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4-BETA INTEGRALS AND
THE tf-HERMITE POLYNOMIALS

W. A. AL-SALAM AND MOURAD E. H. ISMAIL*

The continuous g-Hermite polynomials are used to give a new proof
of a (/-beta integral which is an extension of the Askey-Wilson inte-
gral. Multilinear generating functions, some due to Carlitz, are also
established.

1. Introduction. Let q e (—1,1) and define the ̂ -shifted factorials

by

( a ) 0 = ( a ; g ) 0 = 1,

(a)n = ( a ; g ) n = (I - a ) ( l - a q ) - - - ( l - a q " - 1 ) . n = \ , 2 , . . . ,
00

k).-aqk).
k=0

Basic hypergeometric series are defined by

r+\4>r(Q[ > &2> • • • ' ar+\\ b{,b2, •.. ,br\z) = r+\(}>r\ ,' ,' ' ,
[ OX,O2 br

'-zn.

The continuous ^-Hermite polynomials {Hn{x\q)} are given by

(1.1) Hn(cos8\q) =

(see [2]). Their orthogonality [2, 3] is

(1.2) / w(6)Hm(cos9\q)Hn(cos6\q)dd = (q;q)nSnm
Jo

where

(1.3) w(d)={-^(e2ieU(e-m)0O.

Rogers also introduced the continuous #-ultraspherical polynomials
{Cn(x; P\q)} generated by

00

(1.4) Yc»{cosB-J\q)tn =

209
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whose weight function was found recently [8, 9]. It is easy to see that

(1.5) Cn(

Rogers solved the connection coefficient problem of expressing
Cn{x; P\q) in terms of Cn(x; y\q) a consequence of which we get

Rogers evaluated explicitly the coefficients in the linearization of prod-
ucts of two <?-Hermite polynomials. He proved

m\n(n,m)

(1.7) Hm(x\q)Hn{x\q) = \ ( \
l "

which can be iterated to obtain the sum

(1.8) Hk{x\q)Hm{x\q)Hn{x\q)

r-s

We shall also need the formula

(1.9) nz&McH(

which follows from (1.6) and (1.7).
We shall also use the polynomials

xk,hn{x\q) = f\{ }f
HS («)*(«)»-*

so that

(1.10) Hn(cosd\q) = einehn(e-m\q).

It was shown in [1] and [14] that {hn(a\q)} are moments of a discrete
distribution dy/a(x), viz.,

/•oo

(1.11) hn(a\q)= I xndy/a(x), n = 0 , 1 , 2 . . . ,
J — OO
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where dy/a(x) is a step function with jumps at the points x = qk and
x = aqk for k = 0 ,1 ,2 , . . . given by

k) =(1.12) d¥a{qk) =

where a < 0, 0 < q < 1.
Askey and Wilson [9] proved

(U3) -55r/o -ft (aras) 00

where \ar\ < 1 for r =1 , 2, 3, 4. They used this integral to prove the
orthogonality of what is now known as the Askey-Wilson polynomials.

Ismail and Stanton [15] observed that the left hand side of (1.13) is
a generating function of the integral of the product of four ^-Hermite
polynomials times the weight function w(6). They used this obser-
vation, combined with (1.8) and (1.3), to give a new proof of (1.13).
Other analytic proofs of (1.13) can be found in [6] and [18]. Further-
more a combinatorial derivation of (1.13) is given in [16].

Nasrallah and Rahman [17] proved the following generalization of
(1.13).

THEOREM (NASRALLAH AND RAHMAN). If\cij\ < 1, j = 1,2,3,4,5
and\q\ < 1 then

de

1<;</<5

where

a> 4^' -qy/a , b , c , d , e , f
, -y/a, qa/b, qa/c, qa/d, qa/e, qa/f
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Rahman [19] observed that the %4>i in (1.14) can be summed when
A = axa-ia^at,. In this case we have

1 15)
Jo II'

i<k<5
5n

Askey [7] gave an elementary proof of (1.15) by showing that the two
sides of (1.15) satisfy the same functional equation.

The main purpose of this paper is to prove (1.14) and (1.15) us-
ing different techniques that are based on the orthogonality and some
multilinear generating functions for the #-Hermite polynomials. This
shall be done in §3. In §2 we shall start by illustrating this technique
in rederiving some results of Carlitz on the g-Hermite polynomials
((2.1) and (2.5)). We shall also obtain incidentally a transformation
formula for 3^2 functions. In §4 we derive a new multilinear gen-
erating function for the continuous #-Hermite polynomials. In the
process of deriving such a formula we prove a reduction formula for
the double series of the Kempe de Feriet type.

2. Generating functions. To illustrate our technique we begin by
deriving Carlitz [11] extension of Mehler formula

(2.1) S =

k {<l)k{bz)r{abz)r
j{q)M)k-r{abz2)r

We begin by the generating function

(2.2)
n=0

zn
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Multiply by zk, then replace z by xz and use (1.11). We get

1201 z

bk

-i4>\
bz, abz

Now using a transformation formula of Sears [21] (see also [12])

(2.3) a,b
2\ +

(b)0o(q/c)0O(c/a)oo(az/q)oo(q
2/az)0O

qa/c, qb/c

c/a, cq/abz

(q/a^iaz/c)^

we get that the left hand side of (2.1) is

S =

bq/c

(z)0c(az)oo(bzqk)oo(q/ z)a

By Heine's transformation formula

qlk/abzq/bz,qlk/abz
abz\.

