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PROOF OF EXTENSIONS OF TWO CONJECTURES
ON STRUCTURAL DAMPING FOR ELASTIC SYSTEMS

SHUPING CHEN AND ROBERTO TRIGGIANI

Let A (the elastic operator) be a positive, self-adjoint operator
with domain D(A) in the Hubert space X, and let B (the dissipa-
tion operator) be another positive, self-adjoint operator satisfying:
p\Aa < B < p2A

a for some constants 0 < pi < pi < oo and
0 < a < 1. Consider the operator

(corresponding to the elastic model x + Bx + Ax = 0 written as a
first order system), which (once closed) is plainly the generator of
a strongly continuous semigroup of contractions on the space E =
D(Aι/2) x X. We prove that if 1/2 < a < 1, then such semigroup is
also analytic (holomorphic) on a triangular sector of C containing the
positive real axis. This established a fortiori two conjectures of Goong
Chen and David L. Russell on structural damping for elastic systems,
which referred to the case a = 1/2. Actually, in the special case
a = 1/2 we prove a result stronger than the two conjectures, which
yields analyticity of the semigroup over an explicitly identified range
of spaces which includes E. This latter result was already proved in
our previous effort on this problem. Here we provide a technically
different and simplified proof of it. We also provide two conceptually
and technically different proofs of our main result for 1/2 < a < 1.
Finally, we show that for 0 < a < 1/2 the semigroup is not analytic.

1. Introduction, preliminaries, statement of main results.

1.1. Introduction. In a recent paper [C-R.1] Goong Chen and
David L. Russell propose a class of mathematical models "exhibit-
ing the empirically observed damping rates in elastic systems." As
they show by analyzing the models proposed, the crucial mathematical
feature which they seek in order to justify their claim is the property
that such models generate strongly continuous, analytic (holomorphic)
semigroups. While we refer to [C-R.l] for a discussion of elastic sys-
tems and their damping rates as analyzed in past engineering liter-
ature, we restrict our interest here to some mathematical questions
which are raised in the paper. More specifically, in [C-R.1] Goong
Chen and David L. Russell pose two conjectures which—if proven
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correct—would cover precisely the cases that they would like to in-
clude in their proposed model for elastic systems. These two conjec-
tures state, qualitatively, that the sought after analyticity property of
the underlying dynamics (semigroup) holds true in the case where the
dissipation operator is 'comparable' with the ^th-power of the elastic
operator.

In the present paper we study the problem of analyticity of the un-
derlying dynamics (semigroup) raised in [C-R l], as extended however
to the general case where the dissipation operator is 'comparable' with
the αth-power of the elastic operator over the entire range 0 < a < 1 of
the parameter α. We prove (Theorem 1.1) that the desired analyticity
of the underlying semigroup is indeed attained in the range \ < a < 1
of the parameter, thereby establishing a fortiori the conjectures of
[C-R.l] which refer to the case a = \. Indeed, in this special case
a = ^, we prove a stronger result than the two conjectures (Theorem
1.2), which states that analyticity of the underlying semigroup is in fact
obtained over an explicitly identified range of spaces which include the
space of interest (the space E in (1.2) below). To complete the anal-
ysis, we also prove (§2) that analyticity fails in the range 0 < a < \
of the parameter, in line with the well-known case α = 0, where the
semigroup is in fact a group (and therefore cannot be analytic in an
infinite dimensional space).

As in [C-R.l], it is assumed throughout that:

(H.I): A (the elastic operator) is a self-adjoint operator on a Hubert
space X, strictly positive, with dense domain D(A) and compact re-
solvent R(λ, A), the case of interest in physical applications (one may
readily reduce the case of A being only non-negative to the case of A
being strictly positive [C-R.1, p. 434]).

(H.2): B (the dissipation operator) is, for the time being, a positive,
self-adjoint operator on X likewise with dense domain D(B) in X.

Generalizing the mathematical model proposed in [C-R.l] to de-
scribe elastic systems, we shall consider in this paper the abstract
equation

(1.1) x + Bx + Ax = 0 o n l

or equivalently,

(1.2) j t [*] = Λi [*] on the space E = D{Aχl2) x X
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0 /
(1.3)

with domain D(s/β) containing D(A) x D(B)

where the inner product on E is defined by

(1.4)

and where the operator B is assumed to satisfy the following additional
hypothesis

(H.3): There is a constant 0 < a < 1, and there are two constants
0 < p\ < p2 < oo such that

(1.5a) pxA
a < B < p2A

a\

i.e. explicitly

(1.5b) pι(Aax,x)x < (Bx,x)χ < p2(Aax,x)Xf

Assumption (H.3) is the precise version of our qualitative statement
above that B is 'comparable' with Aa and is a natural extension of
the case a = j proposed in [C-R.l]. Thus, the prototype model is the
choice B = 2pAa, 0<p<oo,0<a< 1; i.e. for future reference, the
equation

(1.6) x + 2pAax + Ax = 0 on X9 0 < p < oo; 0 < α < 1;

or equivalently,

(1.7) j t [;*] = sfpa [*] on the space E - D{AX'2) x A,

(1.8)

(1.9) D(^pa) = D(A) x [D{Aχl2) Π

(D(A)xD(Aχ/2), 0 < α < i ,
1 " ; \D(A)xD(Aa), \<a< 1.

1.2. Preliminaries. We shall collect here some results, to be in-
voked in subsequent sections, which are either well known or readily
verifiable.

(i) In the dissipation-free case B = 0, the operator

° J(1.11) ^ o = [ _ 4 J
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is skew-adjoint on E: S/Q = -sf0* and thus it generates a strongly
continuous unitary group exp(j*60 on E (conservative elastic system).

(ii) In the damped case, the operator sfβ given by (1.3) is densely
defined on E and dissipative here; hence stfβ is closeable on E, see [P.I,
p. 16], [Fl, p. 122] and we shall use the same symbol s/β to denote its
closure.

(iii) Since B is positive on X, then (i) implies that sfβ is dissipative
on E and the Lumer-Phillips theorem then shows that safe generates a
strongly continuous semigroup of contractions on E.

(iv) The resolvent operator/? (λ, s/pa) = (λl-s/pa)~x of the operator
sfpa in (1.8) is given by

rI-V-J(λ)A

(1.12)

(1.13)

L -AVpJ(λ)

Vpa(λ) = λ2l + λlpAa + A

at least for Reλ > 0. We note that A and Vpa{λ) commute, a property
which will be freely used below. Similarly, the resolvent R(λ,s/β) =

(λl -Λ?B)~1 of the operator^ in (1.3) (and section 1.2(ii)) is

(1.14) R(λ,tfB) =

L -V-\λ)A

(1.15) VB(λ)=λ2I + λB + A= Vpa(λ) + λ(B - 2pAa),

(1.16) I^m = v-B\mi + B),
λ

at least for Reλ > 0. We also observe for future use the elementary

property that the adjoint [V~ι(λ)]* of V~\λ) is

(1.17) [V-\λ)Y = V-\λ).

REMARK 1.1. Let β > 0. The space D(Aβ) and its dual [D(A^)]f

with respect to the X-topology will always be considered as endowed
with the following norms

0 1 Q\ II -v-ll II λβ v l l

(1.19) IWI[o(^)]'= 11^-^11^, xe

consistently with (1.4).
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REMARK 1.2. With reference to (1.18), we note that the operator
sfpa is not dissipative on the space D(Aa) x X, which may be suggested
by sfpaX = [x2, -Axx - 2pAax2] for [x{, x2] e D{A) x D{Aa), unless
a = j . Similarly, the statement 1.2(iii) on the generation by sfB holds
on the fixed space E in (1.2), regardless of the value of 0 < a < 1.

The following elementary observation will be invoked in §4.

LEMMA 1.1. For 0 < / ? < o o ; 0 < α < 1; and A as in (H.I), we have
for all x eX and all λ with Reλ > 0:

(1.20) Re(λA«V-a

ι(λ)x,x)x > 0. D

Proof. Immediate from (1.13) after introducing the new variable

Re(λAaV~a

ι(λ)x, x) = Re(λAaξ(λ), (λ2l + λ2pAa + A)ξ(λ)). D

In closing, we note that assumption (1.5) is equivalent to the fol-
lowing version

(1.21) 0 < px{y, y)x < {A^2BA'a'2y9 y)χ < p2{y, y)χ, yeX,

which suggests the introduction of the operator

(1.22) Sa = A'^BA-^1

self-adjoint, bounded, and boundedly invertible on X. It is in this
form (1.21) that assumption (H.3) will be used below in §§4, 6.

1.3. Statement of main results. In [C-R.1] G. Chen and D. L. Russell
formulated the following two conjectures which refer to the case α = \.

