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The predual of a von Neumann algebra is shown to be a neutral
strongly facially symmetric space, thereby suggesting an affine geo-
metric approach to operator algebras and their non-associative ana-
logues. Geometric proofs are obtained for the polar decompositions
of normal functionals in ordered and non-ordered settings.

A fundamental problem in the operator algebraic approach to quan-
tum mechanics is to determine those algebraic structures in Banach
spaces which are characterized by a set of geometrical axioms defining
the quantum mechanical measuring process. This problem was solved
in the context of ordered Banach spaces by Alfsen, Hanche-Olsen, and
Shultz ([2], [1]) and led to a characterization of the state spaces of
/2?*-algebras and C*-algebras. The main thrust of the present authors'
recent research has been to find those algebraic structures induced on
(unordered) Banach spaces in which such quantum mechanical ax-
ioms are satisfied. This project, which was initiated in [14] and [15]
using the affine geometry of the dual unit ball, is used here to give a
geometric proof of the Tomita-Sakai-Effros polar decomposition of a
normal functional on a von Neumann algebra.

Thus, the purpose of this partially expository paper is to show the
richness and power of the affine geometric structure of the dual space
of an operator algebra, by working in a purely geometric model. In-
deed, since this geometry can be described in terms of the underlying
real structure, it can be used to obtain new results in the real structure
of operator algebras and in the structure of real operator algebras.
For example, by using this approach, Dang ([5]) has shown that a
raz/-linear isometry of a C*-algebra is the sum of a linear and a conju-
gate linear isometry, and hence is multiplicative, thereby obtaining a
real analogue of Kadison's non-commutative extension of the Banach-
Stone Theorem.

The category of strongly facially symmetric (SFS) spaces (simply
called facially symmetric spaces in [14] and [15]) has been shown to
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be an appropriate vehicle for the study of this problem. Strongly fa-
cially symmetric spaces include the preduals of von Neumann algebras
(cf. §2 below), and more generally of JBW*-triples (cf. §3 below), and
can therefore serve as a geometric order-free model in which to study
operator algebras and their non-associative analogues. This project
may also be viewed as an attempt to place the characterizations of
von Neumann algebras and /i?W-algebras in terms of self-dual ho-
mogeneous cones ([4], [19]) in a context which is free of a global
order structure.

A discrete spectral theorem for an arbitrary element in the dual of a
reflexive SFS space was obtained in [14] by using the basic notions of
orthogonality, projective unit, norm exposed face, symmetric face, gen-
eralized tripotent, and generalized Peirce decomposition, which were
introduced and developed in this purely geometric setting. More-
over, a one-to-one correspondence was established between general-
ized tripotents and norm exposed faces, analogous to the correspon-
dence between projections in a von Neumann algebra and norm closed
faces in its normal state space (cf. [9]). This constitutes an important
link between geometry and algebra in this context.

We next discuss the notion of compatibility. It is often useful to
decompose a space simultaneously with respect to a family of indi-
vidual decompositions. It is therefore important to know conditions
under which this joint decomposition does not depend on the order,
i.e. when the corresponding projections all commute. In this case we
say that the members of the family are compatible.

In the globally ordered case, faces correspond to idempotents, and
compatibility implies commutativity of the idempotents. Therefore,
it is not possible to study non-commutative phenomena in this frame-
work without abandoning compatibility, and thus increasing signifi-
cantly the complexity of the problem. On the other hand, by dropping
the requirement of a global order structure, it has been possible to de-
scribe non-commutative objects by using compatible families. This is
illustrated by the proof of the classification of JBW* -triple factors of
type I in [6].

