THE ISOMORPHISM PROBLEM FOR ORTHODOX SEMIGROUPS

T. E. Hall

Abstract

The author's structure theorem for orthodox semigroups produced an orthodox semigroup $\mathscr{H}(E, T, \psi)$ from a band E, an inverse semigroup T and a morphism ψ between two inverse semigroups, namely T and W_{E} / γ, an inverse semigroup constructed from E. Here, we solve the isomorphism problem: when are two such orthodox semigroups isomorphic? This leads to a way of producing all orthodox semigroups, up to isomorphism, with prescribed band E and maximum inverse semigroup morphic image T.

1. Preliminaries. A semigroup S is called regular (in the sense of von Neumann for rings) if for each $a \in S$ there exists $x \in S$ such that $a x a=a$; and S is called an inverse semigroup if for each $a \in S$ there is' a unique $x \in S$ such that $a x a=a$ and $x a x=x$. A band is a semigroup in which each element is idempotent, and an orthodox semigroup is a regular semigroup in which the idempotents form a subsemigroup (that is, a band).

We follow the notation and conventions of Howie [4].
Result 1 [3, Theorem 5]. The maximum congruence contained in Green's relation \mathscr{H} on any regular semigroup $S, \mu=\mu(S)$ say, is given by $\mu=\left\{(a, b) \in \mathscr{H}\right.$: for some [for each pair of] \mathscr{H}-related inverses a^{\prime} of a and b^{\prime} of $b, a^{\prime} e a=b^{\prime} e b$ for each idempotent $\left.e \leq a a^{\prime}\right\}$.

A regular semigroup S is called fundamental if μ is the identity relation on S. For each band E, the semigroup W_{E} is fundamental, orthodox, has its band isomorphic to E, and contains, for each orthodox semigroup S with band E, a copy of S / μ as a subsemigroup: see the author [1] (or [3] with $E=\langle E\rangle$ and $W_{E}=T_{\langle E\rangle}$) or Howie [4, §VI.2].

Now take any inverse semigroup T, and, if such exist, any idempo-tent-separating morphism $\psi: T \rightarrow W_{E} / \gamma$ whose range contains the semilattice of all idempotents of W_{E} / γ, where γ denotes the least inverse semigroup congruence on W_{E}. A semigroup $\mathscr{H}(E, T, \psi)$ (see
$S(E, T, \psi)$ in the author [2], or see Howie [4, §VI.4]) is defined by

$$
\mathscr{H}(E, T, \psi)=\left\{(w, t) \in W_{E} \times T: w \gamma^{\natural}=t \psi\right\} ;
$$

that is, $\mathscr{H}(E, T, \psi)$ occurs in the pullback diagram

Here, p_{1} and p_{2} are projections.
The semigroup $\mathscr{H}(E, T, \psi)$ is orthodox, has band isomorphic to E, and has its maximum inverse semigroup morphic image isomorphic to T; conversely every such semigroup is obtained in this way (the author [2], or Howie [4, §VI.4]).

2. The isomorphism problem.

Lemma 1. Take any two morphisms φ, ψ from a regular semigroup T to a regular semigroup S such that the range of each of φ and ψ contains the set $E(S)$ of all the idempotents of S. If $\varphi|E(T)=\psi| E(T)$ then $(t \varphi, t \psi) \in \mu$, for all $t \in T$; in particular, if also S is fundamental, then $\varphi=\psi$.