Assume that the operators A and B satisfy the standing hypotheses
(H. 1) and (H.2) of § 1.1. Then, the strongly continuous semigroup gen-
erated by the operator srfB in (1.3) [see §§1.2(ii)-(iii)] is also analytic
on E = D(Aι/2)x X, provided that, in addition:

Conjecture #1. p\A < B2 < p\A, 0 < p\ < p2 < oo, i.e., explicitly

(1.23) p\{Ax9x) < (B2xtx) < p\{Ax,x), x e D{B) =
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or else, provided that, in addition

Conjecture #2. p\Aχl2 < B < p2A
x>2, 0 < p\ < p2 < oo; i.e.,

explicitly

(1.24) px{Aχl2x,x) < (Bx,x) < p2(Aχl2x,x),

An affirmative answer to these two conjectures would imply, in addi-
tion to the feature of consistent modelling [C-R.l], also the desirable
stability property that all solutions of (1.1), or (1.2), would then de-
cay to zero exponentially as t —• +oo in the uniform norm L(E) of
E. Stated in the language of control theory, this means that the free
dynamics (1.1) with B = 0, which generates a strongly continuous uni-
tary group on E (§(1.2)(i)), is then 'stabilized' in the uniform norm
of E by the feedback action Bx, a most desirable conclusion.

Only partial results in the direction of these conjectures are offered
in [C-R.l]. These are:

Corollary 3.2 in [C-R.l]—a local result which states that for each
p > 0 there exists ε(p) > 0 such that if p\ — p-e(ρ) and ρ2 = p + ε(p)
in (1.24), then conjecture #2 holds true; and Theorem 4.1 in [C-R.1]
regarding conjecture #1, which requires however several additional
technical assumptions which appear to be difficult to verify.

We note that assumptions (1.23) and (1.24) are not equivalent (un-
less A and B commute) as mentioned in [C-R.l]; however, it is known
that (1.23) implies (1.24), see [K.2, Corollary 7.1 p. 146] and [X.I,
p. 5] (Lowner's Theorem). Thus, to give an affirmative response to
both conjectures raised in [C-R.l] in the case α = j , it suffices to
study conjecture #2, the more general of the two.

Indeed, a full description of the problem is provided by the follow-
ing results.

THEOREM 1.1. Assume the standing hypotheses (H.1)-(H.2). As-
sume, in addition, hypothesis (H.3) with \ < a < 1 in (1.5).

(a) Then, the strongly continuous semigroup exp(jtfBt) of contractions
generated by the operator srfB in (1.3) [§1.2(ii)-(iii)] is also analytic
(holomorphic) on E = D(Aχ/2) x X.

(b) As a result of part (a), the spectrum determined growth assump-
tion [T. 1 ] is satisfied for stfB, and there is a constant δ = - sup Re σ{s^β)
> 0, σ{stfB) being the spectrum ofsfB> such that

(1.25) l K β Ί l L ( E ) < ^ ^ , t>o. a
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A negative result on the analyticity of exp(j^ί) on E when 0 < a <
j is presented in §2. Spectral properties are given in Appendix A.

For a = 2 we have a stronger result.

THEOREM 1.2. Assume the standing hypotheses (H.1)-(H.2) and, in
addition, hypothesis (H.3) for a = \ (i.e. (1.24)).

(a) Then the operator s/B in (1-3) generates a strongly continuous,
analytic semigroup of contractions on each space

(1.26) Eθ = D{A3/4~Θ/2) x D(Aιl*~θl2), 0 < 0 < 1,

topologized as in Remark 1.1, which reduces to the space E in (1.2) for
θ = j . In (1.26) we have used the conventional notation that for β > 0
the space D(A~P) means [D(A^)]1 as in Remark 1.1.

(b) Moreover, with δ the same constant as in (1.25), we have

(1.27) I I ^ Ί k ( £ . ) < * ~ Λ . ί > 0 . •

Actually, Theorem 1.2 was already established in our first effort on
this problem [C-T l] which referred entirely to the case a = \. In
fact, in this reference we have already provided two different proofs
of Theorem 1.2, as well as a precise spectral decomposition of the
operator stfpa for a = \ and 0 < p < 1 as a direct (non-orthogonal)
sum of two normal operators on E ([C-T.l, Lemma 2.1]).

REMARK 1.3. It appears that the ideas presented in this paper are
susceptible of far reaching generalizations, not fully explored yet. For
instance, the arguments of §5 below (modulo minor variations) permit
us to extend the statement of Theorem 1.1 to the following situation:
the elastic operator A and the dissipation operator B satisfy hypotheses
(H.1)-(H.2) as before, while now B [instead of obeying (1.5)] has
domain 2f(Aai) c 2(B) c 2J(Aa'), and satisfies the conditions

(1.28) pι(Aaιx,x) < (Bx,x), xe3f(B)9

(1.29) (Bx,x) < p2(Aaix,x), xe^{Aai)

for constants \ < a\ < a2 < 1, and 0 < p\, p2 < oo. In fact, B may
be relaxed to being essentially self-adjoint provided B* (which is then
self-adjoint) satisfies the counterpart of (1.28), (1.29). We intend to
present this and related results in a subsequent article. D



22 SHUPING CHEN AND ROBERTO TRIGGIANI

REMARK 1.4. Of course, once srfβ is an analytic generator, the stan-
dard perturbation theory as in [F.I], [P.I], [K.I], [K.2], etc. applies.
Thus, the A and B of the present paper may be viewed as principal
parts of the actual elastic and dissipation operators. D

In the present paper, we shall provide (in §6) a third proof of The-
orem 1.2 (the direct proof announced in [C-T.l], below (5.16)). See
also Remark 6.1 below. Moreover, we shall provide (in §§4 and 5
respectively) two different proofs of Theorem 1.1. It should be noted
that our present proofs of Theorem 1.1 in the case \ < a < 1 are not
mere cosmetic variations of our proofs in [C-T.l] of Theorem 1.2 for
a = \ (and in fact, the full strength of Theorem 1.2 is not true for
\<a< 1, as for this range of a analyticity attains only on the space
Eθ=\/2 a s specified in Theorem 1.1, not on the entire range of spaces
EQ9 0 < θ < 1). We have found that the general case \ < a < 1 offers
new genuine difficulties over the case a — \. In recent times, the issue
of obtaining "structural damping" for the dynamics (1.1) has caught
the interest of several authors, e.g. [B.I], [D-P.l], generally in connec-
tion with the stabilization of large flexible structures. For instance in
reference [B.I, end of §4] A. V. Balakrishnan, apparently unaware of
[C-R.l], states: "It would be of interest to develop sufficient conditions
on B to assure analyticity," without however advancing any conjecture
as [C-R.l] does. Other recent references of interest are [R.2], [R.3].

2. The case: kxA
2a < B2 < k2A

2a, 0 < kx < k2, with a < \. The
strongly continuous semigroup generated by srfB is not analytic. In this
section we shall see that the choice of the power "Aχl2" as a term of
comparison for B is not accidental, in the sense that if the self-adjoint
operator B satisfies instead

(2.1) ^ i | M α J c | | < | | ^ | | < / : 2 | μ a j c | | , 0 < kx < k2,

xeD{Aa) = ±

in place of (1.23)—which then implies (1.5) for a < \ by Lowner's
theorem—then the operator ssfB in (1-3) [closed as in §1.2(ii)] is the
generator of a strongly continuous semi-group on E, [see §1.2(iii)]
which however is not analytic in general. Indeed, even more informa-
tion of negative character is contained in the following construction.

PROPOSITION 2.1. For the positive self-adjoint operator A as in as-
sumption (H.I), denote by {μn}™=\> βn > 0, its eigenvalues and by
{en}™=ι its corresponding eigenvectors forming an orthonormal basis in
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X. Define the operator B: D(B) -+ X by

(2.2) Ben = bnen, bn>0

so that B is positive self-adjoint and commutes with A. If

(2.3) μn/b2 -> oc as n | oc

then the corresponding operator stfβ defined by (1.3) {and §1.2(ii)) gen-
erates a strongly continuous semigroup on E which, however, is not
analytic here.

Proof. Generation by J ^ of a strongly continuous semigroup on E
was already asserted in §1.2(iii). The eigenvalue-vector problem for
$?B is

(2.4) sfB
= λ i.e. (- i =λBΨ{+λ2Ψ{

whose solution is given precisely by the eigenvectors {en} of A:

(2.5) (-A)en = (λbn + λ2)en = -μnen.

Then, the corresponding eigenvalues λp~ of srf$ are the solutions of
the quadratic equation

(2.6) λ2 + bnλ + μn=0

and are given by

(2.7)

Thus, if (2.3) holds, then 4μn - b$ > 0 for all n sufficiently large and

(2.8)
bl

r — 1 —•> o o

so that the eigenvalues {λp } of stfβ fail to be contained in a triangular
sector of the type

(2.9) {λ: |a ig(λ-α) |>π/2 + 0}

for some real number a and some π/2 > θ > 0. Thus, as is well
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known [F.I], [P.I], analyticity of the semigroup generated by stfβ is
out of question. D

The case of interest is recaptured as a corollary.

COROLLARY 2.2. Let A be as in Proposition 2.1 and let B be defined
by (2.2), where now

(2.10) bn^μ*, a <\, as n-> oo

{meaning-. cμa

n<bn<Cμa

n, 0 < c < C).

Then, B satisfies (2.1):

(2.11) c2\\Aax\\2 < \\Bx\\2 < C2\\Aax\\2,

a<{, xeD(Aa) =

ands/β generates a strongly continuous semigroup on E, which however
is not analytic here. α

3. Case a > \. The operator sfpa is the generator of a strongly
continuous, analytic semigroup on E. Related properties.

3.1. Statements. By §2, the strongly continuous semigroup of con-
tractions generated by the operator stfpa on E is not analytic here for
0 < a. < j , as its (point) spectrum is not contained in a triangular
sector of the type (2.9). See also Appendix A, in particular Eqs (A.3),
(A.4), for the explicit computation of the eigenvalues of stfpa. Instead,
if oί > j , the following positive result holds true.