In §1 we review the basic affine geometric notions needed in the
proof of the geometric polar decomposition ([15, Theorem 4.3]), and
give necessary and sufficient conditions for compatibility (Theorem
1.2), considerably sharpening one of the main results of [15]. In §2 we
develop enough elementary machinery of operator algebras in order to
show that the predual of a von Neumann algebra is a neutral strongly



GEOMETRIC ASPECTS OF OPERATOR ALGEBRAS 125

facially symmetric space (Theorem 2.11). It is then a simple matter
to combine Theorems 1.3 and 2.11 to obtain a geometric proof of
the Tomita-Sakai-Effros polar decomposition. A generalization of the
results of §2 appears in §3, which introduces the /i?*-triρles.

1. Compatibility in weakly facially symmetric spaces. In this section
we shall give several necessary and sufficient conditions for compati-
bility of elements in a purely geometric setting. A consequence of this
result constitutes one step in the proof of the geometric polar decom-
position ([15, Theorem 4.3]), which we state here. All other definitions
from [14] and [15] which are needed for our proof of compatibility
will be recalled here for the convenience of the reader.

We shall say that elements / and g of a normed space Z are or-
thogonal if they satisfy

II* + /ll = II*-/H = 11*11 + 11/11.
or if one of them is zero (cf. [14, §1] or [15, §1]. We shall write fog
to indicate that / and g are orthogonal.

Let K be a convex set. A face of K is a non-empty convex subset
F of K with the following property: if / e F and g,h e K satisfy
/ = λg + (1 - λ)h for some λ e (0,1), then g,h e F. An important
example is: K = Zx = the unit ball of Z and F = {/ eK: f(x) = 1}
for some element x e Z* of norm 1. We shall denote this set F which
is either empty or a face (called a norm exposed face), by Fx. Note
that Fx Π Fy = Fz where z = (x + y)/2. The following is immediate
from the definitions.

REMARK 1.1. Let T be a linear isometry of a normed space Z onto
itself For each norm exposed face Fx in Z\,

We say that Z is facially linearly complemented if it is a real or
complex normed space in which the orthogonal complement

F» = {geZ:gofVfeF}

of every norm exposed face F is a linear subspace. An element ueZ*
is called a projective unit if \\u\\ = 1 and (ufF^) = 0. Let & and %
denote the collections of norm exposed faces of Z\ and projective
units in Z*, respectively. The map
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is not onto in general ([14, p. 269]). In order to obtain the bijec-
tion between distinguished subsets of & and ^ , we need to recall the
definitions of symmetric face and generalized tripotent.

Motivated by measuring processes in quantum mechanics, we define
a symmetric face to be a norm exposed face F in Z\ with the following
property: there is a linear isometry SF of Z onto Z, with Sj? = /, such
that the fixed point set of SF is (spi7) Θ F° (topological direct sum).
In particular, F° is a closed linear space.

For each symmetric face F we define contractive projections P/c(F)9

k = 0,1,2 on Z as follows. First P{(F) = \(I - SF) is the projection
on the - 1 eigenspace of SF. Next we define PiiF) and Po(F) as
the projections of Z onto spF and F° respectively, so that P2(F) +
P0(F) = j(I+Sf) is the projection on the +1 eigenspace of SF. These
projections are called generalized Peirce projections. Note that

P2(F) + Pι(F) + P0(F) = I and SF = P2(F) - PX(F) + P0(F).

A real or complex normed space Z is said to be weakly facially
symmetric (WFS) if every norm exposed face in Z\ is symmetric.
Hence a WFS space is facially linearly complemented.

A generalized tripotent is a projective unit M E ^ with the property
that Fu is a symmetric face and Spuu = u. The importance of this
concept is explained by the following. Denote by &ZΓ and &5F the
collections of generalized tripotents and symmetric faces respectively.
According to [15, Proposition 1.6], for any WFS space Z, the map

(l) %F3u*-*FueS&~

is a bijection of the set of generalized tripotents and the set of sym-
metric faces.

We now define the orthogonality of generalized tripotents and other
elements of the dual space Z* of a WFS space Z. Elements a,b e Z*,
Z any normed space, are orthogonal1 if there is a symmetric face
F c Z\ such that either

1. a e P2(F)*(Z*) and b e P0(F)*(Z*); or
2. a e P0(F)*{Z*) and b e P2(F)*(Z*).

