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JENSEN POLYNOMIALS AND THE TURAN
AND LAGUERRE INEQUALITIES

THOMAS CRAVEN AND GEORGE CSORDAS

In this paper we will (1) establish a relationship between the Turdn
inequalities and the Laguerre inequalities, (2) provide a complete
characterization of functions in the Laguerre-Polya class in terms
of the Turdn inequalities involving the Jensen polynomials and (3)
show that certain Hankel determinants of functions in the Laguerre-
Polya class are nonpositive.

Introduction. A real entire function y(x) is said to be in the Laguerre-
Pélya class if y(x) can be represented in the form

[o o]
(1.1) w(x) = cxMe o B TT(1 + x/xi)e ™/,
k=1

where ¢, B, x; are real, « > 0, m is a nonnegative integer and
> x72 < co. Pélya and Schur [PS] termed an entire function ¢(x)
as a function of type I in the Laguerre-Pdlya class if ¢(x) or ¢(—x)
can be represented in the form

(1.2) o(x) 1’[ (1 + x/x;),

where ¢ > 0, ¢ is real, m is a nonnegative integer, x; > 0,and ) x; I«
oo. If ¢(x) is in the Laguerre-Pélya class, we will write ¢ € &-% or
p € Z-P(II). Also, if ¢(x) is a function of type I in .Z-2, we will
write p(x) € Z-2(I). Now it is clear that if ¢ € Z-2(]), then ¢ € Z-
Z2(1).

For the various properties of functions in the Laguerre-Pdlya class
we refer the reader to [PS], [0], [CC] and the references contained
therein. For the reader’s convenience, we single out here a few known
facts [PS] concerning functions in the Laguerre-Pélya class. For a
function

[o.¢]
(1.3) o(x) =S Zkxk

k!
k=0

in the Laguerre-Poélya class the following statements are valid.
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(i) For each n, the Jensen polynomials

n

(1.4) &n(x) 2=Z(Z)ykxk, n=012,...,

k=0

have only real zeros.
(ii) For each k, the Turan inequalities hold; that is,

(1.5) Ty =92 — 171 20, k=1,2,3,....
(iii) For each p, the Laguerre inequalities hold [S]; that is,
(1.6) (pP(x))* — P~ D(x)pP*D(x) > 0,

forallreal x and p=1,2,3,....
(iv)Ify, >0fork=0,1,2,..., then ¢(x) € Z-Z(I).

In §2, after reviewing some of the known properties of Jensen poly-
nomials, we shall relate the Turdn inequalities for an arbitrary entire
function to the Laguerre inequalities and to Turan-type inequalities
of the Jensen polynomials on the positive real axis (Theorem 2.3).
We then prove that the requirement that the inequalities hold on the
whole real axis forces ¢(x) to be in .#-%. This culminates in a com-
plete characterization of .#-%(Il) in Theorem 2.7. The section ends
with a proof of a related problem of Karlin.

In §3, we shall cite two open problems and give several examples
which illustrate the necessity of the hypotheses in our results.

2. The main results. We begin this section with the terminology
and notation we will use in the sequel. If

(2.1) fx) = > %xk

is a real entire function, so that y, € R, k =0,1,2,..., then the nth
Jensen polynomial associated with f(x) is defined by

(2.2) gn(t):=Y (Z) wt*  (n=0,1,2,...).

k=0

The nth Jensen polynomial associated with f(?)(x), p = 0,1,2,...,
will be denoted by

(2.3) gnp(t) =) (Z) Yeaptt  (m,p=0,1,2,...).

k=0
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The nth Appell polynomial associated with f(x), if yg # 0, is defined
by

(2.4) Pu(t) = -,:—,Z (Z) Wk (n=0,1,2,...).
" k=0

If .
h(x):=)Y ax*,  a,#0,
k=0

is any polynomial, we define
h*(x):=x"h(x7Y),  (x#0).

In particular if y, # 0, then with the above definition, (2.3) and (2.4)
we have

gt =1"g,(t)) (n=0,1,2,...,1#0),
(2.5) {

P.(t) = (%) g  (n=0,1,2,...).

Some of the properties of the polynomials are summarized in the
following proposition (see, for example, Csordas and Varga [CV]).

PROPOSITION 2.1. The following properties hold for the functions de-
fined by (2.1)-(2.5).
(1) Ifyo#0, Py(t)=P,—1(t) t€R, n=1,2,3,...).
(ii) The sequence {g,(t)}2, is generated by e* f(xt); that is,

(2.6) eflxt)=Y" g,,(t)’;—': (x,t €R).
=0 .
If yo # O, the sequence {n!P,(t)}2, is generated by e' f(x); that is,
X = n = * x”

(2.7) e f(x) = goPn(t)x = ggnmﬁ (x,t €R).

