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A NONLINEAR ELLIPTIC OPERATOR AND
ITS SINGULAR VALUES

P. T. CHURCH AND J. G. TIMOURIAN

The boundary value problem Au + Au — 1> = g on Q, u|0Q = 0,
where Q C R"” (n < 4) is a bounded domain, defines a real analytic
map A; of the Sobolev space H = WO"z(Q) onto itself. A pointu €¢ H
is a fold point if 4; at u is C*™ equivalent to f x id: RX E —
R x E, where f(¢t) = t>. (1) There is a closed subset I';, C H such
that (a) at each point of A;‘(H —T7;) the map A; is either locally
a diffeomorphism or a fold, and (b) for each nonempty connected
open subset V' C H, V —I'; is nonempty and connected; thus I, is
nowhere dense in H and does not locally separate H. Suppose that
n < 3 and the second eigenvalue A, of —Au on Q with u[0Q = 0
is simple. Define 4: H x R — H x R by A(u,A) = (4:,(u),4). (2)
There is a connected open neighborhood V' of (0, 1;) in H x R such
that A='(V) has three components Uy, U, U, with A: U; — V a
diffeomorphism for i = 1,2 and A|Uy: Uy — V C* equivalent to
w xid: R?x E — R? x E defined by (w xid)(¢, 4, v) = (£* = it, A, v).

We continue the study [BCT-2] of the equation
Aut+iu—-uwl=g onQ, uldQ=0,

where Q C R” (n < 4) is a bounded domain. If H is the Sobolev space
W32 (Q), define

(Ar(u), 9)ur = /Q [VuVe — dup +u3p)

for all ¢ € C§°(Q), and define 4: H x R — H x R by A(u,4) =
(A3 (u). 4).

Let SA4; be the singular set (0.1) of the real analytic map 4;. By
Theorem (1.8) and Remark (1.9) there is a closed subset I'; C 4;(S4;)
such that (a) A;l(H —T;) consists entirely of regular points (u ¢ SA4;)
and fold points (0.1) and (b) for every nonempty connected open
subset V' of H, VV —T'; is nonempty and arcwise connected (so that
H is not locally separated by I'; at any point). Roughly, this states:
most solutions g of A;(u) = g come from only regular points [Sm,
p. 862, (1.3)], and of the rest most come from only fold points. The
relation between (1.8) and [Mi] is discussed in (1.10). A comparable
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result holds in the domain [CDT]: intS4 = &, and if A C S4 is the
set of nonfold points and V' € H x R is a nonempty connected open
subset, then V' — A is nonempty and connected.

There are [BCT-2, (3.9)] a connected open neighborhood V" of (0, 4;)
€ H x R and C* diffeomorphisms ¢ and y such that 4|4~!1(V):
AV (V) = V (with n < 3) is w o (w x id) o ¢, where w x id: R? x E —
R? x E is given by (w x id)(¢,4,v) = (3 — At,A,v). Now suppose
that A, is a simple eigenvalue of —A on Q (with null boundary con-
ditions). Then there is (2.4) a connected open neighborhood V of
(0,42) in H x R such that 4~1(V) has three components Uy, U, U,
with A: U; ~ V a diffeomorphism for i = 1,2 and A|Uy: Uy — V
being y o (w x id) o ¢ above. That 4;(u) = 0 has exactly five solutions
u for 1, < A < A, +¢ and ¢ > O sufficiently small was previously noted
in [AM, p. 642, Theorem (3.4)].

The set of (weak) solutions of the boundary value problem for a
given g and A is the point inverse set 4 1(g, A1), and we are naturally
led to a study of the singularities and structure of A, as in this paper.
For a more detailed discussion see [CT-2, Introduction].