PROPOSITION 3.1. Let p > 0 and a>\be given.
(i) The strongly continuous semigroup of contractions generated by

£fpa on E (see §1.2(iii)) is analytic here.
(ii) With reference to the operator function V~J (λ) defined in (1.13),

the following uniform bounds hold true for all λ with Reλ > 0:

(3.1) \\λ2V-a\λ)\\L{X)

1 if2p2μ2a~ι > 1,

(3.2) \\λA«V-a

ι(λ)\\L{X)<l/2p,

(3.3) \\AV-J(λ)\\L{x) < Cpaμι (same as in (3.1))

where (Ax, x) > μ.\(x, x), μ\>Q being the smallest eigenvalue of A.
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(iii) By interpolation between (3.2) and (3.3), and between (3.1) and
(3.2) respectively, we obtain: for any 0 < θ < 1, the following uniform
bounds hold true for all λ with Re A > 0:

(3.4) \\λι~θA^-^θA-V-a\λ)\\L{x) < Cpaθ,

(3.5) \\λ2-θA«θV-a

{(λ)\\L{x) < Cpaθ. D

REMARK 3.1. For future easy reference, we single out the explicit
versions of (3.4) and (3.5) for θ = \. These will be the only cases
which will be invoked in our subsequent analysis in §§4 and 6: for all
λ withReA> 0

(3.6)

(3.7) \\λ3/2A^2V-J(λ)\\L{X)<Cpa, D

3.2. Proof of Proposition 3.1.

Parts (i) and (ii). The following two different proofs may be given
for parts (i) and (ii).

The most straightforward strategy consists in first establishing part
(ii) by proving directly the uniform bounds (3.1), (3.2), (3.3). Once
this is done, by referring back to the explicit expression (1.12) for
the resolvent R(λ,s/pa), one plainly sees that (3.1), (3.2), and (3.3)
collectively state that for all λ with Reλ > 0 and for all x e X such
resolvent satisfies

(3.8) \\R{λ^pa)x\\E < ηfplWU, Reλ > 0

for some positive constant Cpa. By the sufficiency part of Hille's char-
acterization [F l, pp. 179-186], [P.I], inequality (3.8) implies that the
strongly continuous semigroup of contraction exρ(j^α0 (see §1.2(iii))
is also analytic on E, thus proving part (i).

A second proof, less direct but also much more informative, in-
verts the order of the arguments. Here, one first shows part (i) that
the semigroup exp(j^α/) is analytic on E, as a consequence of some
interesting spectral properties possessed by the operator sfpa plus the
location of its spectrum for a > ^. (These properties, among other
things, yield an explicit spectral expansion for exp(j^α/).) Then, by
the necessary part of Hille's characterization, it then follows that the
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uniform bound (3.8) for the resolvent holds true. Finally, specializing
(3.8) with x = [x\, 0] and x = [0, Xι] both in E and using the explicit
expression (1.12) for R(λ,s/pa), one obtains the uniform bounds (3.1),
(3.2), (3.3) (without, however, the explicit expression for the constants
involved), thus proving part (ii).

The second approach is presented in Appendix A. Here we shall
follow the first approach. To establish parts (i) and (ii), it remains to
prove (3.1), (3.2), (3.3). Below we shall give a coordinate-free proof
of (3.1), (3.2), (3.3), while in Appendix B we give a proof which uses
the orthonormal basis of eigenvectors of A.

Proof of'(3.2). From (1.13)

(3.9)

so that for xeD{A{'a)

Vpa(λ)A~« =

A

(3.10)
Vpa{λ)A-ax

+ 2/>Re

= 4/>2||x||2

= \\2px\\2

\λA~a" ' λ
Aι~ax

X + ,X

"x, x)

> 4p2\\x\\2 for all λ with Reλ > 0.

Moreover, the range of Vpa(λ)A~alλ is all of X for Reλ > 0 because
of (3.10) and since the null space of the adjoint (Vpa(λ)A~a/λ)* =
Vpa{λ)A~a/λ (see (1.17)) is plainly the trivial subspace for Reλ > 0.
Thus, this latter property and (3.10) together imply (3.2) as desired.
(Note that the present proof does not use a > j.)

Proof of {SΛ). From (1.13) with a > i



STRUCTURAL DAMPING

so that for x e D(A) we compute

(3.12)

Vpa(λ)x

λ2

V

2

^ / 2 >

λ ,

A t

2

1 V
A

4* fSJTL

2

+ 4p2

λ V

Aa-l/2

2Re
λ J X,

X

+ X

27

(3.13) (g) = Ap ("Re J\ (\\Aa/2xf + |U(α
> 0

for Re A > 0.

(a) We first let 2p2μla~{ > 1. It suffices to work only with two terms
on the right of (3.12)

(3.14) 2 Re x, x + Aa-l/2

= 2^ 1 / 2 2

so that in this case (3.12)-(3.14) yield

(3.15)
Vpa{λ)x

>\\x\\2 f o r R e Λ > 0

and (3.1) is proved in case (a). (The range of Vpa(λ)/λ2 is all of X for
Re A > 0 because of (3.15) and since the null space of (Vpa(λ)/λ2)* =
Vpa{λ)/λ2 is plainly the trivial subspace for Reλ > 0.)
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(b) We now let 2p2μ2a~ι < 1. We now work with the first four
terms on the right of (3.12), which we re-write as follows

(3.16)

(3.19) =

(dropping the first (positive) term)

ί3 20Ϊ > 4n2u2a~ι(\ — />2/y2α:~hllrll2

uniformly in λ for Re A > 0. Thus (3.20) proves inequality (3.1), as
desired, also in case (b).

Proof of'(3.3). From (3.13) with a > \

(3.21) Vpa{λ)A-χ =I + 2pλAa~x+λ2A-χ

= 1 + 2pAa-χl2{λA-χ'2) + {λA-χ'2)2.

The proof now proceeds as for (3.1) from (3.11) through (3.20), with
the expression (Aχl2/\λ\) in that proof replaced by {XA~χl2) now. We
only sketch it. Let x € X. Then

(3.22) \\Vpa(λ)A-χx\\2 = HOLT1/2)2*!!2 + 4p2\\Aa-ι'2{λA-ι'2)x\\2

+ \\x\\2 + 2Re((λA-χ/2)2x,x) +(P)
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counterpart of (3.12), where now

(3.23) ® = 4p(Reλ) > 0

for Reλ > 0.

(a) We first let 2p2μ2a~x > 1. Here, again, we work with only two
terms

(3.24)

+ 2(2p2μ2a~ι - l)(ImA)2]|M-1/2jc||2 > 0

counterpart of (3.14).

(b) We now let 2p2μ2a~ι < 1 and work with the first four terms on
the right of (3.22). We re-write them as follows

(3.25) \\vpa(λ)A-ιx\\2

> {{\λ\A-χ'2γx,x) + 4/>2//2Q-1((μμr1/2)2;c,;c)

+ (x,x) - 2{{\λ\A-χl2)2x,x) (counterpart of (3.16))

(3.26)
= {{{\λ\A-{l2)2-lfx,x)

+ 4/>2μ2α-1([(|λ|Λ-1/2)2 - I]x,x) + 4p2μ2a-ι\\x\\2

(counterpart of (3.17))

= {{[(\λ\A-"2)2 - I] + 2p2μ2a-χI}2x, x)

+ 4p2μ2a-1\\x\\2-(2p2μ2a-1)2\\x\\2

(counterpart of (3.19))

(3.27)

> 4 / 7 2 / ι 2 Q - 1 ( l - ^ 2 α - 1 ) | | x | | 2

uniformly in λ with Re λ > 0 and the proof is complete. α

Part (iii). This follows by standard interpolation argument, using
the moment inequality, e.g. [K.2]. Details are omitted. D

4. Case \ < a < 1. A first proof of Theorem 1.1. Our goal is to
show that there exists a positive constant K such that the following
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uniform bound holds true for all λ with Re/I > 0:

\*\. i) \\λi\{λ, ^B)WL(E)

Γ Aχl2 01 \ I — V~x(λ)A λV~~x(λ) 1 Γ A~χl2 0

l o i\[-λv;\λ)A ^ ' w J l o iimw)

W = I x l , see (1.18). Once (4.1) is established, standard semi-group
theory [F.I] [P.I] guarantees that, as desired, the strongly continuous
semigroup of contractions generated by sfβ on E (see (1.2(iii)) is,
in fact, analytic here. Inequality (4.1) is in turn equivalent to the
following set of three inequalities: there exists a positive constant
M such that the following uniform bounds hold true for all λ with

(4.2) \\Aι'2V;ι{λ)Aι'2\\L(x)<M,

(4.3) \\λAι'2V£ι(λ)\\L(X)<M,

(4.4) \\λ2V-ι(λ)\\L{x)<M.

In fact, let α / ;, i,j = 1,2, denote the entries of the matrix

Then, (4.2), (4.3), and (4.4) refer directly to a\\, a\2, and #22> while
#2i yields λVβl(λ)A{/2 whose uniform bound in L(X) for Re>l > 0
is equivalent to that of the adjoint operator (λVβl(λ)A1/2)* =
λAχl2V~ι(λ), see (1.17), for Re λ = Re/I > 0, in turn equivalent to
(4.3).

