and I. ${ }^{71, I .}$ canonical measure class on 57. Then:
(a) 27 , " $L^{6,1 /}$ differ by sets having lower dimension than 27 , so that they all determine the same measure class [v].
(b) IfT $T_{0}>$, then

$$
\left.\pi\right|_{K} \cong \int_{\Sigma^{n}}^{\oplus} \infty \cdot \sigma_{l} d \nu(l)
$$

Proof. The discussion so far applies to any base point / e $\left(f_{n} \cap U \$\right.$. Fix such an $/$. We have seen that $P(U s) Q U f$. Theorem 3.3 gives us a decomposition

$$
\left.\pi\right|_{K}=i_{,}^{\oplus} \sigma_{\varphi \circ \lambda(u)} d m(u)
$$

where $k(u)=f(u, f)$ (see (5)) and m is Lebesgue measure on R^{\wedge}, k as above. We know that $k^{*}=$ generic $\operatorname{rank}\left\{\mathrm{d} ?\left({ }^{\wedge} \circ X\right)_{u}: u\right.$ e $\left.A f\right\}$ and that this rank is achieved on some Zariski-open set E^{*} C $A f$. Let
$Z^{*}=\left((p o k)\left(E^{*}\right) \underline{\mathrm{C}} \mathrm{Z}^{\wedge}\right.$; clearly $\operatorname{dim} Z^{*}=K$. The map $<p o X$ corresponds to a foliation of E^{*} with $g>o X$ constant on each leaf; in fact, for any
 values on the transversal / x (0)-see Lemma 1.3 of [8]. Hence if $U \underline{\mathrm{C}} E^{*}$ is open, then (p o $X(u)$ contains a k^{*}-dimensional manifold.

Stratify Z^{*}, letting Zp be the union of the A^{*}-dimensional pieces and ${ }^{*}$ the rest. Call this stratification 3°. Let $\left.E^{*}=I<p o X\right)-\left(L^{*}\right)_{\mathrm{E}} \mathrm{K}^{*}$,
 $\dot{ま}_{s}^{*}=\mathrm{f}^{*} * \mathrm{n}\left\{(p o \mathrm{~A}){ }_{s}\right.$ E^{*} further, E_{r}^{*} is open in E^{*} because Zp is open in Z^{*} and poA is continuous. In addition, E_{s}^{*} cannot contain a A:-dimensional piece, since such a piece would be open in E^{*} and hence contain a coordinate patch $W \simeq I x J$ like the one above. But then $\operatorname{dim}\left({ }^{\wedge} \mathrm{o} X(W)\right.$) would be k^{*}, contradicting the definition of ZJ. Thus $\operatorname{dim}\left(E^{\wedge}\right)<k$ and E_{r}^{*} has full measure in $A f$.

Let $S \backslash \ldots, S_{p}$ e S^{6} be the $\&^{*}$-dimensional pieces in Z^{*}, so that the pullbacks $E j=(c p \text { o } X)^{\prime l}(S i)$ n E_{r}^{*} are disjoint open sets filling E_{r}^{*}. Take rectangular patches $W j \cong I j \times J j$ covering E_{r}^{*}, each lying in a single pullback $£$, : We may assume that ($p o X$ is a diffeomorphism of $I, \cdot \mathrm{x}\{0\}$. Therefore $F i=c p$ o $X(I / \times\{0\})=\left(p \circ \mathrm{~A}\left(\mathrm{~W}^{\prime},\right)\right.$ is open in Z^{*}, and $\operatorname{dirnF} ;=\operatorname{dim} / ;$. Lebesgue measure ${ }^{\wedge} \ll 1 \times d u 2$ on ${ }^{\wedge}=/$, $\mathrm{x} /$, is equivalent to m on W_{h} and cMi is transferred under $<p o X$ to a measure on F ; equivalent to v there. So
 are disjoint in E_{r}^{*} and have the form $\mathrm{M},=\mathrm{AT}$; x $/,-$, where $K_{t} \mathrm{C} /$; is such that $G j=\left((p o X)(K i \times\{0\})=\left(p o X\left\{M_{t}\right)\right.\right.$. Hence
and hence (writing ${ }^{\wedge} \mathrm{i} \geq n i$ to indicate that 712 is equivalent to a subrepresentation of $n \backslash$ we get

$$
\begin{aligned}
\left.\pi\right|_{K} & \left.\cong \int_{E_{r}^{-}}^{\oplus} \sigma_{\varphi \circ \lambda(u)} d u \geq \mathbf{0}_{J Z i}^{\circ}\right\}_{M,}^{@} \sigma_{\varphi \circ \lambda(u)} d u \\
& \cong\left(\mathrm{C} / \int_{i=\backslash} \infty \cdot \sigma_{l^{\prime}<} d \nu\left(l^{\prime}\right) \cong \int_{\Sigma_{r}^{*}}^{\oplus} \infty \cdot \sigma_{l} \cdot d \nu\left(l^{\prime}\right) .\right.
\end{aligned}
$$

On the other hand, if ($X, f i$) is a measure space and $X=\backslash j f_{=I} X j$ ($X j$ measurable, but not necessarily disjoint), then we can easily show, by partitioning X compatibly with the $X j$, that

$$
\prod_{J x} \mathbf{0 0}-\left.\boldsymbol{n}_{\boldsymbol{x}} \boldsymbol{d} \boldsymbol{u}^{\sim} \stackrel{N}{=} \mathbb{C}^{r(®)}\right|_{X_{J}} \text { oo- } n_{x} d u .
$$

Hence

$$
\begin{aligned}
& y d v\left(l^{\prime}\right) \quad(\text { since } 00 \cdot \mathbf{O}=\mathbf{0}) \\
& \begin{aligned}
i=1 \\
\leq \\
J-L ;
\end{aligned} \quad O O \cdot O_{t, d} d v\left(l^{\prime}\right) .
\end{aligned}
$$

Summing over N, we get

$$
\begin{aligned}
* K \leq \Theta /{ }_{H}^{\text {oo }}<x>0_{9 O K u)} d u & <00 / \\
\leq T \Lambda K & (\text { from above }) .
\end{aligned}
$$

The "Schröder-Bernstein Theorem for representations" says that these representations are equivalent.