0.1. DerFINITIONS. Let E; and E, be Banach spaces, let U be open
inE,letue U,andlet A: U — E; bea C¥ (k =1,2,... or o)
map. If DA(u) is surjective, we say that u is a regular point of A. The
singular set SA is the set of nonregular points. We say that the map A
is Fredholm at u with index v if DA(u) is a Fredholm linear map with
index v, i.e., a = dimker DA(u) is finite, Range DA(u) is closed, and
its codimension b in E; is finite, with ¥ = a — b; if A is Fredholm at
each point of U, we say that A4 is a Fredholm map.

If k > 2 with (0) 4 Fredholm at u with index 0, (1) dim ker DA(u) =
1 (and therefore range DA(u) has codimension one), and (2) for some
(and hence for any) nonzero element e € ker DA(u)

D?A(u)(e, e) ¢ Range DA(u),

then we say that u is a fold point of A.
If (2) is replaced by its negation, and we add (3) for some w € T,E;,

D?A(u)(e, w) ¢ Range DA(u),

then we say that u is a precusp point of A (see [BCT-1, p. 3, (1.6)] and
[BCT-2, (3.1), (3.2)]).

These notions are invariant under coordinate change [BCT-1, p. 9,
(3.2)].
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0.2. THEOREM ([BC, p. 950], [BCT-1, (1.5)] and (1.7)). If 4 has a
fold at @, then A at u is locally C*=? equivalent [BCT-1, (1.2)] to

F:RxE—->RxE, (t,v)— (t2,v)at(0,0).

If k > 4, the converse is true.

0.3. NoTATION. An ordered pair in X x Y is denoted by (x, y),
while the inner product of x and y in a Hilbert space H is denoted
by (x, y)y. Real analytic [Z, p. 362, (8.8)] is denoted by C?. Assume
throughout that Q is a bounded connected open subset of R” (n < 4).
In general, notation follows that in [BCT-2] and [CT-2].

Church thanks Syracuse University for research leave during 1986-
87, and the University of Alberta for its hospitality and support during
that period.

1. The exceptional set I'; C 4;(S4;). Our goal in this section is the
proof of Theorem 1.8. “Dimension” is defined in [HW, p. 10 and p.
24].

1.1. LeMMA [B, p. 14, Proposition). Let M" be an n-manifold with-
out boundary, and let X be a closed subset. Then:

(a) dim X < n—1 ifand only if X contains no nonempty open subset
of M"; and

(b) dimX < n — 2 if and only if X contains no nonempty open
subset of M, and for every connected open subset V of M", V — X is
connected.

In [Bo, p. 14, Proposition] use L = Z, the group of integers under
addition. See also [HW, p. 24; p. 26, Theorem III 1; p. 41, Theorem
IV 1; p. 48, Theorem IV 4; and pp. 151-152].

1.2. LEMMA. Let M" be an n-manifold without boundary, let E be
a connected locally connected topological space, and let X be a closed
subspace of M" x E.

(a) If dim(X N (M" x v)) < n—1 for every v € E, then X contains
no nonempty open subset of M" x E.

(b) If dim(X N (M" x v)) < n — 2 for every v € E, then for every
nonempty connected open subset V of M" x E, V — X is nonempty and
connected.

(c) Let my: M" x E — M" and ny: M" x E — E be projections. If
dimn;(X) < n -1 and ny(X) contains no nonempty open subset of E,
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then for every nonempty connected open subset V of M" x E, V — X is
nonempty and connected.

Proof. Conclusion (a) is immediate from (1.1)(a). Let S}, S, and
S3 be the following statements:
(S1) dim(X N(M" xv)) <n-2foreveryv € E.
(S2) If B and D are nonempty connected open subsets of A" and
E, respectively, then (B x D) — X is connected and nonempty.
(S3) If V is a nonempty connected open subset of M” x E, then
V — X is connected and nonempty.

We first prove that S; implies S,. Let U be a component of
(BxD)—-X,so Uisopenin BxD. By (1.1)(b) (Bxv)—X is connected
for every v € D, so if (B x v) — X meets U, then (B xv)—- X Cc U.
The set S(U) of v € D such that (B x v) — X C U is nonempty,
open, and closed (since S(U’) is open for the other components U’ of
(B x D) - X). Since D is connected, S(U) = D, 1e.,U=(BxD)—-X
so that (B x D) — X is connected.