(iii)
(2.8) ngu(t) = ngn_1(t) +g,(t) (teR, n=1,23,...).

(iv)
(2.9) &n+1.p(t) = 8np(t) +18nps1(t) (t€R, n,p=0,1,2,...).

V) If

(2.10) Anp(t) = g2 ,(t) — 8n=1,p(t) &n+1,p(?)
(n=1,2,3,....,.p=0,1,2,...),
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then

(2.11) Anp(t) = 12[82_1 pi1(1) = &n-1,p(1)8n-1,p42(D)],
(n=1,2,3,....,p=0,1,2,...).

Proof. Direct verification yields (i)-(iv) (for (ii) and (iii), see for
example, Rainville [R, p. 133]). To prove (v), we use (2.9) in the form

(2.12) 8n.p(t) = 8n—1,p(t) + 1&n—1,p+1(2)-
Substituting (2.9) and (2.12) into (2.10) yields (v). O

The Jensen polynomials associated with an arbitrary entire function
form a “natural” sequence of approximating polynomials. This prop-
erty will be needed below and is established in the following lemma.

LEMMA 2.2. Let
o0
a
(2.13) h(z) := Z}szk (ar € C),
k=0

be an arbitrary entire function. For each fixed nonnegative integer p,
let

h
(2.14) gnp(z) =Y (Z)ak+pzk (n=0,1,2,...).

k=0
Then

. z
(2.15) lim g, (Z) =hP(z) (p=0,1,2,...)
uniformly on compact subsets of C.
Proof. For a fixed nonnegative integer p and for n > 2, we have

z
(2.16)  gnp (h') =a,+ay.,2
z 1 k—'l ak+p k
+k2=2(“;>“'(“ P )TZ‘

Then, by the Cauchy inequalities for the Taylor coefficients of 4(?)(z),
we have

(p)
sp| ¢ MR HO)

(2.17) bp| <

(k=1,2,3,....R > 0).
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where
(2.18) M(R,hP) = max |AP)(2)].
Z|=
Thus, for n > m+ 1 and for 0 < |z| < r < R = 2r, we obtain
(2.19) > (1—2)-..(1— - ) <z
k=m+1
m
and
00 m+1
A+p Sk r
(2.20) k§+1 iz < M(R,h'? )——Rm &

Therefore, with R = 2r and for any ¢ > 0, there is a positive integer
myg such that r”+1(R™(R —r))~! < ¢ for all m > my. Finally, there is
a positive integer N > mg such that forall n > N and |z| <r

“ 1 k =1\ Gip i _ 5= %etp ok

(2.21) Z(l—;)---(l— - ) o =) g <
k=2 k=2

and hence (2.15) follows from (2.19), (2.20) and (2.21). o

With the aid of the foregoing preliminary results we will now prove

THEOREM 2.3. Suppose

(2.22) f(x) —Z”" k. 9,50, k=0,1,2,...,

is an entire function. Then the following are equivalent.
(2.23) T, = y,%-—yk_lykﬂ >0 fork=1,2,3,..

(2.24) A p(2) := &7 p(t) = 8n-1,p()&ns1,p(t) 2 0,
forallt>0andn=1,2,3,...,p=0,1,2,....

(2.25) Ly (f (1) := (f@*D (@) = f@U () £+ (2) 2 0
forallt >0and p=0,1,2,....

Proof. (2.23)=(2.24). Assuming (2.23) (withy, >0,k=0,1,2,...)
we will establish (2.24) by induction. First, we set t = 1. Then, for
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n =1, we have by (2.23)
(2.26) 8t (1) — 80,p(1)82,5(1)
=2 —Vpp220,  p=0,12,....
Next, we assume that
(2.27) App(1)>20 fork=1,...,n and p=0,1,2,....

Then by the induction assumption (2.27) and by Proposition 2.1(v)
(cf. (2.11)) we have

(2.28) App(l) = gr%—l,p+l(l) - gn—l,p(l)gn—l,p+2(l) >0,

p=0,1,2,...,
and
8n-1,p+1(1)  &n—1,p+2(1)
2.29 2
e NN ) Rl AT )
&n—1,p+3(1)
> =, =0,1,2,....
- gn—l,p+2(l) b
Let p be a fixed, but arbitrary, nonnegative integer. Then by (2.11),
(2.30) Ani1,p(1) = &7 i1 (1) — &np(1)8n ps2(1),
and by (2.9),
(2.31) 8n.p(1) = 8n-1,p(1) + &n-1,p+1(1).