4.1. Proof of "(4.2). A Fundamental Lemma, Since

(4.5) V~a\λ) - V-\λ) = V-a\λ){VB{λ) - Vpa{λ))V-\λ)

we compute

(4.6) Aχl2V^{λ)Aχl2 - Aχl2V-χ(λ)Aχl2

= Aχl2V-χ{λ){B - 2pA«)λV-χ{λ)Aχl2

= Aχl2+al2V-χ{λ){A-al2BA-al2 - 2pI)λAal2V-χ{λ)Aχl2.

If we set, as in (1.22),

(4.7) S* = A-al2BA-a'2 e L(X),

then Sa is a bounded self-adjoint operator on X, boundedly invertible
here, by assumption (1.5). Distributing λ across in (4.6), we re-write
(4.6) as

(4.8) Aχl2V-χ{λ)Aχl2 - Ax>2V-χ(X)Aχl2
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But, by (3.3) and (3.6), the two terms Aχl2VpX[λ)Aχl2 and
μ/2Ai/2+a/2V-\(λ) a r e uniformly bounded in L[X) for all λ with
Re A > 0. Thus, identity (4.8) reveals that the desired uniform bound
(4.2) for Aχl2V~x[λ)Aχl2 holds true as soon as we establish that
λχl2Aal2V-χ(λ)Aχl2 is uniformly bounded in L[X) for alU with Reλ >
0. This is then the special case β = 1 of the following Proposition,
which we state in greater generality at no extra effort.

PROPOSITION 4.1. With \ < a < 1 given, let a < β < 1. Then, there
exists a positive constant kaβ such that the following uniform bound
holds true for all λ with Re/l > 0:

(4.9) \\λι+la-ftMι-"Ua'2Vϊι(λ)AV2\\ < kaβ. D

Proof of Proposition 4.1. By (4.5) and (4.7)

(4.10)

= λΪHa-β)/2(\-a)Aa/2{B _

V-χ= λAaV-χ{λ){Sa -

from which

(4.11)

λAaV-a

x(λ)(Sa -

The following Lemma is fundamental.

LEMMA 4.2. Let 0 < 2p < ph see (1.5). Then the operator

(4.12) ffpaiλ) = I + λA»V-a

x(λ)(Sa - 2pl)

is bounded and boundedly invertible on L{X) [isomorphism), uniformly
in Reλ > 0; in particular, there is a positive constant cpa such that for
all λ with Re A > 0 we have

\λ)\\L{X) = \\[I + λA«V~x[λ)[S - 2pI)Γx\(4.13) \Wpa\λ)\\L{X) = \\[I + λA«V~a

x[λ)[Sa - 2pI)Γx\\L{x)

< cpa. •

Assuming for the time being the validity of (4.13), we then obtain
from

(4.14)
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and we need to show that the left hand side of (4.14) is uniformly
bounded in L(X) for Re A > 0. To establish this, since (a + β)/2 > a
under the present assumption, we appeal to the uniform bound (3.4)
with θ identified by (1 - a)θ + a = (α + β)/2. Thus

(4.15) θ= β v and 1 - 0 = 1 + £Λ~ ,

2(1 — α) 2(1 - a)

and our claim follows. Then (3.4) and (4.13) applied to (4.14) prove

(4.9) as desired.

Proof of Lemma 4.2. Let 0 < 2ρ < p\. From assumption (1.5), we
see that the operator Sa in (4.7) satisfies

(4.16) 0 <(/>!- 2p)I <Sa- 2pl < (p2 - 2p)I

and hence also

(4.17) —^r-I<(Sa- ^ px-2p

since Sa - 2pl e L(X) is self-adjoint. Then, if we rewrite (4.12) as

(4.18) 3»(A) = ((Sa - 2pl)~x + λAaV~a

ι(λ))(Sa - 2pl)

we see by (4.17) that if we can show the uniform bound

(4.19) \\({Sa - 2/>/)-> + ^ F - Q

1 ( λ ) Γ 1 | | L W < Pi -2p

for all λ with Re A > 0, then (4.13) is established as desired. To this
end we compute for x e X

\\((Sa-2piyι+λA°Vp-QHλ))x\\\\x\\

> \((Sa - 2pl)-χx,x) + (λAaV-a

ι(λ)x,x)\

= {[((Sa - 2pirιx,x) + Rc(λAaV-a

ι(λ)x,x)f

+ [Im(λAaV-a

1(λ)x,x)]2}1'2

(using (1.20) of Lemma 1.1 and (4.17))

(4.20) > ((Sa-2pl)-ιx,x) > —I^IWI2.

On the other hand, it can be readily checked that the range of the
operator {{Sa - 2pl)~ι + λAaV^{λ)) is all of X, by (4.20) and since
the null space of its adjoint (Sa - 2pl)~x + λAaV-J{λ) is the trivial
space. This together with (4.20) yields (4.19), hence (4.13). Finally, a
uniform bound on &pa{λ) in L(X) for Reλ > 0 follows from (3.2) of
Proposition 3.2. Lemma 4.2 is proved. •
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The proof of Proposition 4.1 is complete. D

4.2. Proof of {A3). We similarly compute by (4.5) and (4.7)

(4.21)

- 2pA«)λV-\λ)

But λAγl2Vj£{λ) and λιί2Aι/2+«/2V^ι(λ) are uniformly bounded in
L(X) for all λ with Reλ > 0, by (3.2) and (3.6) respectively. Thus,
identity (4.21) shows that the desired bound (4.2) for λAιl2V~ι{λ)
holds true as soon as we prove that λ3/2Aa/2Vβl(λ) is uniformly
bounded in L{X) for all λ with Rcλ > 0. This is then the special
case β = 0 of the following more general result (which we shall use
also in §5 below with a = \, β = -α) .

PROPOSITION 4.3. With \ < a < 1 given, let -a < β < α. Then,
there exists a positive constant kaβ such that the following uniform
bound holds true for all λ with Re λ > 0:

(4.22) \\X^2-^A^2V^{X)API2\\L{X) < kaβ

Proof of Proposition 4.3. By (4.5) and (4.7)

(4.23)

= λAaV-a

ι(λ)(Sa -

from which

(4.24)

counterpart of (4.11). By Lemma 4.2, the desired uniform bound
(4.22) is achieved if and only if the left hand side of (4.24) is uniformly
bounded in L(X) for Re/l > 0. To establish this, since (α + β)/2 < a
under the present assumption, we now invoke the uniform bound (3.5)
with θ identified by aθ = (a + β)/2 so that

(4.25) β = 5 + ̂  2 - β A

and our claim is proved. Thus, from (4.24) and (4.12)

λ3/2-β/2aV-l{λ)Aβ/2 = &
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and the uniform bounds (4.13) of Lemma 4.2 and (3.5) applied to
(4.26) prove (4.22) as desired. D

4.3. Proof of {AA). Again by (4.5) and (4.7)

(4.26) λ2V~x{λ) - λ2V-\λ) = λ2V-a

ι(λ)(B -

The desired conclusion (4.4) follows now from (4.26) by virtue of
the uniform bounds (3.1) for λ2V~x{λ\ (3.7) for λ3f2Aaf2V^ι(λ) and
(4.22) for λ>l2Aal2V-\λ). D

5. Case \ < a < 1. A second proof of Theorem 1.1. We recall that
our goal is to establish the uniform inequalities (4.2), (4.3), and (4.4)
in order to attain the uniform bound (4.1). Our second proof will be
based on the following factorization of the function Vpa(λ) in (1.13),
which we shall consider only for a = \. Let 0 < θ < π/2 be fixed and
select p to be p = cos0, so that 0 < p < 1. We factor the function
VpaW f°Γ a = j i n t ° t w o commuting factors as follows

(5.1) λ2l + X2pAx'2 + A = (λe-iθ + Aχl2){λeiθ + A1'2)

where here and thereafter we drop the identity operator / in connec-
tion with the scalars λe±iθ. By virtue of (5.1), we then re-write the
functtion VB(λ) in (1.15) more conveniently as follows

(5.2) VB(λ) = λ2I + λB + A

= (λ2l + λ2pAχl2 + A)+ λ(B - 2pAχl2)

= (Xe~w + Aχl2){λeiθ + Aχl2) + λ{B - 2pAχl2)

= (λe~iθ + Aχl2)

x [/ + λ(λe~iθ + Aχl2)~x{B - 2pAι'2)(λeiθ + Aχl2)~x]

x(λew + Aχl2).

Thus, setting for notational convenience

(5.3) U(λ, θ) = {λe~iθ + Aχl2yx{B - 2pAι'2)(λeiθ + Aχl2)~x

we obtain from (5.2)-(5.3)

(5.4) Vgl(λ) = (λeiθ + Aχl2)~x(I + λU(λ,θ)yx(λe-iθ + Aχl2γx.