Next we prove that S, implies S3. Let V' be any connected open
subset of M" x E, let W be a component of V' — X, and suppose
WV -X;since VAW cWUX,VNW #V.Letye VnbdyW.
There are connected open subsets B and D of M" and E, respectively,
such that y € BxD C V, and thus (BxD)NW # . Since (BxD)—-X
is connected openin V — X, (BxD)— X cCcW,soBxDcVnW.
As a result, y € ¥V Nnint(W), contradicting its choice. Thus V' — X is
connected, as desired.

Conclusion (b) results from the two previous paragraphs.

We next prove that the hypotheses of (c) imply S,. By [HW, p. 41,
Theorem IV 1] there exists X € B — n;(X), and thus

U{xxD:xeB—-nl(X)}UU{va:veD—nz(X)},

call it Y, is a connected subset of (BxD)—X. Let U be the component
of (B x D) — X containing Y, and let (x,v) € (B x D) — X. There
are connected open B’ and D' in B and D, respectively, such that
(x,v) € B'xD' Cc (BxD)—X, and since (B'xD")NY #, (x,v) e U.
Now (x,v) is arbitrary, so (B x D) — X is connected.

Since S, implies S3, conclusion (c) follows from the previous para-
graph.

1.3. REMARK. Lemma 1.2 can be generalized with the same proofs.
Replace M" by any connected, locally connected topological space M,
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replace “dim(X N (M" x v)) < n —1 [resp., dim7;(X) < n - 1] by
(i) “X N (M x v) contains no nonempty open subset of M x v [resp.,
M7, and replace “dim(X N (M" x v)) < n—2” by (i) and (ii) “for
every connected open subset V' of M x v, V' — X is connected”.

1.4. DEFINITIONS [Mi, p. 288]. Let Y be a locally arcwise connected
metric space. A subset S of Y does not disconnect locally if for every
x € S there exists a fundamental system % of open spheres with
center at x, arcwise connected, and such that, for every B %, B—-S
is still arcwise connected. A subset S of Y is said to be supermeager
if S is meager (i.e., of first category) and does not disconnect locally.

1.5. LEMMA. Let Y be a Banach manifold, and let S C Y be a
countable union of closed subsets of Y. Then S is supermeager if and
only if, for every nonempty connected open subset V.C Y, V — S is
nonempty and arcwise connected.

Thus, if E in (1.2) is a Banach manifold, then the conclusion in
(1.2)(b) and (c) may be restated: X is supermeager. Lemma 1.5 is
true for any locally arcwise connected metric space Y, if inty S = &.

Proof. Assume S is supermeager and write S = |Jj2, S, where each
S is closed and (1) we may suppose that S; = .

We first prove that (2) each S; is supermeager. Let x € S}, let & be
given by (1.4) for § and x, let B € #, and let x;, x; € B—S;. Choose
arcwise connected open subsets U; C B —S; with x; € U;, and use the
Baire Theorem to choose z; € U; —S (i = 1,2). There is an arc in
B — § joining z; and z;, and thus a path in B — S joining x; and x»;
(2) results.

Let V' C Y be any nonempty connected open subset, and let yg, y; €
V' —S§; we prove that there is a path y C V' —S joining yg to y;, and thus
obtain the desired conclusion. The proof is given in [Mi, Proposition
1, beginning at the top of p. 289], except that B is replaced by V', we
use (1), and 2b; = min{1, d(®,([0; 1]), S1)} = 1. [The word “radius”
is omitted in “whose radius is 7 < min{b,, 1/4}”.]

1.6. LEMMA. Let X and Y be C? separable manifolds over (real)
Banach spaces, and let A: X — Y be a C* Fredholm map of index 0.
Let S*A be the set of u € X such that either

(a) dimker DA(u) > 1, or

(b) u is a precusp point (0.1).
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Then, for every nonempty connected open set V C Y, V — A(S*A) is
nonempty and arcwise connected.