Proof. Take any $t \in T$ and any inverse t^{\prime} of t in T. Of course, in $S, t^{\prime} \varphi$ and $t^{\prime} \psi$ are inverses of $t \varphi$ and $t \psi$ respectively and $\left(t^{\prime} \varphi\right)(t \varphi)=$ $\left(t^{\prime} t\right) \varphi=\left(t^{\prime} t\right) \psi=\left(t^{\prime} \psi\right)(t \psi)$. Likewise $(t \varphi)\left(t^{\prime} \varphi\right)=(t \psi)\left(t^{\prime} \psi\right)$, so $(t \varphi) \mathscr{H}(t \psi)$ and $\left(t^{\prime} \varphi\right) \mathscr{H}\left(t^{\prime} \psi\right)$. Take any idempotent e of S such that $e \leq\left(t t^{\prime}\right) \varphi$ and any $x \in T$ such that $x \varphi=e$: then $\left(t t^{\prime} x t t^{\prime}\right) \varphi=$ $\left[\left(t t^{\prime}\right) \varphi\right] e\left[\left(t t^{\prime}\right) \varphi\right]=e$, so $e \in \operatorname{range}\left(\varphi \mid t t^{\prime} T t t^{\prime}\right)$. Now $t t^{\prime} T t t^{\prime}$ is a regular semigroup, so by Lallement's Lemma [4, Lemma II.4.7] there is an idempotent $f \in t t^{\prime} T t t^{\prime}$ such that $f \varphi=e$. Since $t^{\prime} f t$ is idempotent, we have

$$
\begin{aligned}
\left(t^{\prime} \varphi\right) e(t \varphi) & =\left(t^{\prime} \varphi\right)(f \varphi)(t \varphi)=\left(t^{\prime} f t\right) \varphi=\left(t^{\prime} f t\right) \psi \\
& =\left(t^{\prime} \psi\right)(f \psi)(t \psi)=\left(t^{\prime} \psi\right) e(t \psi)
\end{aligned}
$$

Thus $(t \varphi, t \psi) \in \mu$, as required, completing the proof.
Take any isomorphism $\alpha: E \rightarrow E^{\prime}$ from a band E to a band E^{\prime}. Consider W_{E} and $W_{E^{\prime}}$ and, as usual, identify E and E^{\prime} with the bands of
W_{E} and $W_{E^{\prime}}$ respectively. Since $W_{E^{\prime}}$ is constructed from E^{\prime} precisely as W_{E} is constructed from E, there is an isomorphism from W_{E} to $W_{E^{\prime}}$ extending α, say α^{*} (in fact, there is a unique such isomorphism, by Lemma 1). Denote by γ and γ^{\prime} the least inverse semigroup congruences on W_{E} and $W_{E^{\prime}}$ respectively: then the $\operatorname{map} \alpha^{* *}: W_{E} / \gamma \rightarrow W_{E^{\prime}} / \gamma^{\prime}$, given by $w \gamma \alpha^{* *}=w \alpha^{*} \gamma^{\prime}$, for all $w \in W_{E}$, is an isomorphism such that $\gamma^{\natural} \alpha^{* *}=\alpha^{*} \gamma^{\prime \text { घ }}$, and is the unique such isomorphism. Summarizing, we have that the following diagram commutes, and $\alpha^{*}, \alpha^{* *}$ are the unique morphisms making the diagram commute.

Theorem 2. Take any bands E, E^{\prime}, inverse semigroups T, T^{\prime} and idempotent-separating morphisms $\psi: T \rightarrow W_{E} / \gamma$ and $\psi^{\prime}: T^{\prime} \rightarrow W_{E^{\prime}} / \gamma^{\prime}$ whose ranges contain the idempotents of W_{E} / γ and $W_{E^{\prime}} / \gamma^{\prime}$ respectively. Then $\mathscr{H}(E, T, \psi)$ is isomorphic to $\mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)$ if and only if there exist isomorphisms $\alpha: E \rightarrow E^{\prime}$ and $\beta: T \rightarrow T^{\prime}$ such that the following diagram commutes

that is, such that $\psi^{\prime}=\beta^{-1} \psi \alpha^{* *}$.

Proof. (a) if statement. Suppose such α, β exist. Informally we could say that $E^{\prime}, T^{\prime}, \psi^{\prime}$ are a renaming of E, T, ψ respectively, obtained by renaming each $e \in E$ by $e \alpha$ and each $t \in T$ by $t \beta$, and so $\mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)$ is isomorphic to $\mathscr{H}(E, T, \psi)$. More formally, we consider the isomorphism $\left(\alpha^{*}, \beta\right): W_{E} \times T \rightarrow W_{E^{\prime}} \times T^{\prime}$ given by $(w, t)\left(\alpha^{*}, \beta\right)=\left(w \alpha^{*}, t \beta\right)$ for all $(w, t) \in W_{E} \times T$, and we show that $\mathscr{H}(E, T, \psi)\left(\alpha^{*}, \beta\right)=\mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)$.

