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THE ISOMORPHISM PROBLEM FOR
ORTHODOX SEMIGROUPS

T. E. HALL

The author's structure theorem for orthodox semigroups produced
an orthodox semigroup %?(Et T, ψ) from a band £ , an inverse semi-
group T and a morphism ψ between two inverse semigroups, namely
T and WΈIyi an inverse semigroup constructed from E. Here, we
solve the isomorphism problem: when are two such orthodox semi-
groups isomorphic? This leads to a way of producing all orthodox
semigroups, up to isomorphism, with prescribed band E and maxi-
mum inverse semigroup morphic image T.

1. Preliminaries. A semigroup S is called regular (in the sense of
von Neumann for rings) if for each a e S there exists x e S such
that axa = a; and S is called an inverse semigroup if for each a e S
there is' a unique x £ S such that axa = a and xax = x. A band is
a semigroup in which each element is idempotent, and an orthodox
semigroup is a regular semigroup in which the idempotents form a
subsemigroup (that is, a band).

We follow the notation and conventions of Howie [4].

Result 1 [3, Theorem 5]. The maximum congruence contained in
Green's relation %? on any regular semigroup S, μ = μ(S) say, is given
by μ = {(a,b) e 2P\ for some [for each pair of] 2?'-related inverses d
of a and b1 ofb, a'ea — b'eb for each idempotent e < aa1}.

A regular semigroup S is called fundamental if μ is the identity
relation on S. For each band E, the semigroup WE is fundamental,
orthodox, has its band isomorphic to E, and contains, for each or-
thodox semigroup S with band E, a copy of S/μ as a subsemigroup:
see the author [1] (or [3] with E = (E) and WE = T{E)) or Howie [4,
§VL2].

Now take any inverse semigroup Γ, and, if such exist, any idempo-
tent-separating morphism ψ: T —• WE/γ whose range contains the
semilattice of all idempotents of WEjy, where γ denotes the least
inverse semigroup congruence on WE. A semigroup β?(E, T, ψ) (see
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S(E, T, ψ) in the author [2], or see Howie [4, §VL4]) is defined by

jr(E, T, ψ) = {{w, t)eWEx T: wγ* = tψ}\

that is, J?{E, T, ψ) occurs in the pullback diagram

JT{E,T,ψ) —^ T

WE > WE/γ

Here, p\ and p2 are projections.
The semigroup β?{E, T, ψ) is orthodox, has band isomorphic to E,

and has its maximum inverse semigroup morphic image isomorphic
to T; conversely every such semigroup is obtained in this way (the
author [2], or Howie [4, §VL4]).

2. The isomorphism problem.

LEMMA 1. Take any two morphisms φ, ψ from a regular semigroup
T to a regular semigroup S such that the range of each of φ and ψ
contains the set E(S) of all the idempotents ofS. Ifφ\E(T) = ψ\E{T)
then (tφ, tψ) e μ, for all t e T; in particular, if also S is fundamental
then φ = ψ.

Proof. Take any t G T and any inverse t' of t in T. Of course, in
S, t'φ and t'ψ are inverses of tφ and tψ respectively and (t'φ)(tφ) =
(t't)φ = {t't)ψ = (tfψ)(tψ). Likewise (tφ)(t'φ) = (tψ)(t'ψ), so
(tφ)^(tψ) and (t'φ)^(t'ψ). Take any idempotent e of S such that
e < (tt')φ and any x e T such that xφ = e: then (tt'xtt')φ =
[(tt')φ]e[(tt')φ] = e, so e e range(φ\tt'Ttt'). Now tt'Ttt' is a regu-
lar semigroup, so by Lallement's Lemma [4, Lemma II.4.7] there is an
idempotent / e tt'Ttt' such that fφ = e. Since t1 ft is idempotent, we
have

{t'φ)e{tφ) = {t1 φ){fφ){tφ) = (t'ft)φ = (t'ft)ψ

= (t'ψ)(fψ)(tψ) = (t'ψ)e(tψ).

Thus {tφ, tψ) G μ, as required, completing the proof.

Take any isomorphism α: E —• E' from a band E to a band E1. Con-
sider WE and WEι and, as usual, identify E and E' with the bands of
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WE and WE> respectively. Since WE> is constructed from E1 precisely
as WE is constructed from E, there is an isomoφhism from WE to WE>
extending α, say a* (in fact, there is a unique such isomoφhism, by
Lemma 1). Denote by γ and / the least inverse semigroup congruences
on WE and WE, respectively: then the map α**: WE/γ -> WE>/γ',
given by wγa** = wa*γ\ for all w e WE, is an isomoφhism such that
γ^a** = a*γ'\ and is the unique such isomoφhism. Summarizing, we
have that the following diagram commutes, and a*, a** are the unique
moφhisms making the diagram commute.

WE/y -2CL, Wvly1

THEOREM 2. Take any bands E, E\ inverse semigroups T, V and
idempotent-separatingmorphisms ψ: T —• WΈ/γ andψ1: V —»• WE'/y'
whose ranges contain the idempotents of WE I y and WEΊY1 respectively.
Then MT{E, Γ, ψ) is isomorphic to β?(E'y V, ψ') if and only if there ex-
ist isomorphisms a: E -> E and β:T -* V such that the following
diagram commutes

WEIJ - ^ WE,/γ'

that is, such that ψ' = β~xψa**.