The conclusion is equivalent (1.5) to: A(S*A) is supermeager in Y.
(See the following proof.)

Proof. Let RA and CA be the set of u € X satisfying hypotheses (a)
and (b), respectively. For each u € CA there is [BCT-1, p. 9, (3.3)]
an open neighborhood W of u and a C? diffeomorphism g~! of W
onto an open set in E; = R x E x R such that 8~!(u) = (0,0,0), E is
a Banach space,

AB: B~'(W) - E;=Rx ExR, (t,v,A) = (h(t,v,A),v,A)
with

(8h/61)(0,0,0) =0, (8%h/6%)(0,0,0) =0, and
(8%h/dt 82)(0,0,0) # 0.

There is [Sm, pp. 862-863, (1.6)] an open neighborhood V" of (0,0, 0)
such that ¥ ¢ W and A4|V: V — Y is proper and thus closed. By
the Implicit Function Theorem [Z, p. 150, 4.B] there are an open
neighborhood P of (0,0) in R x E, an open interval I about 0 in R,
and a C! map A: P — R such that

(1) SAB)N(P xTI)=graphACPxICV

Define u: P — P x R by u(t,v) = (h(t,v,A(t,v)),v,A(t,v)); since
Oh/ot = 0 on graph A and 82h/8t* = 0 if and only if 64/0t = 0, (2)
C(AB)N (P x I) is the set T of (¢,v,4(t,v)) for which 81/dt = 0.
For each fixed v, define u,(t) = (h(¢, v, A(t,v)), A(t, v)). According to
[C, p. 1037, Proposition 4] (3) if f: M" — NP is a C™ax(n=k1) map
and R, (f) is the set of points x € M" at which Df(x) has rank at
most k, then dim(f(R,(f))) < k. It follows that (4) u(T N (R x v))
has dimension at most 0. Alternatively, define z;: R> - R (i = 1,2)
by mi(x,y) = x and 7m(x,y) = y. From Sard’s Theorem [Sa, p.
883] m;(u(T N (R x v))) has dimension 0 (i = 1,2), and (4) results
from (1.2)(c) and (1.1)(b). That AB(T) is supermeager follows from
(4) and (1.2)(b). Now BC(AB) = W n CA [BCT-1, p. 9, (3.2)], and
it follows from (1) and (2) that (5) for each u € A, there is an open
neighborhood Q of u in X such that A(QNCA) is a closed supermeager
setin Y.

According to [Mi, p. 291, Theorem A] (or [CT-1, Theorem 1] and
(1.5)) A(RA) is supermeager in Y; since A is locally proper [Sm, pp.
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862-863, (1.6)], for each u € RA, there is an open neighborhood Q of
u in X such that A(QNRA) is a closed supermeager set in Y. Since X
is separable, there is a countable collection of open sets Q; of X such
that RAUCA c |J; Q; and A(Q;N(RAUCA)) is a closed supermeager
subset of Y. The conclusion follows from [Mi, p. 288, Proposition
1]: if Y is a Banach space and § is the countable union of closed
supermeager subsets of Y, then S is supermeager.

1.7. HypoTHESES. In (1.8) assume the following hypotheses on
f:R—=R: (1) fis C? (2) f£(0)= 0= f'(0), and (3) for every s # 0
in R, (a) f'(s) > 0 and (b) f"(s) # 0. It follows from the Mean Value
Theorem that (4) f”(0) = 0 and (5) forevery s # 0in R, (a) f'(s) >0
and (b) sf”(s) > 0.

Let Q be a bounded domain in R” (n < 4), let H = W}*(Q), and
formally define 4,: H — H by

(dy(u) / [VuV — iug + f(u)g]

for every ¢ € C§°(Q), and 4: H xR — H x Rby A(u, ) = (4;(u), A).
Assume sufficient hypotheses of f and n so that 4, is C? (e.g., f is
C3 and f3) € L*(Q)).