We now show that S^{*} and I^{71} differ by sets of dimension $<k^{*}$, and so determine the same canonical measure: $[v \wedge=[1 /]$; this will complete the proof. (This part of our discussion works for any value of To.) Let

$$
\begin{aligned}
& S_{1}=\left[\lambda\left(E^{*}\right)\right]=\bigcup\left\{N_{l}: l \in \lambda\left(E^{*}\right)\right\}, \\
& S_{2}=\left(\sigma_{\pi} \cap P^{-1}\left(U_{e}^{K}\right)\right) \backslash \varphi^{-1}\left(\varphi\left(S_{1}\right)\right), \\
& \Sigma_{1}=\varphi\left(S_{1}\right)=\varphi\left(\lambda\left(E^{*}\right)\right)=\Sigma^{*}, \quad \Sigma_{2}=\varphi\left(S_{2}\right) .
\end{aligned}
$$

The set $k\left(E^{*}\right)$ is semialgebraic and dense in $X f=k(A f)$. From Remark 3.5, $S \backslash=\left[X\left(E^{*}\right)\right]$ satisfies $\operatorname{dim}\left(\left(f_{n} \backslash S i\right)<\mathrm{dim}^{\wedge}\right.$ and contains a dense open subset of $\&_{n}$. Next, $\mathrm{Zj}, \mathrm{X} 2$ partition Z^{*}. Then maximal $\operatorname{rank}\left\{(d \varphi)_{f}: / \mathrm{e}<f_{n}\right\}=k^{*}$ is reached on an open set of S, so that $\operatorname{dim} \Sigma_{1}=K$. Stratify 27 compatibly with $\mathrm{Z}_{1 ;} \mathrm{Z}_{2}$ - If $£ 2$ contains a
 disjoint from $S \backslash$. This contradicts the fact that $S \backslash$ is dense in @ $@_{D}$
Therefore $k^{*}>\operatorname{dim}(\mathrm{Z} 2)=\operatorname{dim}\left(S^{\text {? }} \backslash L^{*}\right)$, as required.
(4.7) Remark. When To >0, we have $\operatorname{dim} K l<\operatorname{dim}$ TV/ for generic $I €\left(f_{n}\right.$. From Lemma 2.4, TV is a union of \wedge-orbits, so in this case TV contains infinitely many A^-orbits. Hence so does $\left.@_{n} \mathrm{n} P \sim^{\chi(}{ }^{\chi} \cdot{ }^{\text {A }} P i\right)=$ $\left(f_{n} \mathrm{n}\left(K \cdot I+I_{-}\right)\right.$, for generic $/ €<?$. Thus the multiplicity of $o j$, in $n x$ is equal to the number of $\mathrm{Ad}^{*}(\wedge \mathrm{~T})$-orbits in $\&_{n} \mathrm{n} P \sim^{l(K}\left(I^{\prime}\right)$ for v-a.e. $I^{\prime} € 27$ (provided that we do not distinguish among infinities). This interpretation of multiplicity as the number of certain $\mathrm{Ad} *(/ \mathrm{Q}$-orbits also holds in the finite multiplicity case, $\mathrm{To}=0$, as the next theorem shows.
(4.8) THEOREM. Let g be a nilpotent Lie algebra, t a subalgebra, and G, K the corresponding (connected, simply connected) groups. Let $\left\{X \backslash, \ldots, X p, \ldots, X_{m+p}\right\}$ be a basis for g through t, as in §3. For
 natural projection. Define the defect index To as in (16), and define $27=\left(p\left(P^{\star}\left(U^{\wedge}\right) r\left(f_{n}\right)\right.\right.$ with its canonical measure class $[v]$ as in (21). Suppose that $\mathrm{To}=0$, and let
(22) $n\left(l^{\prime}\right)=$ number of K-orbits in $P \sim \sim^{\prime}\left(K-1^{\prime}\right)$ n $O_{K}, \quad /{ }^{\prime} \mathrm{G} 27$.

Then for $v-a . e . I^{\prime} e l^{7 l,}$
(a) $P \sim\left(K \cdot I^{\prime}\right) \mathrm{n}<f_{n}$ is a closed submanifold and its connected components are K-orbits;
(b) There is a common bound N such that $n\left(l^{\prime}\right) \leq N$;
(c) We have

$$
n \backslash_{K} \sim \int_{\Sigma^{n}}^{\oplus} n\left(l^{\prime}\right) \sigma_{l^{\prime}} d \nu\left(l^{\prime}\right)
$$

where $o \backslash, 6 \hat{K}$ corresponds to $K \cdot I^{*} \mathrm{Ct}^{*}$.
Proof. The proof is fairly long, and we divide it into a number of
 $27 \propto H$ as before. We have $A_{f} \subset R^{k}, k=$ card $R^{N}(d) y^{\prime}=$ AtirnX); from Lemma 4.2 and Corollary 4.5 , our assumption that $\mathrm{To}=0$ gives

$$
k=k^{*}=\operatorname{generic} \operatorname{rank}\left\{(\wedge) /: / \mathrm{e}\left(f_{n}\right\}=\operatorname{dim} 27\right.
$$

and

$$
k=\text { generic } v \& n k\left\{d \left((p \circ X)_{u}: \text { ue } A f f .\right.\right.
$$

For any set $\left.A _C P \sim \backslash U f\right) C \backslash @_{n}$, we define its ${ }^{\wedge}$-saturant, $\left[A^{\wedge}\right.$, by

$$
[A]_{\varphi}=\varphi^{-1}(\varphi(A))=\mathscr{Q}_{\pi} \cap \bigcup\left\{K \cdot l+\mathfrak{k}^{\perp}: l \in A\right\} .
$$

 The proof proceeds as follows:

Step 1. We construct a semialgebraic set $H \mathcal{C} K X_{f} \in\left(f_{n}^{\cap} \cap P^{-1}\left(U_{e}^{K}\right)\right.$ with the following properties:
(i) H is \wedge^{\wedge}-saturated: $[H]_{v}=H$.
(ii) The complement of H is of measure 0 in @ $n_{n} P_{\sim} x^{x} \wedge f f$).
(iii) $\wedge_{»(i /)}=I I^{7}$ is semialgebraic and of full measure in 27 .
(iv) For I e $H,\left[l l_{9}\right.$ is a union of AT-orbits, each of which is a connected component of $[l]_{9}$.
(v) For $/ € \|, N,=K \cdot I$.
(vi) The set $B^{\circ}=/ / \mathrm{n} \mathrm{Xy}$ is a semialgebraic set of full measure in X_{f}, and $\mathrm{C}^{\circ}=X_{\sim} \sim^{\prime\left(B^{\circ}\right)} \underline{\mathrm{c}}^{\wedge}$ has full measure in $\mathrm{R}^{\text {tc. }}$
Once Step 1 is completed, part (a) of the theorem is proved; furthermore, it will suffice to prove (c) when the integral is over $\sim L^{H}$ instead of I^{*}.
Step 2. For $1 K^{<} j_{-}$oo, define $Z^{H(j)}=\left\{I^{\prime}\right.$ e S^{\wedge} : the number of isf-orbits in $P \sim^{\prime \prime}\left(K-I^{\prime}\right)$ - H^{\prime} is j). The $\mathrm{S}^{\wedge} \mathrm{O}$) obviously partition $U^{\prime \text {; }}$ we show that they are semialgebraic and that they are empty once j is sufficiently large. This proves (b).

Step 3. Let C, $=\left(\langle p o k)-V_{.}{ }^{H U}\right)$). We show that

$$
\int_{C_{j}}^{\oplus} \sigma_{\varphi \circ \lambda(u)} d u=\dot{I} \quad j \sigma_{l^{\prime}} d \nu\left(l^{\prime}\right)
$$

 Since

$$
{ }^{\wedge} \mathrm{IA}:={ }_{J C^{\circ}}^{{ }^{\circ}}{ }^{\oplus}{ }_{a q>o i t u)} d u
$$

(from Theorem 3.5 and (vi) of Step 1), this proves (c).
Proof $\{$ Step 1). Let

$$
U=\left\{l \in P^{-1}\left(U_{e}^{K}\right) \cap \mathscr{O}_{\pi}: \operatorname{rank}(d \varphi)_{l}=k\right\}
$$

$$
x)=x_{f} \cap u n \mathbf{f} / \mathbf{j}
$$

All A^{\wedge}-orbits in t / j have dimension $r+k$; thus $\operatorname{dim} \mathrm{A}^{\prime} \cdot I=\bullet r+k$ for / G $U s H\left(f_{n}\right.$, and $\mathrm{r}+\mathrm{A}$: is the generic dimension of Af-orbits in <?,.. The set U is Zariski-open in $\&_{n}$, and is $\mathrm{Ad}^{*}\left(\mathrm{~A}^{\prime \prime}\right)$-invariant, since $\mathrm{Ad}^{*}(\mathrm{~A}:), k \mathrm{G} \mathrm{A}^{\prime \prime}$, is a difFeomorphism of \wedge that fixes A^{\prime}-orbits and commutes with (p.

For all / e $U g C \backslash U, N_{i}=K \bullet I$, since $N_{i} 2 K \cdot I$, both are connected, and their dimensions agree (Corollary 4.5); in particular, $U g$ n $U=$ $[U s \mathrm{n} U]$, where [A] is the $\mathrm{i} \mathrm{V} /$-saturant defined in Proposition 3.2. The set $B=X \sim \sim^{l}{ }^{l\left(X_{f}\right)}=A_{f r \backslash} \backslash t\left(=R^{k:} X(t) \in U_{s} n U\right\}$ is Zariski-open in R^{k} and is nonempty because $\left.\left.\left[X^{l f}\right]=\left[X_{f} f\right) U_{s n} U\right]=\left[X_{f}\right] D U_{s} f\right) U$ is dense in $\left\langle f_{n}\right.$. Hence B is dense in $A f$ and $X j=X(B)$ is a dense open semialgebraic set in $X f$.

For all $/ € E U \mathrm{n} C / j$, we have $\operatorname{dim} K \cdot I=\operatorname{dim} N I=k+r, \operatorname{dim} G-1=$ $\operatorname{dim}^{\wedge} \mathrm{t}=/+2 \mathrm{~A}$; and $\operatorname{rank}($ aty $) /=\mathrm{A}$; The map ${ }^{\wedge}$ foliates $\mathrm{C} / \mathrm{n} \mathrm{t} /, 5$; if $\mathrm{L} /$ is the leaf through $/$, then $K-l \underline{\mathrm{c}} L j$, and $\operatorname{dimL} /=\operatorname{dim}\left(f_{n}-\operatorname{rank}(\wedge) /=\right.$ $\operatorname{dim}^{\wedge} \wedge \bullet /$. Since $\operatorname{Ar} \bullet /$ and L are connected manifolds and $K \bullet I$ is closed in $£ / \mathrm{n}$ Us, we must have

$$
\begin{equation*}
L i=K-l=N_{h} \quad a N e U n U_{s .} . \tag{24}
\end{equation*}
$$

Moreover, if $\tilde{I} €[l]^{\wedge} n U n U_{s}$, then the leaf $L j$ coincides locally with [$/ \mathrm{l}$ D D Un Us- But this last set is a closed subset in Un Us, stable under K. Hence it is the union of the AT-orbits it meets, and these are open in the relative topology coming from $<f_{n}$ because each AT-orbit is a leaf of the foliation. Thus the components of $[1]^{\wedge}, \mathrm{n} U \mathrm{n} U s$ are AT-orbits. We conclude that (iv) and (v) hold provided that $H \mathrm{C} U \mathrm{n} U g$ and (i) holds.

Since B is Zariski-open, $X)=X(B)$ is semialgebraic; we noted above that it is dense in $X f$. In particular, $\operatorname{dim}(\mathrm{Xy} \backslash \mathrm{XI})<k=\operatorname{dimXf}$. Define

$$
\begin{aligned}
& F=\left(P^{-1}\left(U_{e}^{K}\right) \cap \mathscr{O}_{\pi}\right) \backslash K \cdot X_{f}^{1}, \\
& H=\left\{P_{-}^{x}(U ?) K d ?_{n}\right) \backslash \wedge^{-1}(\varphi(F))=\left(P^{-1}\left(U_{e}^{K}\right) \cap \mathscr{O}_{\pi}\right) \backslash[F]_{\varphi} .
\end{aligned}
$$

Then $/ /$ clearly satisfies (i). Since $H \subset K \bullet X_{f-C} U n U_{s}$, (iv) and (v) hold as well; furthermore, F and H are easily seen to be semialgebraic. The key fact to prove is:

$$
\begin{equation*}
\operatorname{dim}\left((p(F))<\operatorname{dim} S^{*}\right. \tag{25}
\end{equation*}
$$