Proof, (a) if statement. Suppose such a, β exist. Informally we
could say that E', V, ψ' are a renaming of E, T, ψ respectively,
obtained by renaming each e € E by ea and each / e T by tβ,
and so SfT{E', V, ψ') is isomorphic to &(E, T, ψ). More formally,
we consider the isomorphism (a*,β): WE x T —*• WΈ x T' given by
(w, t)(a*. β) = (u/α , tβ) for all (w, t) e WE x T, and we show that
JT(E, T, ψ){a*. β) = βT(E', V, ψ').
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Take any (w, t) e &(E, T, ψ): then wγ* = tψ, and so

tβψ' = tββ~ιψa** = tψa** = wγ^a** = wa*γ*,

so (w, t)(a*,β) = (wa*, tβ)eJ^(Ef, V, ψ') and hence *(E, T, ψ)(a*,β)
c &{E't V, ψ').

From symmetry, we deduce that

', T', ψ'){a\ β)~ι = X{E\ V, ^ ( α * " 1 * ^ - 1 ) £ ^ ( ^ , Γ, ̂ ) ,

whence JF(£, Γ, ψ)(a*, β) = βf{E'y V, ψ!), as required.
(b) only if statement. Informally, we could say that, for any ortho-

dox semigroup S with band E and least inverse semigroup congruence
y, there is a unique morphism ψ making the following diagram com-
mute:

s -^u wE

\ V
—Ψ-^ WE/y

Hence E, S/p', ψ are all determined to within isomorphisms (or re-
namings) by S. Formally, we proceed as follows.

Take any isomorphism θ: S -» S', where S = βT{E,T,ψ) and
S' = %f{E', V, ψ'). Put Θ\E = a, an isomorphism of E upon E',
by Lallement's Lemma [4, Lemma II.4.7]. Let y and %" denote the
least inverse semigroup congruences on S and S' respectively. Clearly
there is a unique isomorphism β: S/y —• S'/y making the following
diagram commute:

S —θ—+ S'

s/y -J-* s /y

Now T = S/y and V = S'/y' ([2, Theorem 1] or [4, Theorem
VI.4.6]), so we assume without loss of generality that T = S/y and
V = S'/y; it remains to show that ψ' = β~ιψa**.
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We shall see that Diagram 1 commutes (p\, pi, ρ\, p'2 are projec-
tions).

L=(/U) U=(/>'Λ#

WE/y

DIAGRAM 1

We have seen already that each of the four outer faces is a commuting
diagram: we consider the central face. Now θp[ and p\a* are mor-
phisms which agree on E (with a = θ\E), and which map E (isomor-
phically) onto 2s', the band of W&. Hence, by Lemma 1, θp[ = p\a*\
that is, the central face commutes.

Consideration of the external face leads us to the following diagram.

WE

••=4
ψ

The commuting of the five internal faces of Diagram 1 gives us
that p\j* = P2βψ'a**~ι. But the mapping sψ v-+ (ps,λs)γ (for all
s G S), namely ψ, is the unique morphism from T to WE/γ making
this diagram commute, and hence ψ = βψfa**~ι (that is, the external
face commutes) and so ψ' = β~ι ψa** as required.

3. Orthodox semigroups, up to isomorphism. Consider the following
problem: given a band E and an inverse semigroup Γ, find, up to iso-
morphism, the orthodox semigroups with band E and with maximum
inverse semigroup morphic image isomorphic to T.

The author's structure theorem ([2, Theorem 1] or [4, Theorem
VI.4.6]) and Theorem 2 above together immediately yield a solution
as follows.
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Denote by Aut(S) the group of automorphisms of any semigroup
S. From Lemma 1, for any φ e AΛXX{WE), we see that φ = (φ\E)*9

so we have that Aut(JE) = Aut(WE) under the map a »-> a* for each
α e Aut(E). The map Aut(W^) -> A u t ( ^ / y ) , α * »-> α** (for each
a G Aut(is)), is a morphism; we denote its image by [Aut(is)]**; then
[Aut(E)]** = {α**: a G Aut(£)}.

Denote by M the set of idempotent-separating morphisms from
T into WEjγ whose ranges each contain the idempotents of WE/y.
By [2, Corollary 1] or [4, Theorem VI.4.6], there exists an orthodox
semigroup with band E and with maximum inverse semigroup mor-
phic image isomorphic to Γ, if and only if M is nonempty. Assume
henceforth that M is nonempty. Define an action on M by the group
Aut(Γ) x [Aut(£)]** as follows:

for all ψ G M, β G Aut(Γ), a G Aut(£).
The orbits of M under Aut(Γ) x [AutCE')]** are the sets

ψ(Aut(T) x [Aut(E)]**) = {β~ιψa**: β G Aut(Γ), a G Aut(£)},

for each ψ G M (thus these sets partition Af). By Theorem 2, we have,
for all ψ9 ψ

1 G M, ^T(£, Γ, ^) = ^ ( £ , Γ, ψ') if and only if ψ and ^
are in the same orbit. Thus, if {ψi•: i G /} is a transversal of the set of
orbits (that is, a selection of precisely one morphism from each orbit)
then X^(E9 T, ψi), i G /, is a list of all the orthodox semigroups with
band E and maximum inverse semigroup morphic image isomorphic
to Γ, and the semigroups are pairwise nonisomorphic.
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