Thus, if we apply (2.31) to (2.30), then after some simplifications,
(2.30) becomes
(2.32) Apt1,p(1) = Anp(1) + An p41(1) + 8n—1,p+1(1) 8n—1,p+2(1)

- gn—l,p(l)gn—l,p+3(l)~

Hence, it follows from (2.28) and (2.29) that A, (1) > 0. Since p
was an arbitrary nonnegative integer we conclude that A, ,(1) > 0
forn,p=0,1,2,....

Now if tg >0,a;, >0,k=0,1,2,..., and ifa,zc — ap_10p41 20,
then with y; := tfoy, k =0,1,2,..., it follows that

Y/% = Pk-1Vk+1 = t(%k(alzc —og-1ak41) 20, k=1,23,....

In light of these considerations, we see that (2.24) holds for all 7 > 0.
(2.24)=-(2.25). Suppose (2.24) holds. Then by (2.11) and (2.24),

(2.33) 0< An,p(t) = tz[gr%—l,p+l(t) - gn—l,p(t)gn—l,p+2(t)]
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forallt >0,n=1,2,3,...,p=0,1,2,.... Therefore, by Lemma 2.2
(cf. (2.15)) we see that

. t
@34 Jim (&0 (27)
t t
_gn—l,p <nT1) gn—l,p+2 (n — 1)]

= PDOF - P fPHD(1) 2 0,

forallt >0and forall p=0,1,2,....
Since the implication (2.25)=>(2.23) is immediate, the proof of the
theorem is complete. O

REMARK 2.4. Inequalities (2.23) and (2.24) are called the Turdn
inequalities. A comprehensive treatment of these inequalities and their
applications in the theory of orthogonal polynomials may be found
in Karlin and Szego [KS] and the references contained therein. The
inequalities (2.25) are frequently termed the Laguerre inequalities (see,
for example, Skovgaard [S] or Patrick [P]). The Laguerre inequalities
play an important role in the theory of the distribution of zeros of
several classes of entire functions. See, for example, the recent proof
of the Pélya-Wiman conjecture, Craven, Csordas and Smith [CCS],
where these inequalities were used in the following, perhaps more
familiar form,

d2
(2.35) s f P (n1<o.

Thus by (2.35) (and under the equivalent conditions of Theorem 2.3),
fP)(¢) is logarithmically concave for ¢t > 0, where f(¢) is defined by
(2.22). Therefore, it follows that log(1/f(¢)) is convex for £ > 0. In
particular, Theorem 2.3 also generalizes a result of Vincze [V]. In his
study of the characterization of the Poisson and gamma distributions,
Vincze shows, in particular, that if y, > 0 and

k
V%_myk—1?k+1>0, k=123,...,

then

11 _2AfeIePR - fO0 e
3% o) QIO >0
fort >0, p =0,1,2,.... (Note that the open problem of Rényi

and Vincze, discussed in [V], has been recently solved by Miles and
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Williamson [MW].) But because of the factor of “2” in (2.36), this in-
equality does not imply the Laguerre inequalities (2.25). On the other
hand, we were able to extend Vincze’s ingenious argument to deduce
(2.25) directly from (2.23). However, this argument is somewhat in-
volved and since it does not yield (2.24) we will omit it here. Finally,
it is evident that Theorem 2.3 remains valid, mutatis mutandis, if
we merely assume that the function f(x) in (2.22) is a real analytic
function with positive Taylor coefficients.

Next we consider the case when (2.23) is replaced by the following
requirements

Ay(t) :==Apo(t) >0 forallt#0, n=0,1,2,...
(2.37) and
YR = VkVks2>0,7% >0 fork=0,1,2,....

Then (2.37) constitutes a very strong set of conditions (see, for ex-
ample, Csordas and Williamson [CW1] and [CW2]). Indeed, if (2.37)
holds, then all the Jensen polynomials associated with f(x) of (2.22)
have only simple real zeros. Therefore, the following theorem is of
particular interest.