For if (25) holds, then (iii) is immediate, since $Y F=I,^{7 I} \backslash<p(F)$. Furthermore, $\operatorname{dimfF}^{\wedge}<\operatorname{dim}^{\wedge}$, and (ii) follows. (Otherwise, $[F]_{, p} p$ contains an open set in <?,, and hence in $\&_{n} \mathrm{n} P \sim(U f)$. Since dip has maximal rankm on every open set, $\left\langle p(F)=<p[F]_{v}\right.$ would contain an open set in $I F$, and this contradicts (25).) Finally, $[X f$ n $H]=$ $H \hat{A}[X f]$ is dense in $<$? ${ }_{n}$. Now define $B f$ C $A f$ as in Lemma 4.1. Then $\mathrm{A}: B f \rightarrow \mathrm{Fj}$ is a bijective local diffeomorphism. Fix fo $£ \# /, /={ }^{\wedge}\left(\wedge^{\wedge}\right)$;
taking a rationally varying action basis, define $\left.F(u, t)=i f / x(t) u^{u}\right)^{\text {as }} \mathrm{m}$
(3) for t near $t o$ and $u e W^{+k .}$. If V is a neighborhood of o_{o}, then $F\left(W^{+k,}, V\right)=[X(V)]$ contains an open neighborhood of $I Q$ in $<$? n, by Lemma 4.1(c). Hence $[X(V)]$ meets $H=[H]$, so that $\mathrm{A}(\mathrm{K})$ meets H. Because X is bijective on A_{f}, V meets $\mathrm{C}^{\circ}=X \sim l(H \mathrm{n} \mathrm{Xy})$. Thus C° is dense in 5 y and $H f X f$ is dense in Xy . Since C° is semialgebraic, (vi) follows.

We thus need only prove (25) to complete Step 1 . Let \& be a stratification of U^{l} compatible with the sets $\left\langle p\{X f)=\left(p\left(K_{\bullet} \quad X l\right)\right.\right.$ and $q>\{F)$. We suppose that there is a piece $M \mathscr{C}(p(F)$ with $\operatorname{dimAf} \wedge=k$ and
 The set Af^{\wedge} is covered by ${ }^{\wedge}$-images of pieces lying in F; on one of them (Mo, say), we have

$$
\text { maximum } \operatorname{rank}\left\{\mathrm { d } \left(<P M_{o)} I^{\mathrm{G}} I^{\mathrm{M})\}}=\operatorname{dim} M_{0}^{\sim} .\right.\right.
$$

Hence $\mathrm{A} b$ meets 17 , and hence $\mathrm{A} \mathrm{Q} \wedge^{\wedge} \mathrm{C}$. The tangent space (TMQ)I, I e Afo, must thus contain subspaces of dimension k that are transverse to the leaves of the ${ }^{\wedge}$-foliation of U; therefore there is a submanifold $\mathrm{A} / \mathrm{C} \mathrm{A} / \mathrm{Q}, \operatorname{dim} \mathrm{Af}=k$, such that $<P \backslash M$ is a diffeomorphism to an open set in $M \widehat{Q}$.

Let $S i$ G A be the largest index such that $U s$, meets M. Then $U s$, n Af is nonempty and open, by Proposition 2.1 (b); we may assume that Af c $U_{s i}$. From Proposition 2.1 (a) and (c), $-N$, с $\left(K-l+t^{\wedge} n^{\wedge} n U s\right.$, for all / $€ \mathrm{Af}$; since (p is a diffeomorphism on Af and is constant on each $N I, M$ meets $N /$ only at $/$. We claim:
(26) The set $Y=\left[J\{N,: I € \mathrm{Af}\}=[\mathrm{Af}]_{_} c U_{S i} \mathrm{n} \wedge\right.$ contains an open subset of $\left.t f_{n n P \sim} \sim^{(} U^{\wedge}\right)$.
Assume this for the moment. Since $\left(f_{n n P \sim^{l}}(U s)\right.$ is Zariski-open in $\left(f_{n}\right.$, we have $d j=S$. Furthermore, $[X, l]=K \bullet X i$ contains an open dense set of (f_{n}, because $X \dot{\xi}$ is dense and open in $X f$ (see Proposition 3.2 and Remark 3.7). Hence $7 \mathrm{n}[\mathrm{XI}]$ contains an open subset $S \mathrm{C}$ UrlU\$. Since $K-X _{y}$ contains every $N /$ meeting it, Af meets $K-X /$. But $M_{C} C F$ is disjoint from $K \cdot X$, and this contradiction gives (25).

We now prove (26). We have Af c U_{s}, D $P^{\prime \prime x}(U f) n U D\left(?_{n}\right.$. We know that $\operatorname{dim}(K \bullet P i)=r$ for all $/ € U_{6,}, \mathrm{n} P \sim\left((U f) \mathrm{n}<9_{\sigma,}\right.$, and that $\operatorname{dim}(\mathrm{G} \cdot))=\operatorname{dim}\left(f_{n}=I k+r\right.$. Since $/ € U s$,, we also have

$$
\left.\left.\operatorname{dim} \mathrm{A}^{\prime} \bullet P I=\mathrm{Cardi} ?^{\wedge},\right), \quad \operatorname{dim} \mathrm{G} \bullet I=\mathrm{Cardi} ?^{\wedge \wedge}\right)+2 \operatorname{Card} / ? £((*, \bullet),
$$

from the definitions of $R_{2}^{\prime}(d i), R_{2^{\prime}}^{\prime}(S i)$; it follows that

$$
\operatorname{Card}_{R_{2}^{\prime}(S i)=r . \quad \operatorname{Card}^{\prime} R_{2^{\prime}}^{\prime}(S i)=k, ~}^{\text {, }}
$$

and hence that $\operatorname{dim} N I=r+k$ for all $/ € U g_{r}$ In particular, this holds for all / e M. Parametrize M via a $C^{\circ 0}$ diffeomorphism /?: Q - M, where Q is open in R^{\wedge}. By perhaps shrinking M slightly, we may assume that these are rational maps $\left\{Y(l), \ldots, Y_{r+k}(l)\right\}$ providing an action basis at each I e M. As in $\S 2$, we may define a nonsingular map

