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ON THE ILIEFF-SENDOV CONJECTURE

JOHNNY E. BROWN

The well-known Ilieff-Sendov conjecture asserts that for any poly-
nomial p(z) =XTk=l{z-zk) with ^ \ ^ i <1,each of thedisks. W \ < :
1 ( 1 < k< n) must contain a critical point of p. This conjecture is
proved for polynomials of arbitrary degree n with at most four distinct
zeros. This extends a result of Saff and Twomey.

1. Introduction. The Gauss-Lucas Theorem states that all the criti-
cal points of a polynomial p{z) lie in the convex hull of its zeros. This
is a result concerning the position of all the zeros of p'(z) relative to
all the zeros of p{z). Suppose we focus attention on any arbitrarily
fixed zero of p(z) and ask for the location of a zero of p'(z) relative
to it. This leads to the well-known conjecture of Ilieff and Sendov [3;
Problem 4.5] which asserts that if p(z) has the form

(1) p(z)=f[(z-zk), \zk\<l ( l < k < n )
k=\

then each of the disks \z - zk\ < \ (I < k <n) c on ta insa zeroof
p'{z). The polynomial p(z) = zn — 1 s h o w s W Y 1S s1 iarp- T h i s

conjecture is nearly a quarter of a century old and has been verified
in some special cases, most notably if p(z) has the form (1) and if

( A ) 2 < n < 5 [ 1 , 6 , 8],

(B) p(0) = OJIO],^ B_, + • • • +axz + ao,ak<O(O<k<n-
(C) p(z) = z _ _ _

[11],
(D) p(z) has only r e a l z e r o s [ 7] , n2 ^ ^ o r

(E) p(z) ~ Tllr> n®L
P(z) = E^=oajz

(F) the vertices of the convex hull of the zeros of p(z) all lie on
\z\ = 1 [10],

(G) the convex hull of the zeros of p(z) is a triangular region [12],
(H) p(z) = (z - zxr(z - z2r(z - z3)"3 [9].
The last case (H), due to Saff and Twomey, states that the conjecture

is true for any polynomial of the form (1) with at most three distinct
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zeros. The purpose of this paper is to establish the conjecture for any
polynomial with at most four distinct zeros.

Observe that (H) follows immediately from (G). A problem posed
by Schmeisser [12] related to (G) is to determine whether the conjec-
ture is true if the convex hull of the zeros of p(z) is a quadrangular
region. Our result verifies a special case of his problem.

2. Main results. We can now state our main result.
*/7 ,n3(z - zA)A with

THEOREM. Ifp(z) = (z - zx)
n^z - Z*T ' Z

\zk\ < 1 ( 1 < £ < 4), then each of the disks \z - zk\ < 1 (1 < k < 4)
contains a zero ofp'(z).

Before embarking on the proof we briefly illustrate the idea by
giving a simple proof of the SafF-Twomey.. result. Suppose p(z) =b. ,-,.,,„, •/> 7 A/* wttn \Zk\ <J 1. TJet us ctfsxingufsh 'one
(z — LA) (Z — z2)ni(z—z-^f1 ' J _
of the zeros,
(z - a)"}(z-zi)n '
zero of p'{z). If «3 > 1 we are done, so suppose «3 = 1 . It is then clear

and if we let q(z) = p(z)/(z - a) then also p'(z) — (z- a)g'(z) + q{z).
Hence we see that p'(a) = g(a) and so

An(a - zxr-x{a - z 2

We may suppose that \a — Ci | < \a — C2Ia n d g e t

Hence \a - Ci | < 2/^/n. If n > 4, we are done; while if n = 2 or 3
we already know the conjecture is true. The proof of the theorem is
based on this simple idea, however we need some preliminary results
first.

Fix integers n and m with n > m > 2 and let ^«(w) denote the
class of all monic polynomials of degree n with at most m distinct
zeros in |z| < 1:

m

(2) p(z) =•• H(z-zkr, \zk\<\ (l
k=l

fr ~~n- From (2) we get
where nk > 1 and XT=ink

(3)
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Let

— Ci\, ifn». = l,

I(p) - max I(zk) and I(&>n{m)) = sup , I{p).