[Setting T(λ, θ) = Aχl2(λeiθ + Axl2)~x, then U(λ, θ) may be viewed as
an extension of the operator

iθ+Aχl2)T*{λ,θ){A-χl2BA-χl2-2pA-χl2)T{λ,θ)
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which is well defined as a bounded operator on all of X.] Hence the
functions in (4.2), (4.3), (4.4) are re-written now more conveniently
as follows (using an obvious commutativity at the right of (5.5)):

(5.5)

= Aχl2{λeiθ + A1/2)-1 (I + λU(λ, θ)r{Aι'2{λe-iθ +

(5.6)

= Aχl2{λeiθ + Aχl2)-χ{I + λU(λ,θ))-χλ(λe-iθ + A1'2)'1,

(5.7) λ2V~x(λ)

= λ(λe'iθ + Aχl2)~x{I + λU(λ, θ)Yxλ{λe-iθ + A1'2)'1,

respectively. Thus, in view of (5.5)—(5.7), in order to prove the uni-
form bounds (4.2)-(4.4), it remains to prove the following Proposi-
tion.

PROPOSITION 5.1. With \ < a < 1 and p\ > 0 the constants in
assumption (H.3) = (1.5), select 0 < θ < π/2 such that with p =
we have

(5.8) 2p\\A-l"-ιM\\L{x) < Pι.

Then, the following uniform bounds hold true for all λ with Re A > 0:

(5.9)

(5.10) { )

(5.11) \\(I + λU(λ,θ)Γx\\L{X)<c3θ,

where the positive constants c\β, C2Θ ctnd C^Θ depend on θ, but not on
λ. a

Proof of Proposition 5.1. Proof of (5.9)-(5Λ0). The negative self-
adjoint operator -Aχl2 (with spectrum on the negative real axis) is the
generator of a strongly continuous, analytic (self-adjoint) semigroup
on X. Thus, its resolvent R(μ, -Aχl2) = (μl + Aχl2)~x satisfies the
standard Hille's uniform bound

(5.12) w ^

and hence also (since Aχl2R(μ, -Aχl2) = I - μR(μ, -Aχl2))

(5.13) \\A^2R(μ, -Aχl2)\\L{X) < const^, μeΣφ
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where φ is a fixed but arbitrary angle π/2 < φ < π, and

(5.14) Σφ = {λeC:\argλ\<φ}.

Then, as λ runs over the open right hand side ReΛ, > 0 of the complex
plane, we see that μ = λe±iθ e Σψ9 with φ = π/2 + θ + ε < π, for
0 < θ < π/2, in which case (5.12)-(5.13) prove (5.9)-(5.10). (One can
also prove (5.9)—(5.10) by using the orthonormal basis of eigenvectors
of A on X.)

Proof of (5.11). First of all, since (U(λ, 0))* = Ufi, 0), we see from

that it suffices to prove (5.11) for Reλ > 0 and ImΛ, > 0. We shall
accomplish this in several steps.

Step 1. We begin by noticing that for all λ with Re A > 0, the
following uniform lower and upper bounds hold true:

(5.15) 0<cθ< \\(λeiθ +Aι'2)(λeiθ + Λ 1 / 2 Γ 1 | | L W < Cθ

for two positive constants Cβ < C$ < oo depending on θ but inde-
pendent of λ. (We shall actually use only the upper bound in (5.15)).
Indeed, from the first resolvent equation [K.I, p. 173]

(5.16) (λeiθ + Aχl2)-χ - {λeiθ + Aχl2)~x

= R(λeiθ, -A1'2) - Rβeiθ, -A1'1)

= eiθ(λ - λ)R(λeiθ, -Aι/2)R(λeiθ, -A1'2)

we obtain after applying (λeiθ + A112) to (5.16)

(5.17) {λeiθ + Aχl2){λeiθ + Aχl2)-χ = I - 2ieiθ(lmλ)R(λeiθ, -Aχl2)

and the uniform upper bound in (5.15) follows from (5.17) via (5.12)
with μ = λeιθ as before. (To show the uniform lower bound in (5.15),
we work with the inverse

(5.18) [(λeiθ + Aχl2)(λeiθ + Aχl2)~x]-χ = (λeiθ + Aχl2){λeiθ + Aχl2)

and then apply the preceding analysis to show that the right hand side
of (5.18) is uniformly bounded above for Re A > 0 in L(X).) Thus
(5.15) is fully proved. A proof of (5.15) by eigenvector expansion may
also be given.

Step 2. Define

(5.19) Qpα = A-αl2BA~αl2 - 2pA-(α-χW e L{X)
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so that, by assumptions (H.3)=(1.5) and (5.8) we have that Qpa is
a strictly positive self-adjoint, bounded operator on X; in fact for

(5.20) (QpaX.x) >pι-

>Px-

i.e. Qpa > pol for some constant po > 0 since sup(A~(a~Wx, x) =

> w n e r e the sup of the self-adjoint bounded operator

U χ

Step 3. Using the upper bound in inequality (5.15) and the defini-
tion (5.3) for U(λ, θ) we compute for x e X

(5.21) Q| | (/ + λϋ(λ,0))x| | | |x | |

> \\{J+λυ(λ,β))x\\ \\{λeiθ + Aχl2){λew

λU(λ, θ))x, (λeiθ + A^2)(λeiθ +

λ(λe~iθ + A{I2)-\B - 2pAi/2)(λeiθ + Aι/2)~ι]x,

Thus, we simplify (5.21) by writing

(5.22) Cθ\\(I + λU(λ,θ))x\\\\x\\>\Jι(λ,θ,x)

where we have set for x € X

(5.23) Jx{λ,θ,x) = {x,{λeiθ +Ax'2){λeiθ

(5.24) J2(λ,θ,x)

= (λ(B - 2pA{l2){λeiθ + Aχl2)-χx, (λew + Aχl2)-χx).

That J2 is well-defined on X follows as in (5.28), (5.29) below.

Step 4. The following properties of J\ (λ, θ, x) are needed below

(5.25) ReJi(A,^jc)>0 for Reλ > |Im/l|,

(5.26) (ImA)(Im/1(>l)0)x))>O forReΛ>0.

In fact, setting ζ(λ) = {λeiθ+Aχl2)-χx and hence x = {λeiθ+Aχl2)ζ{λ),
we obtain from (5.23) after moving (λeιθ + Aχl2) to the left side of
the inner product

(5.27) Jx{λ,θ,x) = ((λe~iθ + Ax'2)(λeiθ + Aχl2)ζ{λ),ζ{λ))

= {{λ2I + λ2pAχl2 + A)ζ{λ),ζ{λ)) (by (5.1))

= [(Reλ)2 - (Imλ)2]||CW||2

2i{lmλ)[p\\AχlAζ{λ)\\2 + (ReA)||C(A)||2]
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from which (5.25)-(5.26) follow at once. (One may show (5.25)-
(5.26) also by the explicit eigenvector expansion expression of J\.)

Step 5. Using (5.19), we re-write J2{λ, θ,x) in (5.24) as

(5.28) J2(λ, θ, x) = λ(Qpay, y) = (Reλ)(Qpay, y) + i{lmλ){Qpay, y)

where we have set for x e X

(5.29) y(λ, θ,x) = y = Aa'2{λeiθ

Hence, from (5.20), (5.26) (or (5.27)) and (5.28) we obtain for
ReA > 0:

(5.30)

where we have suppressed the arguments A, θ, x.

Step 6. We compute by (5.30) and (5.28):

(5.31) \JX + J2\
2 = (Re/i + Re/ 2) 2 + (Im Ί + Im/2)2

= \J\\2 + \J2\2 + 2(Re/i)(Re/2) + 2(Im./1)(Im/2)

> l^il2 + \Ji\2 + 2(Re/i)(Re/2) (by (5-30)).
Then (5.31) leads to the following two cases

(5 32) ( \J\\2+ \M2(Qpay>y)2 for ReA > |ImA|,

I Ί + / 2 | 2 > | / n
(5.33) ( ( l - ε ) μ 1 | 2 + ( 2 - - J

forO<ReA< |ImΛ|

for any j < ε < 1. Indeed, to obtain (5.32) from (5.31) we just recall
(5.25), while to obtain (5.33) from (5.31) we use

ϊλ)(Qpay,y) > -ε(Re/i)2 —(Reλ)2{Q p ay,y)2,
ε

- -(ReA)2 = ( l - - ) (ReA)2 + (ImA)2

> (l--VlmA) 2 + (ImA)2

since (1 - 1/ε) < 0 and | Imλ| > ReA > 0. We note that 0 < ( 2 - 1/e) <
1 so that (5.32) and (5.33) can be combined into

(5.34) \JX + J2\
2 > (1 - ε)\Jι | 2 + (2 - l/ε)(lmλ)2(Qpay, y),

for ReA > 0

for any preassigned j < ε < 1.

Step 7. The following Lemma is then crucial.

\λ\-



STRUCTURAL DAMPING 39

LEMMA 5.2. There exists a suitable constant \ < ε\ < 1 {con-
structively found in the proof below) such that for all x e X and all
0 < θ < π/2 we have

(5.35) \Jι(λ,θ,x) + J2(λ,θ,x)\2

> (1 - eι)\Jx\
2 + (2 - \lεx){\mλ)2{Qpay, y)9 Rcλ > 0

> (1 — βi)||jc||4 for Reλ>0 and I m λ > 0 .

The proof of Lemma 5.2 will be given in Step 9 below.