> which defines the N_{h} Let $h(s, t)=y_{a}(f i(s), t)$ for $(s, t) e Q \times R^{r+k}$. Then Range $/ ?=[M]=Y$. Since $t \mathrm{H} \rightarrow h(s, t)$ gives N^{\wedge} s) while $s i>$ $l_{z}\left(1^{1,0}\right)$ gives M , and since $N i$ is transverse to M, we see that

$$
\left.\operatorname{rank}(d h)_{(s, 0}\right)=\operatorname{dim} M+\operatorname{dim} \mathrm{A}_{(5)}=2 \mathrm{~A} ;+r=\operatorname{dim} \mathscr{\theta}_{\pi} .
$$

This proves (26) and completes Step 1.
Proof(Step 2). For / e H, we know that $[/] \mathrm{p}$ is a union of AT-orbits $K l \gg=N$,, all $I^{\prime} e U n U_{s .}$. But each $\left.\mathrm{iV}_{f ;} / \mathrm{e}[\mathrm{X}\}\right] \mathrm{D} / /$, meets X) in a single point. Thus for all I eH,
(27) $n(<p(l))$ (see (22)) $=$ number of tf-orbits in $\left(K \cdot I+t^{L}\right) \mathrm{n} f f f_{n}$

$$
\begin{aligned}
& =\text { number of } \wedge \text {-orbits in }\left(K \cdot I+I^{1}\right) \mathrm{n} H \\
& =\operatorname{Card}\left\{\left(K \cdot l+\mathfrak{E}^{\perp}\right) \cap X_{f}^{1}\right\} .
\end{aligned}
$$

Recall that $X j .=k\{B)$ for some Zariski-open set $B C A_{f} C R^{k .}$ The map P o A: $\mathrm{R}^{\wedge} \rightarrow V$ is polynomial. We also have the rational nonsin-
 is the range of $-\mathrm{P}_{\mathrm{e}}\left({ }^{\prime}, W\right)$, and the map of $W X o K \cdot I$ is a diffeomorphism. Consider the polynomial $R(s, t)=P_{e}\left(f f^{\prime} t\right)$ - $\left(P_{o} X\right)(S)$ defined on $B \times R^{\text {r. The roots }} R(s, t)=0$ correspond precisely to the points in $P \sim^{\prime \prime}\left(K-I^{\prime}\right) \mathrm{n} X j$., and this intersection is $\left(K \bullet I+t^{ \pm) n X j}\right.$ for any $\left./ € \mathrm{p}^{\prime} \mathrm{H}^{\prime} \cdot{ }^{\prime}\right) \mathrm{n}^{\wedge} \mathrm{t}$. Thus the number of roots of $\mathrm{U}\left(\mathrm{j}_{\mathrm{j}} 0=0\right.$ is j iff $I^{\prime} G Z^{H(j)}, 1 \leq 7 . \leq 00$. Since X_{0} is a local diffeomorphism on 5 when to $=0$, the roots must be isolated; that is, there is no oneparameter family of roots in $B \times W$. Now we use the following result.

there is a number N, depending only on $m, n, \operatorname{deg} \mathrm{~A}, \ldots, \operatorname{degf}_{\mathrm{m}}$, and $\operatorname{deg}(2$, such that either $P(x)=0$ has a l-parameter family ofsolutions in Z or the number of solutions to $P(x)=0, x e Z$, is bounded by N.

We omit the proof, since this is essentially part of Theorem 4 of [2].

To complete Step 2, we need to show that the $\wedge^{H(j)}$ are semialgebraic. This proof is essentially the same as that fore sheremm 4 (b) of [2]. For instance, $/ I^{\prime} \mathrm{e} \mathrm{U} />2 \wedge^{A U}$) if $I^{\prime} € Z^{H}$ and the systern 4 (b) of

$$
\begin{gathered}
P_{e}\left(l^{\prime}, t_{1}\right)-(P \circ \lambda)\left(s_{1}\right)=0 \\
P_{e}\left(l^{\prime}, t_{2}\right)-(P o X)\left(s_{2}\right)=0 \\
\left|t_{1}-t_{2}\right|^{2}+\left|s_{1}-s_{2}\right|^{2}>0
\end{gathered}
$$

has a solution. By taking relative complements, one sees that the $\Sigma^{H}(j)$ are all semialgebraic.
Proof (Step 3). Define $C j=(y$ o $X) \sim^{\left.l\left(I I^{H} U\right)\right)>}{ }^{\text {as before, and let }}$ $H j=X(C j)$. As noted earlier, we may integrate over C (the disjoint union of the $C j$) instead of $A f$ in the direct integral decomposition of Theorem 3.5. On $C j$, the map $q>o X$ is a y-to- 1 map onto $X^{H(j) \text {, and }}$ (27) says that

$$
\int_{\Sigma^{\mu}}^{\oplus} n\left(l^{\prime}\right) a, . d u\left(l^{\prime}\right)=Q f^{\oplus} j a_{v} d u\left\{l^{\prime}\right)
$$

To prove the theorem, therefore, it suffices to prove that

$$
\begin{equation*}
\stackrel{\circledR}{/} \quad j a_{v} d v\{V) \stackrel{r(B)}{=} \cdot I \quad a_{\{9 o k)(u)} d u . \tag{28}
\end{equation*}
$$

 *L $L^{H(j)}$, and let S
the pieces of lower dimension. Since $<p_{0} X$ is a local diffeomorphism, ($c p$ oA) "' $\left(\mathrm{Z}^{\prime 2}\right)^{\prime}$ has dimension $<k$ in $C j$ and is therefore negligible ${ }_{\mathrm{C}}$ Recall that ($p o X$ is defined on $A f \mathrm{CR}^{4}$, with image $T \lambda$ we have $\sim L^{H} \mathrm{C}$
 work with $J .{ }^{H}$. II Z hence $\left(\wedge^{\wedge} \mathrm{OA}\right)\left(\mathfrak{f}^{\mathrm{a}}\right)$ is open in $A f$ and lies in $C j$. Let $\{C y j: / ?$ e $/\}$ be the (open) connected components of this set. Since $C j$ is semialgebraiq, d is finite. Furthermore, $p o X$ is a local diffeomorphism on $(q>o X) \sim x\left(L^{i}\right)$, 5. Fix $\mathrm{x} € \mathrm{~S}^{\mathrm{Q}}$ and define $m p(x)$ - card $\{« € C p: c p o X(u)=x\}$. Theñ
$m p\{x)$ is integer-valued, and $l . p m p(x)=j$ on H^{a}. If $X Q$ G $I^{a}{ }^{a}$ is fixed, then for each $/$? there is a neighborhood $N p \underline{\mathrm{C}} \mathrm{I}^{\prime \prime}$ of Xo on which $m p(x) \geq m p(x o)$, all $x \mathrm{G} \mathrm{A}^{\wedge}$. Let $N=f l p N p$. For $x \mathrm{G} \mathrm{iV}$, we have