An example is f(s) = s3.

1.8. THEOREM. Let A, be as given in (1.7), and let CA; be the set
of singular points not fold points (0.1). Then, for every nonempty con-
nected open V C H, V —A;(CA,) is nonempty and (arcwise) connected.
An analogous result holds for A and H x R.

Thus A4,(CA;) is supermeager in H ((1.5) and [Sm; pp. 862-863,
(1.6)]). The theorem states roughly: most solutions g of 4,(u) = g
come from only regular points ¥ [Sm], and of the remainder most
come from only fold points. For A < Ay, 4, is a difftomorphism
[BCT-2, (2.3)], and O is the only singular point of 4;, [BCT-2, (2.7)i)].

Proof. Since A, is C! Fredholm of index 0 [BCT-2, (2.5)], 4;(S4;)
is meager in H by the Smale-Sard Theorem [Sm, p. 862, (1.3)]. That
A;(CA;) is supermeager in H will follow from (1.6), once we prove:
() IfueS4;, (u,A)#(0,4;) (i=1,2,...), and dim(ker D4;(u)) =
with generator e, then there exists w € H such that

0 # (D?A4,(u)(e, w), / M(u
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Suppose that (1) fails for w = u. By (1.7) sf"(s) > 0 for s # 0, so
that (2) ue = 0 a.e. By (1.7) f'(0) = 0 and thus [, f'(u)ey = 0 for
every ¥ € H, since (DA;(u) -e, y)y = 0, A = 4; and e = ¢, the ith
eigenvalue and eigenvector of —A with null boundary conditions on Q
(i=1,2,...). Since ¢; is real analytic [BJS, p. 136 and pp. 207-210],
¢i(x) # 0 a.e., so that u(x) = 0 a.e. Thus (1) is satisfied, and the
conclusion for A4, results.

For A note that (1) becomes

(1) (D?A4(u,2)((e,0),(0, 1)), (e, @) rrxr # O,

where (e,a) is orthogonal to the codimension 1 subspace Range DA(u,A}
and a = (u, Le)y = [, ue [BCT-2, proof of (3.5)]; (1') is —(Le,e) =
~1#0.

1.9. REMARK. In case f(u) = u3, A and A, are proper [BCT-2,
(2.8)] so that I'; = A;(CA;) is a closed subset of H satisfying the
conditions stated in the introduction. More generally, sufficient con-
ditions for f(u) in (1.7) to be proper are given in [BCT-2, (2.9)].

1.10. ReEMARK. In [Mi] the author discusses smooth Fredholm
maps of index 0, and calls a singular value y € A(SA4) an ordinary
value if every u € A~1(y) is either a fold point or a regular point
(0.1). In the introduction [Mi, p. 288] she states (1) “Finally we ha[v]e
that for a smooth proper Fredholm map of index 0, the critical values
y are ordinary value[s] (i.e., y is image of a finite number of singu-
lar point[s] in each of which the operator behaves locally making a
fold) ex[c]ept [for] a supermeager set”. Statement (1) is false in the
generality claimed: define 4: R — R by A(f) = £3.

One may put together [Mi, Proposition 1, p. 288; Theorem A, p.
291; and Theorem D, p. 296] to obtain (1) under an additional hy-
pothesis: this result is Lemma 1.6 (see (1.5)), except that she assumes
C#, rather than our C? hypothesis in (1.6).

2. The structure of A4 at (0, 1;). The main result of §2 is (2.4), which
gives the structure of 4|A~1(V): A~1(V) — V, where A is the map of
the introduction, V is an open neighborhood of (0,4), and 1 < 4, + ¢
for some ¢ > 0. Theorem 2.4, as well as the other results of §2, applies
to a more general map (2.1), used in [BCT-2] and [CT-2], so that map
is now defined.