We shall write a o b or b o a to indicate this relation.
We next recall the notion of neutrality. A contractive projection

Q on a normed space X is said to be neutral if for each ξ e X,
\\Qξ\\ = ||£|| implies Qξ = ξ. A normed space Z is neutral if for every

'Later we shall use the term orthogonal in connection with elements of a C*-algebra. By
Theorem 2.11, the two definitions are consistent.
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symmetric face F, the projection P2(F) corresponding to some choice
of symmetry 5>, is neutral. An interesting property of neutrality is
that in a neutral WFS space, a symmetry S> as well as the generalized
Peirce projections, are uniquely determined by the norm exposed face
F ([15, Theorem 2.4]).

We next define the notion of compatibility and prove the important
characterization theorem. For an analogous result in a purely algebraic
setting, see [23].

Two generalized tripotents u and v are said to be compatible if their
generalized Peirce projections commute, i.e.

[Pk(Fu),Pj(Fυ)] = 0 for kje {0,1,2}.

The following theorem gives a characterization of compatibility
which sharpens a previous result of the authors. For convenience,
we adopt the following notations, where u is a generalized tripotent
in the dual of a WFS space Z: Pk(u) = Pk(Fu), k = 0,1,2; U = Z*,
Zk{u) = Pk{ύ){Z)\ Uk{u) = Pk(u)*(U); Su = SFu. Also, the inverse of
the map (1) will be denoted by F »-» vF.

T H E O R E M 1.2. Let Z be a neutral WFS space, and let u,v e

The following are equivalent.

(1) u and v are compatible;

(2') S*υ e U2(v);
(3) u = u2 + ux + u0 with Uj e Uj(v) Π U2(u), j e {0,1,2};
(3') v = υ2 + vι+υ0 with vj e Uj(u) n U2(v), j e {0,1,2}.

Proof.
(1) => (3): Pi(υ)*u = Pi(v)*P2(u)*u = P2(u)*Pi(v)*u e E//(v) n

U2(u).
(3) => (2): s u = u2-uι+uoe U2(u).
(2) => (1): By Remark 1.1, Sυ(Fu) = FS;u, and since Sζu e U2{u)

we have by [15, Theorem 2.3] that Sυ(Fu) c Z2(u). Thus

(2) P2(u)SvP2(u) = SυP2(u).

Since S% = /, ^(Z 2 (w)) = Z2(u). Since by [15, Proposition 1.5],
Z2(w) o Z0(w), we have Z0(w) c Z2(w)°. But F w c Z2(w) implies
Z0(u) = F%D Z2(u)° so Z 0 (M) = Z2(u)°. Therefore

Sυ(Z0(u)) = 5,(Z 2 ( W n = 5,(Z2(ι/)r = Z 2(iιr = Zo(iι),
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from which we get

(3) P0(u)SυP0(u) = SυP0(u).

For S1*, by [15, Theorem 2.3] and Remark 1.1, we obtain

* Hc Zk(u)},

Λ ) , HcZk(u)},

for k = 0 or 2. Since (2) and (3) imply that SV(H) c Zk{u), we have

(4) P2{u)*S*vP2{u)*=S*vP2{uy,

and

(5) po(uys;po(uy = s;po(uy.

Using (4) and (2) we have

p2(uy*s** = p2{uy*s;*p2{uγ*

= (P2(u)svp2(u)y*

= (sυp2(u)y* = s;*p2(uy*.

Ίhus[P2(u),Sv] = 0.
Similarly, (3) and (5) imply [P0{u),Sv] = 0. Since Px{u) = I -

P2(u) - PQ{U) and Pλ{v) = {I - Sυ)/2, we have

(6) [Pj(u),Sυ] = 0 = [Pj(u),Pι(v)] forje {0,1,2}.

Since P2(v) + P0(υ) = (I + Sv)/2, (6) implies

(7) (P2(υ) + P0(v))(Zj(u))cZj(u), for € {0,1,2}.