$$
j=\sum_{f i} m_{\beta}\left(x_{0}\right) \leq \sum_{p} m_{\beta}(x)=j .
$$

 constant on E^{Q}, hence constant because H if ($p o A: C p-* \mathrm{Z}^{\mathrm{a}}$ is a covering map with uniform covering index nip, and so

$$
\begin{array}{ll}
1()^{(B)} & \sim \\
o_{v o X}(u) d u & =1 \quad m p o i, d v\left(l^{\prime}\right) .
\end{array}
$$

Summing over $f i$ e $/$, we get

$$
\begin{equation*}
\int_{J\left(\left(p^{\circ} X\right)-v j>\right)} \quad o_{v o x}(u) d u={ }_{J Z^{\prime \prime}}^{I} \quad j o_{v} d v\left(l^{\prime}\right), \tag{D}
\end{equation*}
$$

since $Z p m p=j$. Now summing over a gives (28).
5. We give here some examples and miscellaneous results.
(5.1) lemma. Suppose that K is a normal Lie subgroup of the connected, simply connected nilpotent Lie group G. Then for n G G, TNK is either uniformly of multiplicity 1 or uniformly of multiplicity oo.

Proof. We show that for any /' G 57, $\left.<p^{x} x^{x} V\right) T @_{n}$ is connected. Let $X=\left\langle p \sim u^{\prime \prime} l^{\prime}\right) r \delta_{n} \backslash$ pick $/ \mathrm{G} X$, such that $P\{1)=I^{\prime}$. Since t is an ideal, G acts on 6^{*} by Ad^{*}, and $P: Q^{*} \rightarrow t^{*}$ intertwines these actions of G. Let $S=\operatorname{Stab}_{\mathrm{G}}\left(l^{\prime}\right)=\left\{X<E G: A d^{*}(x) l^{\prime}=l^{\prime}\right\} ; \mathrm{S}$ is connected, since the action of G on V is unipotent.

Now suppose that $\operatorname{Ad}^{*}\left({ }^{*}\right) / e X$ for some $x e G$. Then $P\left(A d^{*} x\right) l \mathrm{G}$ $K \cdot V$ and therefore there exists k G K such that

$$
\left.\mathrm{Ad}^{*}(\mathrm{fot})\right)^{\prime}=-\mathrm{P}\left(\mathrm{Ad}^{*} k x\right) l=\left(\mathrm{Ad}^{*} k\right) P\left(A d^{*} x\right) l=I^{l .}
$$

That is, $k x$ G 5 , or x G ATS (a subgroup, since AT is normal). Conversely,

$$
y<E K S=>P\left(A d^{*} y\right) l e<9_{V}=>\left(\operatorname{Ad}^{*} y\right) l \mathrm{G} X,
$$

or $\mathrm{X}=\operatorname{Ad}^{*}\left(\right.$ ATS $\left.^{\prime \prime}\right) /$ is connected.
It follows that if $\mathrm{T}_{0}=0$, then $n(l)=1$ for all $/$. (If $\mathrm{T}_{0}>0$, then the lemma is trivial.)
(5.2) example. Let g be the 5 -dimensional Lie algebra spanned by $X \backslash X_{2}, X 3, X_{4}$, and X_{5}, with nonzero brackets $\left[X_{5,} X_{4}\right]=\mathrm{X} 3$,
$\left[X_{5}, X_{3}\right]=X 2$, and $\left[\mathrm{X}_{5}, \mathrm{X} 2\right]=X \backslash G$ is the corresponding simply connected group. We considered g (with slightly different notation) in Example 4 of [2]; it turns out that the orbits in general position are parametrized by elements $/=a \backslash \+03 / 3+04 / 4, a . \backslash / 0$, where Λ, \ldots, l_{5} is the dual basis in g^{*} to $X \backslash \ldots, X_{5}$; moreover,

$$
\begin{aligned}
& C_{n}=\left\{\alpha_{1} l_{1}+t l_{2}+\left(\alpha_{3}+\frac{t^{2}}{2 \alpha_{1}}\right) \boldsymbol{h}\right.
\end{aligned}
$$

Let $t=\mathrm{R}-\mathrm{span}\left\{\mathrm{Z}_{4}\right\}, K=$ expt. A calculation shows that for $/=$ $\mathrm{Ej}=\mathrm{i}$ fijlj' $\mathrm{Ad}^{*}\left(\mathrm{~A}^{\prime \prime}\right) /=/+\mathrm{R} / 5$ if $h^{\wedge} 0$ and $=/$ if $f o=0$.

We have $t^{*} \cong \mathrm{R}$ in the obvious way; P maps \wedge to 1 and the other basis elements to 0 . Each point in R is an $\mathrm{Ad}^{*}(/ \mathrm{T})$-orbit.

Let n correspond to $I=\mathrm{ai} / \mathrm{i}+03 / 3+\mathrm{a} 4 / 4, a \wedge \wedge 0$, and let $X x \wedge \hat{K}$ correspond to $X € \mathrm{R}$:

$$
\chi_{\lambda}\left(\exp t X_{4}\right)=e^{2 \pi i \lambda t} .
$$

We have $\mathrm{TQ}=0$, since generically on $\&_{n}$,

$$
\operatorname{dimG} /=2, \quad \operatorname{dimA} A^{\prime}-/=1>\quad \operatorname{dim} K \cdot P i=0 .
$$

Thus Theorem 4.8 gives

$$
\left.\pi\right|_{K} \cong \int_{J R}^{\oplus} n(\lambda) \chi_{\lambda} d \lambda,
$$

where

$$
\begin{aligned}
n_{\lambda} & =\text { number of } \mathrm{Ad}^{*}(. \mathrm{K}) \text {-orbits in } P_{\sim}^{l}(X) n<f_{n} \\
& =\text { number of real solutions to } \frac{t^{3}}{\text { 6at }^{\mathrm{j}}} \wedge-\frac{t \alpha_{3}}{\alpha_{1}}+a^{\wedge}=X .
\end{aligned}
$$