Step 8. Assuming for the moment Lemma 5.2 and recalling (5.22)
we obtain that: for all x € X and all λ with Reλ > 0 and ImΛ, > 0 the
following uniform bound holds true:

(5.36) | | [7 + λU(λ, θ)]x\\ \\x\\ > ( 1 ~

Thus, from (5.36)? in order to conclude with the uniform bound (5.11)
for Re/I > 0 and Imλ > 0 as desired, we need to check that the range
of (/ + λU(λ, θ)) is all of X (for Rcλ > 0, in fact). This, in turn, is
seen by (5.36) and by verifying that the null space of its adjoint (see
(5.3))

(5.37) (I + λU(λ,θ))*

= 1 + λ(λe~iθ + Aιl2)-\B - 2pAχl2){λeiθ + Λ 1/2)" 1

is the trivial subspace. Indeed, let (/ + λU(λ, θ))*x = 0 for a fixed λ
with Reλ > 0 and thus, from (5.37), let

(5.38) λ(λe~iθ + Aιl2)~x{B - 2pAx'2){λeiθ + A^2)~ιx = -x

with x E l . W e shall show that x = 0. In fact, we first multiply (5.38)
by the uniformly bounded operator

(see (5.15)) and we next take the inner product with x. We obtain

(5.39) λ((B - 2pAχl2){λeiθ + A^2)~ιxf (λew + A^2)~ιx)

= -{x,{kew + Aχl2){λeiθ + Aι'2)-χx) = -Jλ{λ,θ,x)

where in the last step we have recalled (5.23). Taking the imaginary
part of identity (5.39) and multiplying it by (Im!) yields (since the
inner product on the left of (5.39) is real):

(5.40) (lmλ)2((B - 2pA{l2){λeiθ +A^2)~ιxt (λeiθ + Aχl2)~γx)
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But the left hand side of (5.40) is non-negative, while the right hand
side of (5.40) is nonpositive by (5.26). Hence, each side of (5.40) is
equal to zero. For Imλ Φ 0, we then plainly obtain (λeιθ + Aι/2)~ιx =
0 and hence x = 0. For ImΛ = 0, we take instead the real part in
(5.39) and use now (5.25). By a similar argument, we again obtain
x = 0, as desired. Thus (5.11) holds true for Re/I > 0 and \mλ > 0.
But the observation at the beginning of the proof of (5.11) shows that
this is enough to extend the validity of (5.11) to all of A with Re/l > 0.
It remains to prove Lemma 5.2.

Step 9. Proof of Lemma 5.2. We must show (5.35).
(i) To this end, we recall the definition (5.23) of J\ and identity

(5.17) to obtain

(5.41) Jx{λiθix) = \\x\\1

= {||JC||2 - 2(Imλ) Im[e-iθ(x, R(λeiθ, -

+ i2(Imλ) Re[e-iθ(x, R(λeiθ, -Aιl2)x\

Thus (5.41) implies

(5.42) \J{(λ,θ,x)\2 = \\x\\4 + 4{Imλ)2\e~iθ(x,R(λeiθ,-Aι/2)x)\2

-4\\x\\2(Imλ)Im[e-ίθ(x,R(λeiθ,-Aι/2)x]

where using the orthonormal basis {en} of eigenvectors of A with
eigenvalues {μn}> 0 < μ\ < μι < , we have

(5.43)

Taking the imaginary part of (5.43) and inserting it into (5.42), we
finally obtain

(5.44) \Jx{λ,θ,x)\2 = \\x\\4 + 4(lmλ)2\e-w(x,R(λeiθ,-A^2)x)\2

We note that (Im λ) sin θ > 0 under our present assumptions.
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(ii) Recalling the positivity property (5.20) for Qpa and the defini-
tion (5.29) of y, we obtain with p0 > 0:

(5.45) (Qpay,y) > po\\y\\2 = po\\Aa'2(teiθ + Aι'2)-χx\\2

(iii) Plainly, it suffices to prove (5.35) for x G I with |pc|| = 1.
Thus, combining (5.44) with (5.45) we finally obtain taking \ < ε < 1
and JC € X with ||JC|| = 1:

(5.46) (1 - ε)\Jx\
2 + (2 - l/ε)(Imλ)2(Q,Ωy,y)

> (I - ε) + 4(1 - ε)(Imλ)2\e-iθ(x,R(λew, -Aι'2)x)\2

fna(ε)\(x,en)\2

where

(5.47) fna(ε) = ( 2 - l/e)poμϊ - 4 ( 1 - ε ) . $ < e < l .

Our task is now to show that we can select ^ <ε\ < I such that

(5.48) Λα(βi)>0 for all n

after which, dropping non-negative terms in (5.46) we get for Reλ > 0
and Im λ > 0:

(5.49) {\-εx)\Jx{λ,θ,x)\2 + {2-\lει){lmλ)2{Ql)ay,y)>\-εx>0

with x G X, \\x\\ = 1, and Lemma 5.2 is proved.
But (5.48) can be easily checked since with the eigenvalues {μn},

0 < μn, ordered in increasing fashion, we have

fna(ε) > fχa{ε) = (2 - l/ε)poμΐ - 4(1 - ε), \ < ε < 1

while fιa(ε) is strictly increasing and f\a{ε = 1) = poμ" > 0. Indeed,
we see directly that to get f\a{ε) > 0 we can take any ε satisfying

>

and (5.48) follows. D
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6. Case a = j . Proof of Theorem 1.2. The idea of the proof is
based on the following three-step procedure ([L-T.l]). We show that
the operator s/B generates a strongly continuous analytic semigroup of
contractions (i) first on the larger space Z = D(A1/4) x [D(A1/4)]' with
norm (1.18)-(1.19), then on the smaller space Y = D(A*l4)xD(Ax'4)
with norm (1.18). We finally interpolate. More precisely, we apply
the interpolation theorem [L-M.l, Theorem 5.1, p. 27] to, say, Hille's
characterizations in Z and Y of R(λ,stfB). We thus obtain that for all
λ in the complement Σ c of a suitable triangular sector

Σ = {λ: I argλ| > θ0, π/2 <θo< 2π},

the operator R(λ, s/B) is a continuous operator from the interpolation
space

(6.1) [Y,Z]Θ = [D{A^4) x D{Aχl4),D(Aχl4) x [D(Aι'4)]']θ

into itself and satisfies here Hille's characterization

(6-2) | | ^(Λ" ^ ) | | L ( [ y , Z]θ) — I ;t > λ £ΣC

where in (6.1) we have used the conventional notation that D{A~β) for
β > 0 means [D(A^)]f

9 the dual space with respect to the X-topology.
Plainly, the strongly continuous semigroup of contractions gener-

ated by £fB on E (see (1.2(iii))) extends, respectively restricts, to Z,
respectively Y, with these same properties. The issue of analyticity is
dealt with in the next two subsections.

6.1. s/B generates an analytic semigroup onZ = D(Aχ/4)x[D(Aχ/4)]'.
We shall establish that there exists a positive constant C such that for
all λ with Re A > 0 the following uniform bound holds

(6.3) \\λR(λ>*B)\\uz)
Ί-V-\λ)A λV~{{λ)

W = X x X, see (1.18)-( 1.19); equivalently, that there exists a positive
constant M such that for all λ with Reλ > 0 we have:

(6.4)

(6.5) \\λAχl4V-\λ)Aχl4\\L{x)<M,

(6.6)
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The proof of inequalities (6.4)-(6.6) can be accomplished by using the
same techniques that were employed in §4 in the proof of inequalities
(4.2)-(4.4). In fact, the task now is easier than in §4, in that we shall
have no need now of the inteφolating inequalities (3.4) and (3.5) (in
the special case θ = \ of (3.6)-(3.7)) used in §4, only of the original
inequalities (3.1)—(3.3) (we recall that (3.1)—(3.3) collectively state the
basic inequality (3.1) for R(λ, stfpa)). Throughout this section, we drop
the subscript a = \ and write V~x, S, etc., instead of V~x(λ), (1.13),
5 α , (4.7), etc. Moreover, the two step procedure of §4 will reduce now
to just invoking the fundamental Lemma 4.2.

To prove (6.4), (6.5), (6.6) we first establish the following identities,
respectively

(6.7)

(6.8)

= [I+λAx'2V-ι(λ){S - 2pI)]λAχl4V-χ{λ)Aχl\

(6.9) λ2A-χl*V-χ(λ)Aχl4

= λ1A-χ'4V-χ{λ)Aχl\l + (S - 2pI)λAχl2V~x{λ)l

Then, application of Lemma 4.2 with a = \ to (6.7)-(6.9) together
with properties (3.1)—(3.3) yields (6.4)-(6.6), respectively. Identities
(6.8)-(6.9) are proved as in §4 by use of (4.5) and (4.7) with a = \\
instead, for inequality (6.9) we use V~x - V~x = V~X(VB - Vp)V~ι.