THEOREM 2.5. Let

(2.38) o(x) := %xk, Y #0,
k=0 "
denote a real entire function and let g,(x), n = 0,1,2,..., denote

the nth Jensen polynomial associated with ¢(x). Then the following
conditions are equivalent for any n > 1.
(i) An(t) > 0 for all real t # 0 and y? — yp_1Yns1 > 0.
(ii) Ay (¢) > O for all real t.
(iii) For each k = 1,2,3,...,n, and for real ty, if gi(t9) = O, then
8k—-1(20)8k+1(t0) <0, and if y, = O, then yp_17n41 <O0.
(iv) For each k = 1,2,3,...,n, and for real ty, if g;(ty) = O, then
g;_l(tO)g;+1(t0) <0.
(V) gn+1(t) has only simple real zeros.

Proof. For each fixed n, we will prove the following implications:
(i)« (i)=(iii)«>(iv) =>(v) =(ii). Note that (i)=>(iii) is trivial. Since
Ax(t) = t?"An(t7)) for t # 0, and A%(0) = 2 — Yu_1¥n+1, it is clear
that (i)« (ii). Similarly, using the fact that g;(¢) = t"g,(¢7!) for ¢ #
0, and g;(0) = y,, we see that (iii)<(iv). Next, assume that (iv)
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holds. Since yg # 0 by assumption (cf. (2.38)), and (d/dt)g;, (1) =
(n+1)gy(t) and since (iv) holds, the sequence g;; (), & (¢), ..., &;(t)
= 79, is a Sturm sequence for the interval (—oo, 0o0) (see, for example,
Jacobson, [J, pp. 278-283] or Wilf [W, pp. 90-95]). Therefore by
Sturm’s theorem [J, p. 283], the number of distinct real zeros of g;_,
in (—o0,00) is equal to the number of sign changes in the sequence
{(=D)"*1yy, (=1)"y0, ..., o}, minus the number of changes of sign in
the sequence {yo, Yo, - .., Yo} of leading coefficients. Since this number
is n+ 1, we see that g;_,(¢), and hence g,,(¢), have only simple real
zeros. This proves that (iv)=>(v).

Finally, suppose that (v) holds. Since by definition (cf. (2.2)),
degg,., <n+1andby(v) g, has (n+ 1) distinct zeros, deg g, | =
n+1. Let

n+1

(2.39) g =n]Jt-e) (1<or<-<anu)
j=1

Then forallreal ¢, t #a;, j=1,...,n+1,

. . _dm+lg@) _dER 1
240 grloesinO =g ol " @ -a
n+1
1
= <0
jz=:l (t — aj)?

Since the zeros of g () are all simple, the Cauchy-Schwarz inequal-
ity yields

n+l 1 2 n+1 1
<(n+1)
;t—aj jz=;(t—aj)2

Thus, we have by (2.40), forreal t #a;, j=1,...,n+1,

n+1 1

(241)  (gn41 () = &r1(D&r%1 (1) = (811 ()P (t=a))?
Jj=1

2
* n+1 */
(&, (Z( 1 ) _ (g )

n+1 a t-—aj) n+1
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Therefore,

0< (157 ) (650 (0 - £ O3 0

= L= (n+ D0 = (n+ 1) - g (D831 (1)

=n(n+ 1A (¢),

and so we see that A,(z) >0 forallt #0and n =1,2,3,.... This
completes the proof of the theorem. o

Next we recall that by a classical result of Pélya and Schur [PS], a
real entire function ¢(x) € -2 if and only if the associated Jensen
polynomials g,(x), n = 1,2, 3,..., have only real zeros. Hence, the
following corollary is an immediate consequence of Theorem 2.15.

COROLLARY 2.6. Let ¢(x) be the real entire function defined by
(2.38). If the equivalent conditions (i)-(v) of Theorem 2.5 hold for
n=1,2,3,..., then p(x) € Z-2(11).

To obtain a complete characterization of the functions in .#-Z(1l),
we must allow the possibility that A,(¢) equals zero in Theorem 2.5,
or equivalently, that the polynomial g,(¢) has multiple zeros. This is
done in the next theorem.

THEOREM 2.7. Let ¢(x) = 302, 7xx*/k! denote a real entire func-
tion and let g,(t), n=0,1,2,... and A,(t), n =1,2,3,... be defined
by (2.2) and (2.37) respectively. Then ¢(x) € Z-P(11) if and only if
the following conditions hold.

(1) A,(t) >0 forallrealt andn=1,2,3,....
(il) If yo # 0 and y? — yoy2 > 0, then (a) gnt1(to) = O whenever
An(to) =0, tg # 0, and (b) 7,11 = 0 whenever y3—y,_1 7541 = 0.
(iit) If yo # 0 and y? — yop, = 0, then p(x) = yoe”*/™.
(iv) If yo = 0, then ¢(x) = x"w(x) with w(0) # 0 where y satisfies
(i), (ii) and (iii) for the appropriately redefined y,, g, and A,.