(In this case, H excludes the points where $03+t^{2 / 2 \mathrm{a} 1}=0$; these are also the only points where there can be repeated roots.) Hence $n(X)=3$ on a set of positive measure and $=1$ on a set of positive measure; that is, $n y c$ does not have uniform multiplicity.
(5.3) example. Let g be the Lie algebra with basis vectors Z, Y, X, W and nontrivial commutators

$$
[W, X]=Y, \quad[W, Y]=Z,
$$

and let G be the corresponding Lie group. We let $\mathrm{Z}^{*}, \ldots, W^{*}$ be the dual basis for g^{*}. Write

$$
\begin{aligned}
& (z, y, x, w)=\exp z Z \exp y Y \exp x X \exp w W \\
& {[a, p, y, d]=a Z^{*}+P Y^{*}+y X^{*}+S W^{*}}
\end{aligned}
$$

A direct calculation gives

$$
\begin{align*}
& A d^{*}(z, y, x, w)[a, p, y, d) \tag{29}\\
& \quad=\left[a, p-w a, y-w f i+w^{2 a / 2,6+x f l+(y-w x) a]}\right.
\end{align*}
$$

Thus the radical of $[\mathrm{a}, / ?, y, d]$ is

$$
\begin{align*}
x[a, p, y, S] & =R-\operatorname{span}\{Z, a X-p Y\} \quad \text { ifa^} \mathcal{O} \tag{30}\\
& =\mathrm{R}-\operatorname{span}\{Z, Y\} \quad \text { if } a=0^{\wedge} p
\end{align*}
$$

The generic orbits are those having dimension indices given by $e^{\wedge}=$ $(0,1,1,2)$, for which $U_{e W}=\left\{l: a^{\wedge} 0\right\}$ and $Z_{e},,, \overline{\bar{i} s}\left\{[a, 0, y, 0]: a^{\wedge} 0\right.$,
$y e \mathrm{R}\}$. From (29), a typical orbit in $\left.U_{e W}=U^{\wedge}\right)$

$$
\begin{equation*}
\left(?, y=G \cdot[a, 0, y, 0]=\left\{\left[a, s, y+s^{2 / 2 a, t]: s, t \in R\} .}\right.\right.\right. \tag{31}
\end{equation*}
$$

Denote by $7 \mathrm{r}_{\mathrm{Q}, 7}$ the corresponding representation of G.
The next layer consists of those elements having dimension indices given by $e^{\wedge}=(0,0,1,2)$; we have $U_{e m}=£ /^{(2)}=\left\{/: a=0, p^{\wedge} 0\right\}$, $Z_{\bullet}\left(2,=\{[0, p, 0,0]: p / 0\}\right.$. A typical orbit in U^{\wedge} is

$$
\begin{equation*}
\left\langle f_{f i}=G-[0, p, 0,0]=\{[0, p, s, t]: s, t e \mathrm{R}\}\right. \tag{32}
\end{equation*}
$$

and we let n^{\wedge} be the corresponding representation of G.
Now consider $G \times G$, with Lie algebra g © g, and take Z, Z_{2}, \ldots, $W, W i$ to be the basis of g © g (with the obvious brackets). Let K be the diagonal subgroup; its Lie algebra I has a basis

$$
\bar{Z}=Z_{1}+Z_{2}, \ldots, \quad \bar{W}=W_{1}+W_{2}
$$

we have $[W, \bar{X} \sim]=\bar{Y},[W, \bar{Y}]=\bar{Z}$. The dual basisjn g^{*} © g^{*} will be denoted by $\bar{Z}, ~ \Lambda, \ldots, W, W\}$, and that in V by T, \ldots, W^{*} the projection $P:(g \text { ffig })^{*}-t^{*}$ thus satisfies

$$
P\left[a_{l,}, a_{2}, \ldots, S_{l,} S_{2}\right]=\left(\mathrm{e}^{*} \mathrm{i}+a_{2}\right) T+\cdots \cdot \cdot+\left(\wedge+S_{2}\right) W^{*}
$$

By an obvious change in notation, (31) and (32) describe orbits in t^{*}; orbits in $(g ® g)^{*}$ are Cartesian products of orbits in g^{*}.
 $0,0]=/ \mathrm{o}$, say; then
(33) $<$? ${ }_{x}=(G \times G) \cdot l_{0}$

$$
\left.=\frac{1}{\{ }\left[\quad a_{\cdot x, a_{2}, s_{x}, s_{2}, y}+\frac{s^{2}}{2 \alpha_{1}}, \gamma_{2}+\frac{s_{2}^{2}}{2 \alpha_{2}}, t_{1}, t_{2}\right]: s t J i \quad \text { eR }\right\} .
$$

Assume first that $a \backslash+02 / 0$. Then P maps ${ }^{\wedge}$ into t / O, since every element of $P\left\{<?_{n}\right)$ is of the form $\left.\{a\}+a_{2}\right) Z^{*}+\bullet$ • . We must thus take a typical orbit representative $/=[a, 0,7,0] € 2 *$ e, and compute <.* n P-'(AT-/). Notice first that
dirndl $=4, \quad \operatorname{dimA}:-/=2, \quad \operatorname{dim}^{\wedge} \bullet /=3$ for generic $/ e @_{n}$ (from (29));
thus To $=0$.
From (31) and (33), we see that $/ €\left(f_{n n P \sim} l(K \cdot f)\right.$ iff there exist $s, t € \mathrm{R}$ such that
(i) $<\mathrm{i}+a_{2}=a$,
(ii) ${ }^{\wedge}+\mathrm{s}_{2}=\mathrm{J}$,
(iii) $7,+52 / 2 \mathrm{a},+\mathrm{y}_{2}+s \% / 2 a_{2}=y+s^{2 / 2 a}$,
(iv) $\mathrm{fj}+\mathrm{r}_{2}=\mathrm{f}$.