The IliefF-Sendov conjecture says that I(&>n(m)) < 1.

LEMMA 1. (i) There exists an extremal polynomial p* e ^ « ( w ) such
that I{p*) = I{^n{m)).

(ii) /?* has a zero on each subarc of\z\ = 1 of length n.

This lemma is essentially proved in [5, 7] but for completeness sake
and a slightly easier proof we present it here.

Proof. Since \p{z)\ < (1 + r)n, w h e r e ^X < r, f o r ** p e #
it is clear that 3Pn{m) is a normal family in C. Each polynomial in
3°n(tn) is monic and has at most m distinct zeros and hence ^ ( m )
is compact. By definition there exists a sequence {p^} <Z 3Pn(rri) such
that I{pic) —> l{S^n{m)) as k —• oo. Choose a convergent subsequence
(call it {Pk} again) so that Pk -* P* uniformly on compact subsets of
C.Let

and so
' m I m-\

(5) p*'(z) = n ]\(z - ziyi-* H(z-
Lfc=l J 7=1

Assume /(p*) < / (^ . (m)) . Then I(p*) = I{3°n{m)) - 3e, for some
e > 0. Choose 0 < S < e so that p* ± 0 in 0 < \z - z * \ < S ( 1 <
7 < m). Thus all the zeros of p* lie in Q, = U ^ = i ( z : 1

 }

and (by definition of/(/?*)) at least one zero ofp*' lies in each of the
disks \z - z*\ < I(p*) (I < j < m). By Hurwitz' Theorem, for all
k > KQ sufficiently large, all the zeros of pk lie in Q and each disk
\z - z^ <. I(p*) + e will contain a zero ofp'k. Hence we see that
I(Pk) ^ HP*) + e + S < I{p*) + 2e = I{3°n{m)) - e. Letting k - oo
we get I{3°n{m)) < I{^n{m)) - e and a contradiction is reached. This
proves (i).
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To prove (ii) we first assert that the extremal polynomial p* of the
form (4) must have at least one zero on \z\ = 1. Suppose not. Then
r = maxj^^\zk\ < 1. Define p by

k=\

Clearly p e tPrSjrri) and since p'{z) = -phrP*'(rz), we see that

1
= max min = l >i(P*).

\<k<m L \<j<m-\

Contradiction.
Next, we assert that p* must have at least two distinct roots on

\z\ = 1. Suppose not. Then p* has the form (4), with say |z ^ | = 1
and \z*k\ < 1 (1 < k < m — 1). By a rotation, we can assume z*m = 1.
Let 5 - (1 - r)/2, where r = maxj ^ ^ , ^ ! \z*k\. Ifp(z)= p*(z + s),
then again p € ^«(m) and I(p) = I{p*). Hence p is also extremal.
However, it is easy to see that its zeros zk = z*k—s satisfy |z^.| < 1
(\ < k < m). Contradiction.

We have shown that the extremal polynomial p* has the form (4)
with \z^\ - V V A = 1 and z*m

 ^
 z*m_vAssumen

some arc on \z\ = 1 of length L > n
0 < /? < 7r/2, on which p* ^ 0. By a rotation, we may suppose
that z* - ia a n d z V . = e~ia for s o m e ° < a < / ? < n/2. (Thus

*/ te) 7 D for a < 101 < A.) By relabeling the zeros suppose that
P ("
\z\\ < \z\\ < < \z*J < 1 and | z ; + 1| = • • • = \ j * x _ -, , - 0

— \ z * m 2\ = 1 (put Yin - 0
if all the zeros ofp* lie on \z\ = 1). Define r and 5 as follows:

J0, if«0 = 0,
r —j max Izfl, i f n o

A O ,

and
. f 1 - r l5 =min<cosa, r

Again consider p(z) = p*(z + s) and note that p € ^ (m) with /(/)) =
I(p*). An easy check shows that the zeros z^ = zk— s ofp all lie in
\z\ < 1. Contradiction. This completes the proof of the lemma. •

LEMMA 2. The Ilieff-Sendovconjecture istrue if
(i) p(z) = Uk=i(z ' Z _ _ '
(ii) p(z) = (z

 -
e '0°)2 Ull^z -zk)and2<n<l (d0 € R).
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The first part of this lemma is known and there are various proofs,
but the proof of (ii) gives (i) along the way so we include it here. This
now makes the paper completely self-contained.