Take any $(w, t) \in \mathscr{H}(E, T, \psi):$ then $w \gamma^{\natural}=t \psi$, and so

$$
t \beta \psi^{\prime}=t \beta \beta^{-1} \psi \alpha^{* *}=t \psi \alpha^{* *}=w \gamma^{\natural} \alpha^{* *}=w \alpha^{*} \gamma^{\prime \natural}
$$

so $(w, t)\left(\alpha^{*}, \beta\right)=\left(w \alpha^{*}, t \beta\right) \in \mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)$ and hence $\mathscr{H}(E, T, \psi)\left(\alpha^{*}, \beta\right)$ $\subseteq \mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)$.

From symmetry, we deduce that

$$
\mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)\left(\alpha^{*}, \beta\right)^{-1}=\mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)\left(\alpha^{*-1}, \beta^{-1}\right) \subseteq \mathscr{H}(E, T, \psi)
$$

whence $\mathscr{H}(E, T, \psi)\left(\alpha^{*}, \beta\right)=\mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)$, as required.
(b) only if statement. Informally, we could say that, for any orthodox semigroup S with band E and least inverse semigroup congruence \mathscr{Y}, there is a unique morphism ψ making the following diagram commute:

Hence $E, S / \mathscr{Y}, \psi$ are all determined to within isomorphisms (or renamings) by S. Formally, we proceed as follows.

Take any isomorphism $\theta: S \rightarrow S^{\prime}$, where $S=\mathscr{H}(E, T, \psi)$ and $S^{\prime}=\mathscr{H}\left(E^{\prime}, T^{\prime}, \psi^{\prime}\right)$. Put $\theta \mid E=\alpha$, an isomorphism of E upon E^{\prime}, by Lallement's Lemma [4, Lemma II.4.7]. Let \mathscr{Y} and \mathscr{F}^{\prime} denote the least inverse semigroup congruences on S and S^{\prime} respectively. Clearly there is a unique isomorphism $\beta: S / \mathscr{Y} \rightarrow S^{\prime} / \mathscr{Y}^{\prime}$ making the following diagram commute:

Now $T \cong S / \mathscr{Y}$ and $T^{\prime} \cong S^{\prime} / \mathscr{Y}^{\prime}$ ([2, Theorem 1] or [4, Theorem VI.4.6]), so we assume without loss of generality that $T=S / \mathscr{Y}$ and $T^{\prime}=S^{\prime} / \mathscr{Y}^{\prime}$; it remains to show that $\psi^{\prime}=\beta^{-1} \psi \alpha^{* *}$.

We shall see that Diagram 1 commutes ($p_{1}, p_{2}, p_{1}^{\prime}, p_{2}^{\prime}$ are projections).

We have seen already that each of the four outer faces is a commuting diagram: we consider the central face. Now θp_{1}^{\prime} and $p_{1} \alpha^{*}$ are morphisms which agree on E (with $\alpha=\theta \mid E$), and which map E (isomorphically) onto E^{\prime}, the band of $W_{E^{\prime}}$. Hence, by Lemma $1, \theta p_{1}^{\prime}=p_{1} \alpha^{*}$; that is, the central face commutes.

Consideration of the external face leads us to the following diagram.