Using the fact that Z2(v) o Z0(v), from [15, Remark 1.3] (for = 0)
and [15, Remark 3.2] (for j = 2) we have

Pi(v)(Zj(u)) c Zj(u) for i,j e { 0 , 2 } ,

i.e.

(8) Pi(υ)Pj(u) = Pj(u)Pi(υ)Pj(u), for i, j € {0,2}.

Moreover Q := Pi{v)Pj(u) is a neutral contractive projection with
range Z , ( υ ) n Zj{u), for i,j e { 0 , 2 } .

Obviously, the subspace Q*(Z) contains ί/, (υ) Π Uj(u). If these
spaces are not equal, we may choose a φ € Q{Z) such that ||0>|| = 1
and

φ(Ui(v)ΠUj(u)) = 0.
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Then there exists x e Q*(U), \\x\\ = 1 with φ e Fx. By neutrality of
β, Fx c β(Z) and by [15, Theorem 2.3], vFχ e Ut{v) Π Uj(ύ). Hence
φ{vFχ) = 0, contradicting φ e Fx. Thus Q*(U) = Ut{v) Π Uj(u).

Now let R := Pi(υ)Pj(u)Pi(υ). From (8) it follows that

R2 = PiWPjMPiMPjMPiiυ) = R

so that R is a neutral contractive projection. For any φ e Z we have

ll^2^ll = \\Pi(v)Pj(u)Rφ\\ < \\Pj(u)Rφ\\ < \\Rφ\\.

Since Pj(u) is neutral for j = 0 or 2, i?^ = Pj(u)Rφ. Thus Λ(Z) =
Zj(u)nZi(υ). This implies, as above, that Λ*(t/) = Ui(v)nUj(u) and
thus by [15, Lemma 2.2], Q = R, i.e.

(9) Pi(v)Pj(u) = Pi(v)Pj(u)Pi(v)9 f o r i,j e { 0 , 2 } .

From this it follows that (for / € {0,2})

= (Pi(v)Pι(u))2,

implying, by neutrality of P/(v),

(10) Pi(v)Pι(u) = Pι(u)Pi(v)Pι(u), for i e {0,2}.

F i n a l l y , u s i n g (8) a n d ( 1 0 ) , w e h a v e , for i,j e { 0 , 2 } ,

Pj(u)Pi(v) = Pj(u)Pi(v)[P2(u) + Λ (ii) + Po(«)l

= Pj(u)Pi(υ)Pj(u)

= Pi(υ)Pj(u),

i.e., [/*/(!;), P, (κ)] = 0 for i,j e {0,2}. This fact, together with (6)
shows that u and υ are compatible.

By symmetry of (1), (2') and (3') are equivalent to (1). D

As a consequence of Theorem 1.2 we obtain [15, Theorem 3.3], one
of the main results of [15].

A WFS space Z is strongly facially symmetric (SFS) if for every
norm exposed face F, and every y e Z* with ||y|| = 1 and F c Fy,
we have Spy = y9 where Sf denotes a symmetry corresponding to F.
In a SFS space, the generalized tripotents coincide with the projective
units.

Another main result of [15] is the following, which is a geometric
polar decomposition.
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THEOREM 1.3 {Theorem 4.3 of [15]), Let Z be a neutral SFS space.
For any f e Z with \\f\\ = 1, there is a unique generalized tripotent v
such that

(*)feFυ;
(b) (υ, {/}*) = 0.

Moreover,
(c) Fv is the smallest norm exposed face containing / ;
(d) / is faithful in the sense that

f{u) = \\P2(u)f\\ > 0 for any ue&F with Fu c Fv.

2. Application to operator algebras. In this section we will show that
the predual of a von Neumann algebra is a neutral strongly facially
symmetric space, and that the set of generalized tripotents coincides
with the set of partial isometries in the von Neumann algebra. These
facts will be used to give a geometric proof of the Tomita-Sakai-Eίfros
polar decomposition of a normal functional.