6.2. srfB generates an analytic semigroup onY = D(A3/4) x D{Aχl4).
Here we shall establish that there exists a positive constant C such

that for all λ with Re A > 0 the following uniform bound holds true

(6.10) ()
\I-V-\λ)A λV~\λ)

W = X x X, see (1.18); equivalently, that there exists a positive con-
stant M such that for all λ with Re A > 0 we have

(6.11) \\A^V^{λ)A'l"\\L{X)<M,

(6.13) \\λA^V^{λ)Aχl"\\L{X)<M,

(6.14) | μ 2 ^ 1 / 4 F - i μ μ - i / 4 | k w < M
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But we now note that inequalities (6.11), (6.13) and (6.14) are equiv-
alent to the already established inequalities (6.4), (6.5), (6.6), respec-
tively, simply by taking the adjoint and using [V^ι(λ)]* = Vβl(λ)9 see
(1.17), and Reλ = R e λ To establish (6.12) we proceed as in §4. First,
by (4.5) and (4.7) we obtain

(6.15)

= λA3'4V-χ(λ)(B -

= AV-\λ){S -

Applying now the uniform bounds (3.2) with a = \, (3.3) and (4.22)
of Proposition 4.3 with a = \ = -β we obtain (6.12) from (6.15). D

REMARK 6.1. In [C-T.l] we have provided an alternative proof
which shows that sfβ generates a strongly continuous analytic semi-
group on the smaller space Y, as desired, simply as a consequence
that jtfβ generates a strongly continuous analytic semigroup on the
larger space Z. This proof is based on the equivalence between the
two norms (see (1.18) for Y):

(6.16) \\y\\D(*) = \WBV\\Z and

for y = (y\,y2) E D{stfB) which, as a linear space, coincide with Y
(recall that the point λ = 0 is in the resolvent set of <##). This equiv-
alence is in turn established by using the properties that J^B^0~

1 and
J#bs/fι are both in L(Z)9 where ^ = £?p=o (see (1.11)). Thus, in
this proof, no use is made of the interpolating inequalities (3.4)-(3.5)
unlike the proof given above which uses Proposition 4.3, hence (3.5).
We refer to [C-T.l] for further details. The interpolating technique of
the present section permits us to give a very short proof of the local re-
sult in [C-R.1, Corollary 3.2] by applying standard perturbation theory
on Y. Ώ

Appendix A: The case B = 2pAa. Spectral properties of the op-
erator s/pa9 0 < α. For j < α, $fpa generates a strongly continuous,
analytic semigroup of contractions on E = D(A1/2) x X. The present
appendix extends to the range \ < a the treatment of [C-T.l, §2],
which (prompted by results in [T.2], [L-T.l, Application 4.4] in the
case a = 0 of viscous damping B = 2pi) referred only to the case
a = j . It is throughout assumed that 0 < p < oo unless otherwise
noted.
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For the operator A subject to assumption (H.I), let {μw}£L1? 0 <
μι < μι < , be its eigenvalues and let {en}%Lγ be the corresponding
eigenvectors subject to the normalization condition (A.6) below

(A.I) Aen = μnen.

For simplicity of exposition, we assume that the μ«'s are all simple.
The following spectral properties of the operator sfpa in (1.8) show, in
particular, that srfpa has a special structure. In the general case where
p2 Φ μι

n~
2a for all n (in particular for a = 5, p Φ 1), s/pa is the direct

(non-orthogonal) sum of two (explicitly identified) normal operators
on E. In the special case where a Φ \ and p2 = μ]^la for a (unique)
value n = n*, then sfpa has a third direct sum component, which
possesses a Jordan cell structure on the two dimensional generalized
eigenspace of srfp0L corresponding to n = n*. Finally, in the case a = 5,
p = 1, srfpa is the infinite sum of Jordan cell operators of the type
described, for all values of n. But in the range \ < a the eigenvalues
λn~ of sfpa are contained in a triangular sector

Σ = {λ:\ argλ\ > π/2 + θ0, 0 < θ0 < π/2}

since | Imλp~\/\ ReA^'~| < const. Hence, the above spectral properties
imply that, in this case j < α, the strongly continuous semigroup
of contractions of exp(j^>αί) generated by srfpa on E (§1.2(iii)) is, in
addition, analytic (holomorphic) here. Moreover, exp(j^αί) admits
explicit spectral expansions on E. This way one shows, a fortiori, part
(i) of Proposition 3.1. This then implies the uniform Hille's bound
(3.8) for the resolvent R(λ,s/pa) and hence (via (1.2)) the uniform
bounds (3.1), (3.2), (3.3) of part (ii) (except for the explicit constants
involved).

LEMMA A.I (spectral properties ofs/pa). Let 0 < a and 0 < p < 00
be given.

(I)(a) The eigenvalues {λn'~}^L{ of the operator s/pa in (1.8), which
for a < 1 has compact resolvent on E = D(A1/2) x X, are the solutions
of

(A.2) λ2

(so that λ+ + λ~ = -2pμa

n\ λ+λ~ = μn) and are given by

(A.3) λ+ - = (-p ± >Jp2 - μι

n~
2ή μa

n
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[in particular, for a = \ and 0 < p < 1, the case used in [C-T.l]

π/2 < Ψ < π].

Moreover

(A.4) < Const, if and only if-

For a > j , or a = \ and p > 1, then, λp are all negative for n
sufficiently large and λ~ [ -oo monotonically\ for j < α < l , 0 rα = j
and p > 1, then λ+ | -oo monotonically; for a = 1, ίAetf λ£ | — 5/̂
monotonically; finally for a > 1, /Â w Λ,£ | 0 monotonically. Thus the
spectrum σ(s/pa) ofs/pa is only point spectrum for a < 1 but contains
the point λ = -\p for a = 1, or the point λ = 0 for a > 1, in its
continuous spectrum. Thus srfpa has compact resolvent for α < 1, but
not for a > 1.

(I)(b) The corresponding normalized eigenvectors {&t'~}™=\ o n E
are

< A 5 >
in which case

(A.6)

(A.7) (μn + \λp-\2 = 2μn, ifp2<μι

n-
2a,

(A.8) { μ n + μ j ' Ί 2 = A*2

ifp2

(II) The eigenvectors possess the following properties.

(i)

(A. 9) {Φ^}^ ! is an orthonormal family of eigenvectors on E,

(A. 10) {Φ~}£L, is an orthonormal family of eigenvectors on E,

(ϋ)

0, nφm,
(A.11) (Φtt Φn)E={kn(μn+λtλ-)\\en\\2

χ n = m; λ+φ λ~,
, n = m, λ+=λ-.
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2 Φ μι~2a
(iii) (Completeness of eigenvectors ofstfpoί on E). Let p2 Φ μι

n~
2a for

all n so that λ+ φ λ~ for all n. Then

(iv) (Completeness of generalized eigenvectors ofstfpa onE) (a) First,
let aφ \ and assume that p satisfies

(A. 13) P = μln~2a

for a positive integer n = n* (therefore unique), so that

(A. 14) λ+ =A-. = - / ^ .

Define the vector Ψ~* by

so that

(A. 16) sfpaψ-. = λ+Ψ". + Φ+ (sfp* - A+/)2Ψ". = 0

and *¥„* is a generalized eigenvector ofsfpa corresponding to the double
eigenvalue λ%*.

Then

(A. 17) span{Φ^-,ψ-}- = 1 =£:.

(b) Next, let a == 5
Define the vector Ψ~ α^ z>2 (A.15)./&r all n so that now (A. 16) holds for
all n. Then

(A. 18)

we

( A . 2 0 ) { v }
is an orthonormal family of generalized eigenvectors on E.

(v) a) If p2 φ μι

n~
2a for all n (so that A+ φ λ~ for all n), set

= span{Φ+}- i ; E~ =

(A.22) E =

(direct, non-orthogonal sum).
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(b) If a φ \ and (A. 13) holds, set

(A.23)

E
Then, in

(A.24) E.

(c) If a =

(A.25)

Then, in

(A.26) E.

•„. = spar

this case

.Γ\E~.=

= 5 and p

this case

= E + Θ E

E+.

1 { Φ " }

E+n

= 1,.

E

= span{Φ+}^=1 ^ n

°°=1>n^.; £„. =span{Φ-,4V}.

En* = .E1 .̂,. n En* =

(direct,

set E+ as in (A.21)

(direct,

{0}

non-orthogonal sum).

and

non-orthogonal sum).

(iv) From (A.9), (A. 10), (A.20) it follows that [S.I, p. 250]: the
operator srfpa restricted over E+, or E~, is a normal operator (however,
stfpa is not normal on E for 0 < p\ however, $fpa is a spectral operator
in the sense of[DΛ], [D-S.l]). The restriction sfp~ of ssfpa over E~
has compact resolvent. The restriction srf^ ofs/pa over E+ has compact
resolvent for a < 1, but not for a > 1. Fora = 1, the operator (jtfp+)~ι +
2ρ I is both normal and compact.

Proof. Direct verification of the above statements is left to the
reader. D

The above Lemma A. 1 then provides spectral expansions for x e E\
for srfpaX with x G D(s/pa); for cxp(s/pat)x; for R(λ,s/pa)x\ etc. In
particular, as remarked above Lemma A.I, the expansion of the semi-
group exp(s/pat)x in the range \ < a (where (A.4) holds and the eigen-
values λn'~ are in the triangular sector Σ defined above Lemma A.I)
permits one to read off that exp(j^αί) is analytic on E on a suitable
sector containing the positive real axis. For the sake of brevity, we
confine ourselves here to carry out our further analysis only in the case
(v)(a) where p2 Φ μ\~2a for all n (i.e. λ+ Φ λ~ for all ή) where there
is no Jordan component of sfpa, and leave the exceptional cases (v)(b)
and (v)(c) to the reader for the standard modifications which are re-
quired to handle the Jordan components of jtfpa. For the purposes of
§§3, 4, 5, 6, restriction to the case (v)(a) with p2 Φ μ\~2a for all n is
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fully sufficient, since in the proofs of §§4-6, we only need analyticity
of exp(s/pat) for \ < a < 1 and for just one value of 0 < p sufficiently
small.