The commuting of the five internal faces of Diagram 1 gives us that $p_{1} \gamma^{\natural}=p_{2} \beta \psi^{\prime} \alpha^{* *-1}$. But the mapping $s \mathscr{Y} \mapsto\left(\rho_{S}, \lambda_{S}\right) \gamma$ (for all $s \in S$), namely ψ, is the unique morphism from T to W_{E} / γ making this diagram commute, and hence $\psi=\beta \psi^{\prime} \alpha^{* *-1}$ (that is, the external face commutes) and so $\psi^{\prime}=\beta^{-1} \psi \alpha^{* *}$ as required.
3. Orthodox semigroups, up to isomorphism. Consider the following problem: given a band E and an inverse semigroup T, find, up to isomorphism, the orthodox semigroups with band E and with maximum inverse semigroup morphic image isomorphic to T.

The author's structure theorem ($[2$, Theorem 1] or [4, Theorem VI.4.6]) and Theorem 2 above together immediately yield a solution as follows.

Denote by $\operatorname{Aut}(S)$ the group of automorphisms of any semigroup S. From Lemma 1 , for any $\varphi \in \operatorname{Aut}\left(W_{E}\right)$, we see that $\varphi=(\varphi \mid E)^{*}$, so we have that $\operatorname{Aut}(E) \cong \operatorname{Aut}\left(W_{E}\right)$ under the map $\alpha \mapsto \alpha^{*}$ for each $\alpha \in \operatorname{Aut}(E)$. The map $\operatorname{Aut}\left(W_{E}\right) \rightarrow \operatorname{Aut}\left(W_{E} / \gamma\right), \alpha^{*} \mapsto \alpha^{* *}$ (for each $\alpha \in \operatorname{Aut}(E))$, is a morphism; we denote its image by $[\operatorname{Aut}(E)]^{* *}$; then $[\operatorname{Aut}(E)]^{* *}=\left\{\alpha^{* *}: \alpha \in \operatorname{Aut}(E)\right\}$.

Denote by M the set of idempotent-separating morphisms from T into W_{E} / γ whose ranges each contain the idempotents of W_{E} / γ. By [2, Corollary 1] or [4, Theorem VI.4.6], there exists an orthodox semigroup with band E and with maximum inverse semigroup morphic image isomorphic to T, if and only if M is nonempty. Assume henceforth that M is nonempty. Define an action on M by the group $\operatorname{Aut}(T) \times[\operatorname{Aut}(E)]^{* *}$ as follows:

$$
\psi\left(\beta, \alpha^{* *}\right)=\beta^{-1} \psi \alpha^{* *},
$$

for all $\psi \in M, \beta \in \operatorname{Aut}(T), \alpha \in \operatorname{Aut}(E)$.
The orbits of M under $\operatorname{Aut}(T) \times[\operatorname{Aut}(E)]^{* *}$ are the sets

$$
\psi\left(\operatorname{Aut}(T) \times[\operatorname{Aut}(E)]^{* *}\right)=\left\{\beta^{-1} \psi \alpha^{* *}: \beta \in \operatorname{Aut}(T), \alpha \in \operatorname{Aut}(E)\right\},
$$

for each $\psi \in M$ (thus these sets partition M). By Theorem 2, we have, for all $\psi, \psi^{\prime} \in M, \mathscr{H}(E, T, \psi) \cong \mathscr{H}\left(E, T, \psi^{\prime}\right)$ if and only if ψ and ψ^{\prime} are in the same orbit. Thus, if $\left\{\psi_{i}: i \in I\right\}$ is a transversal of the set of orbits (that is, a selection of precisely one morphism from each orbit) then $\mathscr{H}\left(E, T, \psi_{i}\right), i \in I$, is a list of all the orthodox semigroups with band E and maximum inverse semigroup morphic image isomorphic to T, and the semigroups are pairwise nonisomorphic.

References

[1] T. E. Hall, On orthodox semigroups and uniform and antiuniform bands, J. Algebra, 16 (1970), 204-217.
[2] -, Orthodox semigroups, Pacific J. Math., 39 (1971), 677-686.
[3] __, On regular semigroups, J. Algebra, 24 (1973), 1-24.
[4] J. M. Howie, An Introduction to Semigroup Theory, L.M.S. Monographs, No. 7, Academic Press, London, New York, 1976.

Received July 21, 1987.
Monash University
Clayton, Victoria 3168
Australia