If v is a partial isometry in a C*-algebra A, then with / = υv* and
r = v*υ, projections E(v), F(v), and G(υ) on A are defined by

E(υ)x = lxr\ Λ
F{v)x = (1 - /)JC(1 - r); > , for x e A,

G(υ)x = lx(l - r) + (I - l)xr )

and yield the familiar "matrix" representation of x:

E(v)x /jc(l-r)"
(ί-l)xr F{v)x

We call E(v)y F(υ), G(v) Peirce projections corresponding to υ.
If g is a linear functional on A then, by abuse of notation, E(υ)g

will denote g o E(υ), etc.
The following lemma is an easy consequence of the matrix repre-

sentation.

LEMMA 2.1. For a partial isometry v in a C*-algebra A,
(a) \\(E(v) + F(v))x\\ = mzx{\\E(v)x\\, \\F(v)x\\} < \\χ\\, xeA;
(b) \\E(v)g\\ + \\F(v)g\\ = \\(E(v) + F(v))g\\ < \\g\\, g e Λ\

The next lemma puts an abstract C*-algebra structure on the Peirce
space E(υ)A of a partial isometry υ. Its proof consists of straightfor-
ward calculations. For the third assertion, the following well-known
result of Effros is needed: for a normal functional / on a von Neu-
mann algebra and a projection e in the algebra, / = / e o \\f\\ =
| |/ e\\, where / e is the functional x •-• f(xe) (see [26, p. 140]).
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LEMMA 2.2. Let v be a partial isometry in a C*-algebra A.
1. Av := υ*Ar, with r = v*υ, is a C*-subalgebra of A, with unit r. If

A is a von Neumann algebra, so is Aυ.
2. The map x »-• υx is a linear isometric bijection of Av onto E(v)A

with inverse a κ+ v*a. Thus E(v)A becomes a C*-algebra with unit v
and operations

a- b := aυ*b, a* := va*υ.

If A is a von Neumann algebra, the adjoint ofx^vx is an isometry
ofE{v)A* onto (Av)*.

3. The map f »-» f\ε(υ)A *S a n affine isometry of {/ e A*: f{v) =
11/11} onto (E(v)A)%. If A is a von Neumann algebra, this map restricts
to an affine isometry of{f e A*\ f(υ) = ||/||} onto (E(v)A)*t+.

The Peirce space E(v)A will occur frequently in the sequel. It will
be denoted by Aι(v). If A is a von Neumann algebra, then by Lemma
2.2, the normal state space of Aι{v) is afϊinely isometric to the norm
exposed face Fv defined by Fv = {/ e A*: f{v) = \\f\\ = 1}.

The next lemma examines the relation between partial isometries
in a von Neumann algebra A and norm exposed faces in the unit ball
A*t\ of its predual. Note that if u is a non-zero partial isometry in A,
then by Lemma 2.2, Fu φ 0 .

Partial isometries u and v are orthogonal if their left and right sup-
ports are orthogonal, i.e. uu*vv* = 0 and u*uv*v = 0. More generally,
elements x, y in a C*-algebra are orthogonal if xy* = 0 = y*x.

LEMMA 2.3. For each x in a von Neumann algebra A with \\x\\ = 1
andFx Φ 0, there is a partial isometry w e A withFx = Fw. Moreover,
x = y + w with y orthogonal to w.

Proof. Let \x\ = f^λdλ be the spectral decomposition of |x| =
(x*x)1/2. One can verify that w :=ufrXy dλ satisfies the requirements
of the lemma, where x = u\x\ is the polar decomposition of x. For
details, see [7, Lemma 3]. D

Lemma 2.3 shows that the map u »-• Fu from the set of partial
isometries in a von Neumann algebra A to the set of norm exposed
faces in the unit ball A*t\ of the predual A* is onto. In fact, this
map is also one-to-one.2 Indeed, by the Jordan decomposition of
hermitian functional on a von Neumann algebra and Lemma 2.2, for
any partial isometry w, E(u)*A* = s p i v Also, u e E(u)A. Therefore,

2This will follow from [15, Proposition 1.6] once Theorem 2.11 is proved.
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u is determined by its values on s p i v It follows that if Fu = Fw,
then u = w.