Note that condition (ii)(b) is essentially the case fo = oo in condition
(ii)(a). We shall begin our proof of this theorem with two lemmas.

LEMMA 2.8. With ¢(x), A, and g, as in the theorem, assume that
Ay(t) >0 forallreal t and n = 1,2,3,.... If Ay(ty) =0, ty # 0, then
&n+1(t0)An_1(to) = 0.



TURAN AND LAGUERRE INEQUALITIES 251

Proof. Set u = t;'. Then we have

(2.42) A (u) = 0= (87 ()" — gy (U)gp1 (W),

and ¥ must be a multiple zero of A; since Ay > 0. Therefore, using
(2.5) and Proposition 2.1(i),

(243)  0=A%(u) = (n— )[gm(u)gn_, (1) — gn1(w)&r_2 ()]

If g;(u) # 0, we can use (2.42) to deduce that the right hand side of
(2.43) equals

( ) g (W) gn_1(u) — &n(U) g1 () 87_2(w)]
_n-1
H0)

and thus g,,1(%)As—1(Zo) = 0. On the other hand, if g;(u) = 0, then

(2.43) implies either g, ,(«) = 0 or, if g, ,(u) # 0, then g;_,(u) =0

and g;_,(u) = 0 (cf. (2.42)) so that A;_,(u) = 0. Again we have

8n+1(f0)An-1(to) = 0. O

gn+l u)An l(u)

LEMMA 2.9. Under the hypotheses of Theorem 2.7, assume that A, (t)
> 0 forall real t and n = 1,2,3,..., and that y} — yoy, # 0. If for
some n, Ap(ty) =0, ty # 0 and g, 1(ty) = O, then g, has at least two
nonreal zeros.

Proof. By Lemma 2.8, we have A,_;(fy) = 0. By hypothesis, A; ()
= (y? — yor2)t3 # 0. If we let k be the largest integer less than n
with Ay (29) # 0, then Lemma 2.8, together with a simple induction
gives gy 1(fo) = -+ = gn(to) = 0. Writingu = 5, we have gr}; (1) =
(n+1)gi(u) = 0 and g7y, (u) = n(n+ 1)g;_(u) = 0. Since
&n.1(u) # 0, an elementary geometric argument shows that g7, and
hence g,., have nonreal zeros. u]

Proof of Theorem 2.7. We first consider necessity. Assume that
p(x) € Z-2(1I). Then, for any fixed ¢, we have e*¢(xt) € Z-2(1l),
so that (i) is just the Turdn inequalities for the coefficients in the se-
ries in (2.6). Condition (ii) holds by Lemma 2.8 and 2.9. Condition
(iii) was proved in [CC, Proposition 4.5]. When ¢(x) = x"y(x) with
w(0) # 0, then y(x) = 52 o axxk /k! with ay = y,/(k+r) - (k+1)
and

n-2
gn(x)=n(n—1)---(n—r+x"y_ (n]:r)akxk.

k=0
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Since y(x) € Z-2(1l), the above argument shows that (i)-(iii) must
hold for y(x).

Conversely, assume conditions (i)-(iv) hold. By (iv), we may as-
sume Y9 = ¢(0) # 0. Fix n > 0. As noted previously, Pélya and Schur
[PS] have shown that it will suffice to show that g, (or equivalently,
&) has only real zeros. Consider the sequence of polynomials

(2.44) 85,81 8n

If A,‘;(t) > 0 for all ¢, k < n, then this sequence is a Sturm sequence for
g asin the proof of Theorem 2.5. And, as in that proof, the number
of real zeros of g; is n. Again by Theorem 2.5, this holds whenever
we have strict inequality in (i) for ¢ # 0 and y? — ye_1 7k > O,
k =1,...,n— 1. Next suppose that A}(z) > O for all real ¢. By (iii),
we are done if 71 — 7072 = 0, so we may assume 7’1 — 7072 > 0 and
thus the hypotheses of (ii) hold. Now let u be such that A (u) =0
for some k < n, where k is minimal for u. Note that there are only
finitely many such points u since A, = 0 implies g, ; = 0 by (ii)(a),
which in turn implies yy = 0, contrary to assumption. From (ii) and
Aj(u) = 0, we obtain g;(u) = g;,,(u) = 0, so that A} ,(u) = 0. (If
u =0, then A} (u) = y2 — Pk—17%+1 = 0 and (ii)(b) is used.)