2.1. DeFINITION [BCT-2, (1.2)]). The abstract map A. Consider any
Hilbert space H over the real numbers and a map A4;: H — H defined
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by
A;(u) =u—ALu+ N(u),

where L and N have the following properties:

(1) L is a compact, self-adjoint, positive linear operator ((Lu, u)y >
0 and = 0 only if u = 0). It follows [D, pp. 349-350] that H is sepa-
rable and the eigenvalues 4,, (m = 1,2,...) of u = ALu are positive,
Am < Ams1, and (if H is infinite dimensional) 4,, — oo as m — oo.
Let {u,,} be an orthonormal basis of H of eigenvectors.

(2) The first eigenvalue A; is simple.

(3) (a) The map N is C¥ (k =1,2,... or oo or w) such that DN (u)
is nonnegative self-adjoint ((DN(u) - v,v)y > 0 for every v € H).

(b) If (DN (u)-tpm, um)yy = 0 forsomem (m=1,2,...), thenu = 0.
[Statement (b;) is: (DN (u) - uy,u;)y = 0 implies u = 0.]

(c) k > 2 and D/N(0) = O for j = 0,1,2. [Statement c;) for
j=0,1,21s: Nis C/ and D/’N(0) =0.]

(d) k >3 and (D3N (u)(v,v,v),v)y >0 for 0 # v € H.

(e) D*N(u) = 0. From Taylor’s Theorem [Z, p. 148, Theorem 4.A]
it follows that N is real analytic, and assuming (3)(c), (3))N(u) =
D3N (0)(u, u, u), so that 2DN (u) - v = D3N(0)(u, u,v).

We refer to a map A satisfying (1) and (3)(a) above, and to A4 de-
fined by A(u, ) = (4;(u),A), as abstract A; and A. If a result requires
an additional hypothesis from the list above, that fact is explicitly
indicated.

2.2. ExamrLE [BCT-2, (1.3)]. The standard map A. Our main
example of abstract A4 is the map A of the first paragraph of this paper;
it satisfies all the properties of (2.1) and we call it standard 4. Here
H is the Sobolev space WOI'Z(Q) [B-1, p. 28], where Q is a bounded
connected open subset of R” with n < 4, and the operators L and N
are defined by

(Lu,¢)H=/Qu¢ and (N(u),qa)H:/Qu%

for all ¢ € C§°(Q), the space of C* real valued functions with com-
pact support in Q. Standard A is proper for » < 3 [BCT-2, (2.8)].
For more information about standard A4, see [BCT-2, (1.3)], and for a
generalization with certain functions f(«) in place of u3, see [BCT-2,
(1.4)].

Other examples of (2.1) are given in [BCT-2, (1.7) and (1.8)]. The
von Kiarmdn equations for the buckling of a thin planar elastic plate
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yield an operator A satisfying most of the properties of (2.1) (see
[BCT-2, §4, especially (4.6)]).

If 2;(u) (j=1,2,...) is the jth eigenvalue of v —ALv+DN(u)-v =
0, then S4 (0.1) is the union of the graphs of 4;: H — R [CT-2,
(1.5)]. We first consider the action of the group Z/2Z on H (A;(—u) =
—A;(u)), and now observe that graph 4; (j = 1,2, ...), the singular set
SA, the set of fold points, and the set of cusp points are all invariant
under this action.

2.3. REMARK. Consider abstract 4; with (2.1) (3)(c) and (e), u € H
and A € R. Then:

(i) The eigenvalues 4;(—u) = 4;(u) and their eigenspaces are the

same (j=1,2,...).

(i) If u is a singular point [resp., fold point, cusp point] (0.1), then
so is —u and ker DA;(u) = ker DA;(—u).

(a) For a fold point u, (D*4;(u)(e,e),e)n (Joue’ in the standard
case (2.2)) reverses sign if u is replaced by —u.

(b) For a cusp point u,

(D>4;3(u)(e,e.e), e)u — 3(D>A;(u)(e, ¥), €,

/e4—3/ue2y
Q Q

(see the proof of [BCT-2, (3.6)]), preserves sign if « is replaced by —u,
where

which for standard A; is

v € [DA;(w)] (D*4,(u) (e, €))

and y(—u) = y(u) (modulo ker DA, (u)).
(i) If A4, is proper and every component of A;l (0) is a point, then
A;I(O) has an odd number m (m =1, 3,5,...) of points (solutions).