Proof. Let />(z) = n*=i(* ~ *> w i t h V A < 1. T h e n p'(z) =
n YYJZi (z ~Cj)- D i s t i n g u i s h o n e o f the zeros, say zn (call it a) and by

a rotation let

n-i

p{z) = {z-a)\[{z-zk), 0<a<l, \zk\<\.
k=\

We may also suppose that 0 < a < 1. Ifa = 0, the conjecture is
trivially true for this zero. If a = 1, we are also done. Indeed, if we
let q{z) = Y[nkZ\{z - H Then we see that p"{\)/p'(\) = 2q'(l)/q(l)
and so

n—\ . n—\ ^

Supposing R e { l / ( 1 - C i ) } > R e { l / ( 1 -Cy)}( l<j<n-l)a& we may,
then from (6) we get

Hence Re{l/(1 - Ci)} > 1 or |d -j\<\, so certainly |Ci - 1| < 1 (cf.
[2]). Hence suppose 0 < a < 1.

If we put z — T{w) = (w - a)l(aw - 1), we have

(7) p{T{w)) = p{w){aw~\)-\

where .. 2 + ... + * i I

(8) " p(w) = Aw[wn~

From (7), the zeros ofp(w) are 0, W\,W2,..., wn-\ where wk —
Tjhk) (1 < k < n - 1). Thus we get

(9) N

- <n-\.

and
n - l

(10) |Vil= k<
k=\
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Differentiating (7) gives

dw dz dw
= _- lDl/ap(wh

w
where

(11) = np(w) + (I/a - w)p'(w)

is the polar derivative of p with respect to 1 /a (see Marden [4]). Hence
we arrive at

i dw „ „, .
(12) p'(T(w)) = -a(aw

(where ' denotes differentiation with respect to z). A brief calculation
using (8) and (11) gives

(13) = B [w°- - yk),

where \yx\ < \y2\< < \yn-i\- I t follows from (9), (10) and (13) that

(14)

k=\

1
n - a{n - 1)'

Let us now suppose that \y\\ < fi. Then from (12) we have

Dl/aP(Vl) =
a dw

Hence //(Co) = 0, where Co - T{yx) and so p'{z) has a zero Co
that

Co -a , 0<r<JX. ThisA'e3
)naC0 — 1) = r

T h u s w e ge t ( C o — ^ ^ / e j a n d w e c o n c l u d e t h a t - -
gives Co = (« - rel6)l(\ - are

Hence if /((I - a2)j{\ - apt) < 1, or equivalently,

< 1
( 1 5 ) ~ 1 + a - a 2 ' <
then |Co — o \ < 1. It remains to show that (15) holds for the cases
stated in the lemma.
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Suppose first that 2 < n < 4. Then from (14) we have

|yil< n-a{n-\)m

It is easy to check that (15) holds for this fi and 2 < n < 4 (and any
0 < a < 1). This proves (i).

Suppose next that p(z) has the form stated
we conclude that p(w) has a double root at T~l(el6°)=e

UQ e R). From (11) we see that yn-\ = e
m i s a z e r o

Using (14) we have the following
n-l n-\ -

nitti-nittK n-a{n-1)

N<
n-a(n-I ).

For this n and 2 < n < 7, it is simple to check that (15) holds for any

We should point out that this proof can be slightly modified to give
a proof of Laguerre's Theorem (see [4] for another proof).