An induction using (ii) gives us g;(u) = g5, ,(u) =--- = g (u) =
with gf_,(u) # O (by the minimality of k). Since (a'/dx)g}(x) =
Jj&i- (x) for each j, we have a sequence of polynomials

(2.45)  g5(X),..., & _(x), gL (x)/(x —u), ..., gr(x)/(x — u)" K1,

which are all nonzero at x = u. It follows that (2.45) forms a Sturm
sequence for g:(x)/(x — u)"~k*! for any interval containing u and
excluding other multiple zeros of g;: indeed, for x near u, but x # u,
g} (x) = 0 implies that g7 (x)/(x — u) and g7, ,(x)/(x — u)!*? have
opposite signs since (x — u)’(x —u)/+2 > 0 and g}_,(x)g},,(x) < 0 by
(i). Eliminating each of the multiple zeros of g;; in this way gives a
Sturm sequence, where the leading coefficient of all the polynomials
is still yo as in (2.44). It follows that the resulting quotient of g; has
only real zeros, and hence so does g;;. u]

We next consider an open problem of Karlin [K, pp. 389-390]. Let

(2.46) o(x) 1= Z Yk k
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be a real entire function and let H3(¢(®; x), p = 0,1,2,..., denote
the 3 x 3 Hankel determinant associated with ¢(?)(x):

¢(p)(x) ¢(p+l)(x) ¢(p+2)(x)
(2.47)  H3(pP; x):=det | p(?*D(x) 9P+ (x) ¢P+3(x)|.
PP (x) pI(x) plr+(x)

We will prove below that if ¢(x) € ¥-# and y, >0,k =0,1,2,...,
then H3(p®); x) < 0 for all x > 0. To this end we will need the
following lemma.

LemMA 2.10. (i) If f(x) := e™q(x), where g € R and q(x) € R[x],
then
(2.48) Hiy(f; x) =e3*H;3(q; x), x€R

(ii) Let g(x) € -2 and suppose that q(x) has nonnegative Taylor
coefficients. Let

(2.49) G(g;x) := g*(x)g" (x) — 3g(x)q'(x)q" (x)
+2(¢'(x))}, xeR

Then

(2.50) G(g;x) >0 forx>0.

Proof. Part (i) follows directly from a computation. To prove (ii),
we induct on the degree of g(x). Clearly (2.50) holds if degg(x) = 1.
Set

(2.51) O(x):=(x+a)q(x),

where a > 0, and assume that (2.50) holds. Then a calculation shows
that

(2.52) G(Q;x) = (x +a)’G(g; x) +2(q(x))*.

Since a > 0 and g(x) > 0, it follows from the induction assumption
that G(Q;x) > 0 for all x > 0. m]

In the proof of our next theorem we will use the following general-
ization of the Turdn and Laguerre inequalities (cf. (2.23) and (2.25))
due to Jensen [Je]. For a detailed proof of the following theorem see
[CV].
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THEOREM 2.11. With (2 46), set
( 1k+n

(2.53)  La(p(x Z T (k >¢(k)(x)¢(2"_k)(x)
(xeR, n=0,1,2,...).

Then ¢(x) € -2 if and only if
(2.54) L,(p(x)) >0 (xeR, n=0,1,2,...).
THEOREM 2.12. Let q(x) € R[x] with positive leading coefficient and
suppose that the zeros of q(x) are all nonpositive. Then
(2.55) H;(q;x) <0 forall x > 0.
Proof. We will prove the theorem by induction on the degree of

q(x). Clearly, if degg < 1, then (2.55) holds, since in this case
H3(g;x) = 0. Now set

(2.56) 0(x) :==(x+a)g(x),

where a > 0 and g(x) has only real nonpositive zeros. Next, we assume
that H3(g;x) < 0 for all x > 0. For x € R, set

(2.57)  1(Q;x) = -Q(x)QW(x) +4Q'(x)Q" (x) - 3(Q" (x))*.