Condition (i) shows that we must have $a=a . \backslash+a_{2}$; (iv) shows that t, t_{2} are free. From (i), (ii) and (iii) we get

$$
\frac{s_{1}^{2}}{2 \alpha_{1}}+\frac{s_{2}^{2}}{2 \alpha_{2}}-\frac{\left(s_{1}+s_{2}\right)^{2}}{2\left(\alpha_{1}+a_{2}\right)}=\gamma-\gamma_{1}-\gamma_{2}
$$

or

$$
\begin{equation*}
\left(\mathrm{aii}_{2}-a_{2 s_{t}}\right)^{2}=2\left\{y-y_{f}-y_{2}\right) a_{1 a_{2}}\left(a_{1}+a_{2}\right) \tag{34}
\end{equation*}
$$

 $\left\{y-y-y_{2}\right)^{a}$ set otherwise. That is,

$$
\begin{aligned}
0_{n \mathrm{n}} \mathrm{P}^{11}(\mathrm{AT} \cdot[\mathrm{a}, 0,7,0]) & \sim \text { union of } 2 \text { copies of } \mathrm{R}^{3} \\
& \text { if } \left.(7-7 \mathrm{i}-y i)\{a\rangle+a_{2}\right) a_{i a_{2}}>0 \\
& \sim \text { one copy of } \mathrm{R}^{3} \text { if } y+y_{2}=7 \\
& \sim 0 \text { if }(7-7 \mathrm{i}-72)\left(« \mathrm{i}+a_{2}\right) a \backslash a_{2}<0 .
\end{aligned}
$$

Thus we may take

$$
\begin{aligned}
!^{*}= & \left\{I=[<\bullet 0,7,0]: \mathrm{a}=\mathrm{aj}+\mathrm{a}_{2},\right. \\
& \left.(7-7 \mathrm{i}-72)\left(\mathrm{a} 1+a_{2}\right) a \backslash a_{2}>0\right\}<\text { a half-line, }
\end{aligned}
$$

$\wedge=$ Lebesgue measure on the half line $=d y$,
and we have

$$
\left.\pi_{\alpha_{1}, \gamma_{1}} \otimes \pi_{\alpha_{2}, \gamma_{2}} \cong \pi\right|_{K} \cong \int_{\Sigma^{\pi}}^{\oplus} 2 \mathrm{ft}_{\mathrm{ai}+\mathrm{a}_{2, \mathrm{y}}} d y
$$

If $a n+\mathrm{a}_{2}=0$, then P maps $@_{n}$ onto a set containing U^{\wedge} but missing $U^{\wedge} \backslash$ For $/=[0, / ?, 0,0]$ e $I^{\wedge}{ }_{2}$, we have
$\operatorname{dim}^{\wedge}=4, \quad \operatorname{dim} K \bullet f=2, \quad \operatorname{dim} K \bullet I=3 \quad$ for generic $/ €^{\wedge}$, as before; thus to $=0$ again. Furthermore, $/ \mathrm{e}^{\wedge} \mathrm{n} P \sim^{l(K \bullet f)}$ if there exist $S \backslash, S 2, s, t, t i, t$ G R such that
(i) $S \backslash+5_{2}=/$?,

(iii) ${ }^{\wedge}+{ }^{\wedge} 2=\mathrm{f}$.

From (i), $5^{1 .}$ is free to vary, but s_{2} is then determined; (ii) then determines 5, and (iii) lets us vary t and $t i$ arbitrarily. The intersection is thus $\cong \mathrm{R}^{3}$ for all $/ ?+0$, and we find that

$$
\begin{aligned}
\Sigma^{\pi}= & \{f=[0, \beta, 0,0]: \beta \neq 0\}, \quad d \nu=d \beta \\
& \left.\pi_{\alpha_{1}, y_{1}} \otimes \pi_{\alpha_{2}, \gamma_{2}} \cong \pi\right|_{K} \cong \int_{\Sigma^{\pi}} \pi_{\beta} d \beta
\end{aligned}
$$

(5.4) REMARK. For some groups G, one can have $n \backslash \circledR 72$ irreducible even though U and \wedge_{2} are infinite-dimensional. This is implicit in some of the calculations in [3]. The simplest example is probably the case where g is the group of strictly upper triangular 5×5 matrices. Let $X j j, 1 \leq /<j \leq 5$, be the obvious basis $\left\{X_{t} j\right.$ has a 1 as its (i, j) entry and zeroes elsewhere), and let $/ /$; be the dual basis for g^{*}; a tedious calculation shows that

$$
\pi_{l_{1,5}} \otimes \pi_{l_{2,4}} \cong \pi_{l_{1.5}+l_{2,4}}
$$

REFERENCES

[1] L. Corwin and F. P. Greenleaf, Complex algebraic geometry and calculation of multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc, 305 (1988), 601-622.
[2] L. Corwin, F. P. Greenleaf and G. Grélaud, Direct integral decompositions and multiplicities for induced representations of nilpotent Lie groups, Trans. Amer. Math. Soc, 304 (1987), 549-583.
[3] R. Howe, G. Ratcliff, and N. Wildberger, Symbol mappings for certain nilpotent groups, in Lie Group Representations III, Springer Lecture Notes \#1077. Springer-Verlag, Berlin, (1984), 288-320.
[4] A. A. Kirillov, Unitary representations of nilpotent Lie groups, Uspekhi Mat. Nauk, 17 (1962), 57-110.
[5] G. W. Mackey, Induced representations oflocally compact groups II: the Frobenius Reciprocity Theorem. Annals of Math., 58 (1953), 193-221.
[6] L. Pukanszky, Lecons sur les Representations des Groupes, Paris, Dunod, 1967.
\qquad , Unitary representations of solvable Lie groups, Ann. Sci. École Norm. Sup., 4(1971), 457-508.
[8] J. T. Schwartz, Differential Topology and Geometry, Gordon and Breach, New York, 1968.
[9] H. Sussmann, Analytic stratifications and subanalytic sets, monograph in preparation.

Received June 8, 1987. Research by first author was supported by NSF grant MCS 84-02704 and the second author by NSF grant DMS 85-01945. The first author was on sabbatical leave from Rutgers University at The Institute for Advanced Study when this paper was written. He is grateful to both institutions.

```
RUTGERS UNIVERSITY
NEW BRUNSWICK, NJ 08903
THE INSTITUTE FOR ADVANCED STUDY
PRINCETON, NJ 08540
```

AND
NYU/COURANT INSTITUTE
251 MERCER STREET
NEW YORK, NY 10012