A degree argument does not yield (iii), since 0 may be in 4;(S4;).
If we assume (2.1) (2) (3) (b;) (c) and (d), by [BCT-2, (3.8)] there
is an open neighborhood V of (0,4;) in H x R such that 4|4~(V):
A~Y(V) = V is C* equivalent to w x id given by (w x id)(t,4,v) =
(£3 — At, A, v); thus, if u is any fold point of 4, and A4,(u) = g where
(g, 4) € V, then A;‘ (g) has precisely two points. As a result, 0 in (iii)
cannot be replaced by arbitrary g € 4,(S4;). From (2.2), forn < 3
standard A satisfies the hypotheses of (2.3).
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Proof. By (2.1) (3)(c) and (e) DA;(u) =1 — AL + DN(u), 3!N(u) =
D3N(0)(u,u,u), 2DN(u) - v = D3N(0)(u,u,v), D’N(u)(v,w) =
D3N(0)(u,v,w), D3N (u)(v,w, x) = D3N(0)(v,w, x), and D/N(u) =
0 for j > 4; thus D/N(—u) = (—=1)/*'DJ(u) (j =0, 1,...). Conclusion
(i) is immediate, and since 4;(u) is the jth eigenvalue (j = 1,2,...)
of v —ALv + DN(u) -v = 0 [CT-2, (1.1)], conclusion (i) results.

For (iii), from the properness of A4;, A;l(O) is a compact 0-dimen-
sional set; since A; is real analytic, AII(O) is finite. Now A4,(0) = 0,
and if u # 0 and A4;(u) = 0, then A4;(—u) = 0, yielding conclusion (iii).
Conclusion (iii) is related to Borsuk’s Theorem [D, p. 21, Theorem
4.1].

2.4. THEOREM. Consider a C* (k = 3 [resp., o)) proper map ab-
stract A satisfying in addition (2.1) (2) (3)(b)(c)(d) and (e), e.g. stan-
dard A with n < 3 [BCT-2, (1.3) and (2.8)]; the symbol ~ below means
homeomorphism [resp., C® diffeomorphism]. Let A < A, + € for ¢ > 0
sufficiently small, and if ., < 2 < Ay + &, assume that A, is a simple
eigenvalue of v = ALv, e.g. of —A. Then there is a connected open
neighborhood V of (0, ) in H x R such that A=Y (V') has 2m + 1 com-
ponents U; with A(U;)) =V (i=0,%£1,..., +m) and (0, 1) € U,.

(@) For A< A, m=0;fordy <A<y, m=1;foriy<i<i+e,
m=2and A:U;=V (i=0,%£1,..., +m).

(b) For A= 4y, m =0 and there are ¢ and y such that the diagram

Uy ——’Z——»szE

Al lwxid

V = R*xE
17
commutes, where ¢(0,4;) = (0,0,0) = w(0,4,), E is closed subspace
of H and w(t, A) = (13 — At, A) (cf. [BCT-2, figure 1] and [GG, p. 147)).
() IfA=2y thenm=1, A: Uy =V (i = x1), and A|Uy: Uy —» V
is w(w x id)g as in (b).

Proof. Conclusion (a) for 4 < 4; is [BCT-2, (2.3)] and (b) is [BCT-2,
(3.8) (and (3.9))].