Proof of theorem. For fixed n > m> 3, let p(z) be of the form (2).
From Lemma 1, an extremal polynomial for 3°n(m) exists and without
loss of generality we may assume p is extremal i.e., I(p) = I^nim)).
Distinguish one of the zeros, say zm and let zm = a. We may suppose
too that 0 < a < 1. We want to show \z - a\ < 1 contains a critical
point of p . Ifnm> 1, we are done so suppose nm = 1. Thus we have

m—1 m—1

(16) p(z) = (z-a)H(z-zkr, \z&<\ £>* = »-1
k=\ A: = l

and

(17) p'(z) = n
w - l

-0)
- u = V W =iQia)~ U s i n g

A • . r r-i r* we see t h a t / j '

As in the proof of Lemma 2 wemay suppose that 0 < a < 1.
If we let q(z) = Yl^ii2 ~

(16) and (17), we obtain after cancellations
m-\ m-\

A:=l
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Assuming that \a — £i| < \a — Cj\ (1<j < m — 1), as we may, we get

n \ a - C i T " 1 < Y [ \ a - z k \ < \ a - z x \ \ a - z 2 \ 2 m ~ \

k=i

Hence we have the estimate
•>, I, ,-• l/(m-1)[

where zj and z2 are any twodistinctzerosofp(
Suppose first that n > 2m~ L _

we are done. Hence suppose 2<n< 2m~
Now we restrict ourselves to m = 4. Thus we need only consider

polynomials of the form (16) of degree 2 <n < 8. By Lemma 2(i)
we need only consider n = 5,6 and 7. Thus, our polynomial has the
form

p(z) = (z- a){z - z,)"'(* - ziY^z - zi)n\

where 0 < n\ < n2 < n^ and ri\ + n2 + n
^ = n - 1. Since « = 5,6 or

7, we must have n ^ > 2 in each case. Recall that p(z) is an extremal
polynomial for 3°n{m) and hence by Lemma 1 it will have a zero on
each subarc of \z\ = 1 of length n. We are thus led to two cases:

Case 1. p(z) has exactly two distinct zeros on \z\ = 1.
Care 2. p(z) has more than two distinct zeros on \z\ = 1.
Case 2 is easily disposed of as follows. In this case (recall 0 < a < 1),

we must have \z\\ = \z2\ — \z$\ = 1 and since n^ > 2, we see that p
has a zero of order two on \z\ = 1. Since n < 7, we may apply Lemma
2(ii) and we are done.

In order for Case 1 to hold, the two zeros must be negatives of each
other, say ZQ and —ZQ. Making use of the estimate (18) we find that

and so \a - Ci| < 1 for n > 4. By Lemma 2(i), the conjecture is true
for n = 2 and 3. The proof of the theorem is complete. D

3 . R e m a r k s . T h e EiflffiSfendot ^ , p p q
i c a l l y i n t e r m sofforce f ie lds . I n d e e d , if C o is a c r i t i c a l p o i n t o f

p(Z)J-lu=iC

rium point in the plane field in which the force exerted on a particle
by a point charge at zk (with charge n^) is inversely proportional to its
distance from zk. The Ilieff-Sendov conjecture asserts that either the



ILIEFF-SENDOV CONJECTURE 231

disk of radius one about each zero zk contains at least one of these
equilibrium points or else nk > 1. In general thesecases are mutu-
ally exclusive. For example if p(z) = (z - l ) 3 ( z - / ) , t h e n t h e d i s k

\z - 1| < 1 contains no such equilibrium point. Since the conjecture
is trivially true for the zero zk if nk > 1, the conjecture is only inter-
esting if zk is a simple zero. In this case we are led to the problem
of determining just how close a critical point can then be to a simple
zero. We thus pose the following problem:

Let Qn denote the set of all polynomials for the form
P(z) = znnkZ\(z - zk), with \zk\ > 1 (1 < k < n - 1).
Determine the largest constant cn > 0 such that p'(z) ^

0 in \z\ < cn for all p E Qn.

Clearly cn < 1 and we expect that the critical point nearest the zero
z = 0 is an equilibrium point in the force field as described above.
By concentrating all the charge at one point, together with a single
charge at z = 0, it is reasonable to conjecture that cn = \jn (consider
p(z) = z(z-eie >

Finally, we must point out that recently a proof of the Ilieff-Sendov
conjecture was announced (by title) in the Abstracts of the American
Mathematical Society (June 1986) by V. I. Istratescu. He claims his
method uses a notion called "bare points" and "a Krein-Milman theo-
rem". The proof of our main result is completely self-contained, relies
on classical methods and indicates that a proof of the full conjecture
must be delicate in nature.
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