Then, using (2.53), a computation shows that

(2.58) I(Q;x) = —12L,(Q(x)).
Since ¢, Q € -2, we conclude, by Theorem 2.11, that
(2.59) I(g;x) <0 and I(Q;x)<0 forallx€eR

Now another computation yields that
(2.60) H3(Q;x) = H3(q; x)a’ + 3xH3(g; x)a*
+ (3x?H3(q; x) + 4(x)I(g; x))a
+ x> H3(q; x) + xq(x)I (¢; %) — 4G(g; x).
Now by Lemma 2.10 (cf. (2.50)), —G(g;x) < 0 for x > 0 and by

(2.59), I(g;x) <0 for x > 0. Thus, using the induction assumption
and the fact that a > 0, we conclude that H3(Q;x) <0forx >0. O

We note that the use of Jensen’s inequality (2.54) in the proof above
could have been avoided by doing yet another induction to show that

Ly((x + @)g(x)) = (x + a)*L2(q(x)) + ((¢'(x))* — a(x)g"(x))
is always nonnegative.
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THEOREM 2.13. Let

(2.61) 0 (x) :=Z%xk, 7% >0, 0< < oo,

be a function in the Laguerre-Pélya class. Then
(2.62) H3(pP); x)<0 forallx>0, p=0,1,2,...,
where H3(¢'?); x) is defined by (2.47). In particular,

Y Vp+1 Vp+2
(2.63) det | yp+1 Pp+2 Pp+3 | <0 (p=0,1,2,...).
Yp+2 Vp+3 Vp+4

Proof. Since ¢(x) € -2, and y;, > 0, ¢(x) can be expressed in the
form
(0]
(2.64) p(x)=ce™ [J(1 +x/xn), 0<w< oo,
1

where ¢ >0, 6 >0, x, > 0 and }.“ x; ! < co. First, we consider the
case when p =0. If w = N < o0, set

N
(2.65) on(x) = ce™ [ (1 + x/xn).

n=1

Then by Lemma 2.10 (cf. (2.48)) and Theorem 2.12
(2.66) Hj(py; x) <0 forall x >0.

If w = oo, we know that gny(x) — ¢(x) as N — oo, uniformly on
compact subsets of C. Thus, it follows that H3(¢y; x) — H3(p; X)
as N — oo, for x > 0. Consequently, (2.62) holds with p = 0. Since
Z-2 is closed under differentiation [PS] and since y; > 0, it follows
that for any p =0,1,2,..., p(?)(x) can also be expressed in the form
(2.64), and thus (2.62) holds for p = 0,1,2,.... Since the assertion
(2.63) follows from (2.62) by setting x = 0, the proof of the theorem
is complete. m}

COROLLARY 2.14. Let

(2.67) o(x) =Zk—k 7% >0, 0<w< oo,
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be a function in the Laguerre-Polya class. Let

(2.68) Ty =92 — ye1vke1,  k=1,2,3,....
Then the following extended Turdn inequalities hold:
(2.69) Ep:=T}-T 1T 20, k=2,3,4,....

Proof. A computation shows that

Yoo Vk+t  Vi+2
(2.70) det | Y41 Pkt2 Yka3 | (=Vk42) = Exy2, k=0,1,2,....
Ye+2 Vk+3 Vk+4

Since (—y42) <0, (2.69) follows from Theorem 2.13 (cf. (2.63)). O

REMARKS 2.15. (a) The inequality (2.69) provides a new, easily
tested necessary condition for an entire function, with nonnegative
Taylor coefficients, to have only real zeros.

(b) Let

(2.71) 0(x) := %xk, % >0,
k=0 "

be an entire function and let g;; ,(x) denote the nth Appell polynomial
(cf. (2.3) and (2.5)) associated with ¢(?)(x), p = 0,1,2,.... Then a
computation shows that

Ap(t):=det | g7 (1) & ,(1) &5 ,(1)
185 ,(1) &3,(t) & ,(0)
Yo Yo+l 7p+z]

[ 86,,(1) &1 (1) g&“,p(t)J

= det [ Ypr1 Vp+2 Pp+3
L Yp+2  Vp+3 Vp+4

Hence, if p(x) € Z-P, yr > 0, then Ap(t) < 0 for all t € R and for
p=0,1,2,....

3. Examples and open problems. The purpose of this section is to
provide some examples which show that in a sense our results are best
possible. In addition, we will cite here two open problems.

ExAMPLE 3.1. In reference to Theorem 2.3, consider

2 1 o 3k
m e 2 = Z_xk
(3.1) filx):=e X=3=3 +2x+k§=2 ax
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Thus, the Turédn inequalities (2.23) all hold. But then, using the nota-
tion in (2.25), we find that

(3.2) Li(fi(2)) = 9te® + 1.

Since L(fi(=1/3)) = 1 —3e~! < 0, we see that, if (2.23) is valid,
then, in general, the Laguerre inequalities (2.25) need not hold for all
real ¢.