The singular set image (w x id)S (w x id) separates R? x E into two
components C; and C; such that if p € C;, then (w x id)~!(p) has i
points (i = 1, 3); and S(w x id) separates R? x E into two components
B, and Bj, where w x id: B3 = (3. Because of the equivalence in (b),
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A|Uy: Uy — V has the same property, giving components B}, B}, Cj,
C; with 4: By ~ C3. Since 4, is simple (2.1), if (g,A) € V (and V is
sufficiently small) then 4 < 4,; thus S(A4|Up) is part of the graph of
A H — R[CT-2, (1.5) and (2.2)]. Now (u,A) is in one component
or the other of Uy — S(A4|Up) depending on whether 4 < 4;(u) or
A>A (). BT ={(u,A): A <A}, then A|T: T =~ T [BCT-2, (2.3)].
Thus By must be {(«,4): 4 > 4;(u)}, (0,4) € B for Ay, <A< A +0
for some & > 0, and (1) (4|Uy)~1(0,4) = A~1(0, A1) had three points
for such A.

By [CT-2, (3.1) (i1)], (2) if A; < A < 43, then (0, 1) ¢ A(SA) except
that 4(0,4;) = (0,4,) € A(SA4) [BCT-2, (2.6)]. Since A is proper, the
image A(graph4,) is closed in H x R and (0, 4;) ¢ A(graph4,). Thus
(3) there is an ¢ > O sufficiently small that (0,4) ¢ A(graph4,) for
Ay < A< Ay +e. (4) If, in addition 4, is simple, then (0,4) ¢ A(SA)
by [CT-2, (3.1)(1)].

ForI'= {(0,4): 4; <4 < A3}, A~(T') — I' is a proper local homeo-
morphism by (2), and thus is a finite-to-one covering map [P, p. 128].
Since I is simply connected, 4 maps each component of 4~!(I') home-
omorphically onto I" [Ma, p. 159, Theorem 6, or p. 160, Exercise 6.1],
and (by (1)) (5) 471(0, A) has three points for each A with 4; < 4 < 4,.
Conclusion (a) for 4; < A < 4, results from [BCT-2, (3.7)].

Conclusion (c) for some number of components results from [BCT-
2, (3.6) and (3.7)] and m = 1 follows from (5) and (2).

Let A = {(0,4): 4 < A < A3 + ¢} where ¢ is given in (3) and (4).
As for I above, by (4) each component of 4A~!(A) is mapped homeo-
morphically on A. By (c¢) and the argument of the second paragraph
applied to A|Uy: Uy — V about (0, 4,), there are three components of
A~Y(A) inside Uy for ¢ sufficiently small; and since by (c) 4: U ~ V
and A: U_, ~ V, there are five components altogether. Conclusion
(a) for A; < A < 43 + ¢ results from [BCT-2, (3.7)].

That 4,(u) = 0 has exactly five solutions u for A, simple and 4; <
A < Ay + ¢ with ¢ sufficiently small was noted in [AM, p. 642, Theorem
3.4]. That it has three solutions for A; < 4 < 4, was noted in [B-2], in
each case for a class of maps A including standard A.

2.5. RemMmaArk. For standard 4 (2.2) and each 4; with n < 3,
degree A = degree 4; = 1 and for U; given by (2.4) (c) (at 43),
degree A|U; =1 for i = —1, 1, and degree A|Uy = —1.

Proof. For (u,A) € (H x R) — S4 and U a bounded open neigh-
bourhood of (u#,4) such that 4 maps U diffeomorphically onto its
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image, let the local degree of A4 at (u,4), deg A|U = deg(4, U, A(u, 1))
[D, p. 56]. From [D, p. 56, (D3)] it is constant on each component of
(HxR)—SA. By [D, p. 64, Theorem 8.10] for (u,4) = (0,4) = A(u, 4)
itis +1if 0 <A < A; and —1 if 4; < A < 4,. From the argument of
(2.4), especially the second paragraph, the U; and U_; of (2.4)(c) are
in the same component as (0, 1) for 0 < A < 4y, and Uj is in the same
component as (0,4) for A; < 4 < 4, and the local conclusions result.

Now degree A means deg(A4, H xR, y) [D, p. 56 and p. 87] for any
y € H x R; we may take y = (0,4) for 0 < 4 < 4y, so degree 4 = 1.
(Since 212:0 degree A|U; = 1, this conclusion is confirmed [D, p. 56,
(D2)1)
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