(2.4)

we get that

a,
z =

(z)oc{az)oo(bz)oo(abz)c

\qk,abz

201

Now by a transformation formula [12; ex 1.14(ii)]

b"(c/b)H A («-"
z =

(C)n

we get the right hand side of (2.1).
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We next consider the sum

xmvn-k
(2.5)G=G(a,b,x,y,z)= £ ^-^L^-hm+k(a\q)hn+k{b\q)

m(q)n(q)k

m,n,k
r
J-oo

= r yrhr{b\q)hr(zu/y\q)dVa(a).

Using the g-Mehler formula (formula (2.1) with k = 0)

1 f°° (byzu)^
G(a,b,x,y,z) =

From (1.11) we get

(2.6) G{a,b,x,y,z)

i:00 J-OC

-dy/a{u).

x,z,bz
q/a, bzy

(abzy)

ax,az,abz
[ aq,abzy

But Carlitz [11] showed that

(2.7) G(a,b,x,y,z)

x.y.z abz\.

Although (2.6) and (2.7) are the same we shall nevertheless need to
use (2.6) for the representation of G(a, b, x, y, z). Equating G in (2.6)
and (2.7) we get the transformation formula

(2.8) 3̂ 2 f X ' V)axz,bbz
(ax)oo(az)

"302
x,z,bz

fax,az.abz
aq. abzy
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An interesting special case of (2.8) is x = q~n for n = 0,1,2, We
get

-n 1
abz\ = q/a.bzy

which is due to Sears [20]. Formula (2.9) in turn implies Jackson's
Theorem for the summation of a terminating balanced (Saalschultzian)
302 with argument q, viz.,

(2.10) q~n,a,b
c,abql~"/c Q =

. (c/aUc/b)H

{c)n(c/ab)n '

Formula (2.8) can also be obtained as a limiting case of Bailey's trans-
formation [12; (3.3.1)]

3. The <7-beta integral. . We consider in this section the Nasrallah-
Rahman formula (1.14). We first consider the integral

(3.D - r
\<k<5

We recall from (1.4) and (1.5) that

(3.2) J 4
so that

J= Y, f* ww{UH"<
K"?}de-

We now linearize the quantities in braces using (1.7) and (1.9) respec-
tively. We get

x / / /n 4 + n j_2 f_2 j(cos%)//n i + n + n 2,-ik(cosd\q)w{d)d6.
Jo

We apply the orthogonality relation (1.2) and then shift the sum-
mation indices so that n\ —> n\ + j , «2 —• «2 + k, «3 —> «3 + k, n4 ^•
n4 +s , n5 —> n5 + 2r + s.
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We get

J =
" I p*tp_/p* pj

so that j = «i + «2 + "3 - n4 - n5-

Evaluating the sums over s and

The sum over r is

Apply Heine transformation (2.4) to the 2^1 m t h e above limit to
identify the r-sum as

Aa\
Aq"

We therefore get
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Now set m — n4 + n5 , n = n2 + n3, k — n4 + n5 - rii. Thus

j

tas),A' fas ,. \ . /«2, \

{q)M)m{q)n{Aa])r{q)k

E
Using (2.6) for the value of G we get, after some simplifications,

(a! 020305)00(05/04)00

(0104)00(0204)00(0304)00

a4a5,a5q--i/a4
Aa\

. 0405

Aa\

Aq-

_ (^^5)00(^205)00(0305)00(^05/04)00(^405)

a4

0104, 0204' 0304. A

|
(0104)00(0204)00(0304)00 ,

4

0105, 0205.0305. -405/04

<H-^,005/04.01020305

We now can use Bailey's transformation of a very well-poised 8^7 se-
ries in terms of two balanced 4^3 series ([10; p. 69] and [12; (2.10.10)]).
In that transformation put qa = Aa\a3a4a5, f = A, g = a3a4, h =
d\a4, d = Aas/a2, e — a\a3 we get the Nasrallah-Rahman formula
(1.14).
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However if we choose

/ = , g = a2a4, h = a3a4, qa =

d = a\a2a?,a4IA, e = a4a$

we get

(3 4) J =

a;
\

— )

Formula (3.4) seems to be the more useful form of (1.14). In fact
if we put A = ci\a2a3a4 it then follows that qa — a4a^A and in this
case the 8^7 in (3.4) becomes 1 and (1.15) follows immediately. In
contrast Askey [7] used the summation of a very well-poised 6^5 to
show that in that case (1.14) reduces to (1.15).

4. Miscellaneous results. We next consider the integral

f0

J-!
d

and integrate it in two different ways. If we evaluate / directly using
(1.12) we get

/ = (af1)00^2)00(^3)00(^4)00 ,

(3)oo(flJi)oo(oS2)oo 4 3

, (*l)oo('2)oo(*3)«>(*4)oo , f O/i, a /2 ,0 /3 . O/4

Thus if we choose S\ = s2 = q/a, alt2t-x,t4 = q2, and use a transfor-
mation formula of Bailey [10, p. 69]

(4.1)
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On the other hand if we first expand the integrand in / we get

- £ ^ M>.U r

Equating the two values of / we get

Since / is symmetric in ^ and /2 it follows from (4.1) that

(4.3) %

Let us now reconsider the last step in the derivation in (3.3). Instead
of replacing the inside sum by (2.6) we use (2.7). The result is

_
r ,

E

a2a5q'

AqJ].
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We then transform the ^i using Hall's formula [13]

a,b,c
d.e

we obtain, after some simplification, that

d/a,d/b,c
d, de/ab e/c

x

If we compare this value for J with that in (3.4) we get a reduction
formula of a ^-analog of a Kampe de Feriet type function to a single
very well-poised series. After some simple change of notation this can
be stated as

dy

(Aafi/S)0o(firi/S)oo(afiti/S7)0O(fiti/y)00(Afi/y)
{afiri/d)00(Aafi/d?)00(Afi)00(ri)00{firi/&y)0
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