In addition, we note that if

oo k
x
(3.3) HxX)i=x+eX=1+2x+ kE o= > Iik'Xk
=2 =0

then y3 — yy3 = —1<0, and y? — y_1yxy = 0 forall k > 1, k # 2,
so that exactly one of the inequalities (2.23) fails. In this case, with
the notation in (2.25), L,(f>(¢)) = —e' < 0 for all real ¢.

ExAaMPLE 3.2. In reference to Corollary 2.6 and Theorem 2.7, we
now show that if

(3.4) f3(x) Z Zxk, 0 #0,

is a real entire function and if
(3.5) An(t) = (8n(1))* — gn-1(1)8ns1(2) > 0,
forallrealtand n=1,2,3,...,

where g,(¢) is the nth Jensen polynomial associated with f3(x), then
f3(x) need not belong to the Laguerre-Pdlya class. Indeed, with g :=

L, pp =93 =0, 94 := -1,y =0,k =5,6,7,..., we have that

f3(x) =1-x%/4, g,(t) = 1,0 < n < 3and g() =1- (})* for

n=4,5,6,.... Then a calculation shows that (3.5) is satisfied since
An(t) := @;ll)z(:—ﬁt“[(n 3 (n=2)(n-Dnt* +721>0

forallt>0,n=1,2,3,..., but f3(x) = 1 —x*/4! is not a function
in the Laguerre-Poélya class.

ExXAMPLE 3.3. In reference to Theorem 2.13, consider the Hankel
determinant H3(p; x) (see (2.47) for the notation), where ¢(x) :=
(x + 1)(x + 2)(x + 3). Thus, ¢(x) € Z-Z(1), but a calculation shows
that

(3.6) H3(p; x) = —=36(x + 2)(x> + 4x + 5).
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Consequently, H3(¢; x) > 0 for x < —2, and H3(¢; x) <0 forx > -2;
that is, in general, H;3(¢; X) cannot have an invariant sign as x ranges
over the real axis. (This example also shows that there is a misprint
in [K, p. 389, inequality (12.5) and p. 390, line 3].)

The results of Theorem 2.13 and Example 3.3 suggest the following
open problem.

Open Problem 3.4 (Karlin [K]). Let ¢(x) € Z-2(I) and suppose
¢(x) has nonnegative Taylor coefficients. Let H,(¢‘?); x) denote the
n x n Hankel determinant

0P (x) pPtD(x) ... @Ptn=l(x)

(P+1)(x P+ (x) .. (p+n)(x

Hy(o™®: x) = det 9 .() 9 .() 9 _()
¢(P+”.—l)(x) ¢(P+")(x) ... ¢(p+2';_2)(X)

where p =0,1,2,.... Then the conjecture is that

(3.7) (=)""-V2H,(p®); x) >0 forx>0, p=0,1,2,3,...,
and for n =4,5,6,....

Open Problem 3.5. In reference to Corollary 2.14 consider the func-
tion ¢(x) in .#-% defined by (2.67). Then the Turan expressions (cf.
(2.68))

(3.8) T =72 — peiVer,  k=1,2,3,...,

are all nonnegative. But then elementary considerations show that the
function

(3.9) )= %xk,

k=0
where T} is defined by (3.8) is also an entire function. The open
problem then is to characterize those functions ¢(x) in .- for which
the associated functions f(x) (cf. (3.9)) are also in .¥-& (see also the
example below).

EXAMPLE 3.6. Let
(3.10) p1(x) == (x? + 10x + 1)e*,
so that ¢;(x) is in Z-2(I). Then a calculation shows that 7, = 78 +
18k + 2k? and that the associated entire function

(3.11) fi(x):= %xk = (98 + 24x + 2x?%)e*.
k=0 )

Therefore, we see that f(x) is not in Z-Z.
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On the other hand, if

(3.12)

02(x) 1= (x2 +2x + 1/2)e*

then T}, = 2k? + 2k — 1, and the associated function is

[e o]
Tk+1

a xk = (2x% + 8x + 3)e*

Sa(x) =

k=0

is clearly in -2 ().
Other choices of ¢(x) for which f(x), defined by (3.9), is again
in Z-2(1) are (x + 1)" for any positive integer n and the function

SRo X*/ (k).

[CC]
[CCS]
(CV]
[CW1]
[CW2)
)]

[Je]
(K]
[KS]
MW]
(O]
[Pa]
[PS]

[R]
(]

[Vl
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