LEMMA A.2. Let 0 < α < 1 and 0 < p < oo be given satisfying

(A.27) p2 φ μι

n-
2a for all n, so that λ% φ λ~ for all n

and case (v)(a) in Lemma A.I above applies. As a consequence, for
every x eE, we have

(I)

\f\.ΔO) Λ — Λ -T Λ , Λ KZ H, , Λ t - C ,

(A.29)
n=\ n=\

Let now s/*a denote the adjoint operator ofsrfpa in E:

(Π)

, yeD(s/p*a). Then

(a):

(A.30)
_

;a = 4p

;) = D(A) x D(Aa)

[so that sfpa is normal if and only if p = 0, the undamped case].

(b): The eigenvalues ofsfpa are given by λm~, with corresponding
{normalized) eigenvectors

(A.31)

(c): If we set

(A.32)
- μm - {λm)2

_
m

so that in the case a = \, 0 < p < 1 of[C-ΎΛ] we have

— m m- . Λ,+ _ λm -λm
m

um
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then the following non-normalized eigenvectors ofsf*

(A.33)
1 φ*+ = —

m ?;+

corresponding to the eigenvalues

λίn and λn

respectively, form a bi-orthogonal system with respect to the eigenvectors
a, corresponding to its eigenvalues Xίn":

( Φ ^ , Φ+) £ = (Φ*+, Φ " ) * = Kroneker<U,(A.34) (

(A.35) ( Φ ^ , Φ ^ = (Φ^-,Φ-)£ = O, Vn,m

(d): Taking the E-inner product ofx given by (A.29) with
using properties (A.34)-(A.35) we obtain

and

(A.36) (X,Φ£)E = ix

whereby the expansion (A.29) for x e E becomes

(A.37) x =
n=\ Λ=1

more convenient than (A.28)-(A.29).

Proof. Direct verification is left to the reader. D

From the space decomposition (A.22) and expansion (A.37) we ob-
tain, in particular, an explicit representation for sfpa and the corre-
sponding strongly continuous semigroup exp(Λ^αί) The latter shows,
by inspection, that exp(s/pat) is, in fact, analytic on E in a suitable
triangular sector around the positive real axis i?+.

THEOREM A. 3. Let \ < a and 0 < p < oo be given satisfying as-
sumption (A.27) of Lemma A.2. Then

(i) The operator srfp0L in (1.8) is the direct sum of two normal opera-
tors srf+a and<$z?p~ defined as restrictions ofsfpa on E+, and, respectively,
on E~, see Lemma A.l(vi). (A fortiori, srfpa is similar to a normal
operator on E, by virtue ofWermer theorem [D-S.l, III p. 1947]. Ex-
plicit construction of the corresponding similarity transformation can
be obtained along the lines of the construction given in [T.2], [L-T.l,
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Application 4.4] with the identity operator I in these references replaced
now by Aa).

(ii) The expansion for <$?pa is given by (see A.37):

(A.38) j/^x =

Λ = l Λ = l

x e D(s/pa).

(iii) ssfpa generates a strongly continuous semigroup cxp(sfpat) on E
given explicitly by

00

(A.39) exp(j/pat)x = ] Γ exp(λ+t)(x, Φ*n~ )£Φ+

/ ι = l

wA/cA w analytic for t > 0 or, more generally, on ΣΘo = {λ: |argλ| <
θo}, where ΘQ is defined above Lemma A.I. Moreover, as observed in
§1.2(iii), exp(sfpat) is contraction on E. α

REMARK A.I. Even in the case a = j , the results of the present
Appendix strengthen and refine those in [C-R.1], by providing more
precise information about the spectral structure of s/pa* In particular,
in the case a = \ and 0 < p < 1 [C-R.l] asserts only that sfpa is
similar to a normal operator, while Theorem A. 3 above specifies that,
in fact, s/pa is the direct sum of two normal operators, a plainly more
precise conclusion. As a consequence, the eigenvectors of sfpa are
only asserted in [C-R.l] to form a Riesz basis, in the case a = \
and 0 < p < 1, a plainly weaker conclusion than the precise spectral
description and decompositions of Lemma A. 1-A.2. D

REMARK A.2. Expansions (A.38) and (A.39) show directly that for
0 < a < \ the semigroup exp(j^αί) is differentiate on E for t > 0;
&fPa exp(jtfpat) is well defined on all of E. α

Appendix B: Direct proof of inequalities (3.1) and (3.3) via eigenvec-
tor expansion. By using the orthonormal basis of eigenvectors of A on
X with corresponding eigenvectors {μn}^L\, 0 < μ\ < μι < •• , we
easily see that the uniform bounds (3.1) and (3.3) are a consequence
of the following Lemma (after replacing μ in the Lemma with μn).
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LEMMA B.I. Let p > 0 and a > \ be given. Let μ be a positive
number satisfying μ> μ\ > 0. Let β denote either 0 or else 1. Then
the following uniform bound holds true for all λ with Re λ > 0:

λ2 + 2pλμa + μ 2

(B.I)
r

•{
1 if2p2μ2°-ί >

4p2μ\a-\\ - p2μ\a-χ) if2p2μ2a~1 <

Proof. We set

λ
(B.2) — = γeiθ

We then compute

λ2 + 2pλμa + μ 2

so that for Reλ > Owe have π π

(B.3) XΆi-β)μβ

Vfi

2(2^-1)

y(cos 0 + ί sin θ) + 2pμa

+
cos 0-'/sin 0

= 72{2β-l) I \(γ +- ) + 2pμ
a~1/2 + i \(γ - i ) sinθ

+ 4pμa-χl2 (γ + - ^ cos θ + 4cos2 0

(dropping positive terms)

<
.2α-l

= γ4{β~ι)[(γ2 - I ) 2 + 4p2μ2a~ιγ2]

(a) Consider first the case where 2/?2μ2c*~1 > 1. We then write

(B.4) (γ2 - I ) 2 + 4p2μ2a-χγ2 = γ4 + 2(2p2μ2a~ι - \)γ2 + 1 > γ4 + 1

so that for β = 1 we obtain

(B.5) γ

4(β-V[(γ2 - I ) 2 + 4p2μ2a~ιγ2] > γ4 + 1 > 1
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uniformly in y, while for β = 0 we obtain

(B.6) γW-W - I)2 4- V / ^ - V ] > ^ ± 1 = 1 + 1 > 1

uniformly in y. Then (B.3), (B.5) for β = 1 and (B.3), (B.6) for β = 0
prove Lemma B.I, as desired, at least in case (a).

(b) Let now 2p2μ2a~ι < 1. By completing the square we write

(B.7) (γ2-l)2 + 4p2μf*-ιγ2

= (y2 - I) 2 + 4p2μ2a~ι(γ2 - 1) + 4p2μ2a'ϊ

= [(y2 - 1) + 2p2μγ~ιΫ + V ^ - ^ l - ^2//?α"1)

so that for /? = 1 dropping the square term we obtain

(B.8) yW-l)[(y2 _ !)2 + 4p2μ2a-lγ2] > ^ 2 ^ - 1 (j _ ^ 2 α - l ) > Q

uniformly in y. Then (B.3), (B.8) prove Lemma B.I, as desired, for
/? = 1 in the present case (b). Let now β = 0. Then, similarly,

(B.9) γ

4(β-ι)[(γ2 - I) 2 + 4p2μ2a'ιγ2]

= [ 1 + ( 2 / 7 2 / / 2 - 1 - 1)] + 1 - ( 2 / J 2 / / 2 " - 1 - I ) 2

> 1 - (2p2μ2

{

a~ι - I) 2 = (2 - 2/>2μ2α-1)2/?2μ2α-1

= 4/? 2// 2 α~ 1(l-/? 2// 2 α- 1)>0

uniformly in y. Then (B.3), (B.9) show Lemma B.I also for β = 0 in
the present case (b). The proof of Lemma B.I is complete. D

Note added in proof (August 1988) by R. T. The following paper has
just appeared: On the mathematical model for linear elastic systems
with analytic damping by F. Huang, SIAM J. Control & Optimization,
vol. 26, No. 3, May 1988. This paper likewise studies the problem of
analytic generation of (1.1) when "B is related in various ways to Aa,
j < a < 1." This paper refers also to Huang's prior work in two papers
in Acta Mathem. Sci. (apparently, in Chinese) appeared in 1985 and
1986, which refer to the case α = \. These papers are not available as
yet to the present authors. While Huang's work presents some overlap
of results particularly with our prior paper [C-T.l] in the case a = \, it
does not contain however a result of the strength of our main Theorem
1.1, let alone in the form presented in our Remark 1.3, for \ < a < 1.
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Our Theorem 1.1 is of global character (the constants 0 < p\, pi < oo
are arbitrary), while Theorem 4.1 in Huang's paper is still of local
character. In particular, Huang's Corollary 4.3 is contained in our
Theorem 1.1.
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