We next prove that the Peirce projections E{v) and F{v) corre-
sponding to a partial isometry v e A are neutral. Although this fol-
lows from the result of Effros mentioned above, we prefer to give
a direct proof of this fact. This proof introduces some tools which
will be used later. In the first place, by defining a "triple product"
{xyz} := j(xy*z + zy*x), and letting Aj(v) denote the Peirce spaces
corresponding to the partial isometry v, i.e.

A2{v) = E{v)A, Ax(v) = G(υ)A, AΌ(v) = F{υ)A,

we have by a simple matrix calculation,

(11) {AiW.AjW

where Aj(v) = {0} if / £ {0,1,2}. This notation will be justified by
Theorem 2.11. Having introduced the triple product {xyz} we also
define an operator D(x,y): A -> A by D(x,y)z — {xyz} and the
"cube" of x as x'3 ) = D(x,x)x = {xxx} = xx*x. More generally,
odd "powers" of elements of A are defined inductively by x'1 ' = x,

x{m) = {xx(m-2)χ} for fπ odd, in > 3. D(x) will denote D(x,x).
Note that x and y are orthogonal if and only if D(x, y) = 0.

LEMMA 2.4. L^ v be a partial isometry in a C*-algebra A and let λ
be a complex number, \λ\ = 1. Define a linear map Sχ = Sλ(v): A —• A
by

Sλ = Sλ(v) = λ2E{v) + λG{υ) + F(υ).

Then
(a) Sλ preserves the triple product {xyz}, i.e.

Sλ({xyz}) = {Sλx,Sλy,Sλz} forx,y,zeA;

(b) 5^ is an isometry of A onto A.

Proof, (a) By the standard polarization formula

it suffices to prove (a) in the special case x = y = z. Write x =
Σ)=0Xj with Xj e Aj(v). Then Sλx = ΣλjXj, {Sλx,Sλx,Sλx} =
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Σij,kλi~j+k{χiχjχkh andχ(3> = Σ,Uιk{XiXjXk}. By (11), {XiXjXk} €
Aj_j+b. Therefore

Sλ(x{3)) = ΣV-^iXiXjXk} = (Sλx)i3).
iJM

(b)

)||3 = \\{sλ(χ),sλ(x),sλ(x)}\\ = \\sλ(χ{3))\\

Thus \\Sχ\\ < 1 and since SχSj = I, Sχ is isometric. D

LEMMA 2.5. Let v be a partial isometry in a C*-algebra A, and let
x e A2(v) U AQ{V), y € A\ (υ), t e C. Then for each positive integer n

(x + ty)Vn) = x(3"> + t2nD(x^~^) • • D(x^))D{x)y + O(\t\2).

Proof. By (11), {xyx} = 0, and therefore

(x + ty)W = x (3) + t{xyx} + 2t{xxy} + O(\t\2)

= x ( 3 ) + 2tD(x)y + O(\t\2).

The result now follows by induction: with

xn = x^ and yn = 2nD(xn^)-

we have

(x + /y)(3"+1) = (xn + ίyn + O(\t\2))W = (xn + tyn)& + O(\t\2)

= xn+ι + tyn+ι + 0{\t\2). D

The following proposition will imply the neutrality of the predual
of a von Neumann algebra.

PROPOSITION 2.6. Let v be a partial isometry in a C*-algebra A and
let f € A*.

(a) If\\E{υ)f\\ = 11/11, then E(v)f = f;
(b)If\\F(v)f\\ = \\f\\,thenF(v)f = f.

Proof, (a) Since \\E(v)f\\ + \\F(v)f\\ = \\E{v)f + F(v)f\\ < \\f\\,
F(v)f = 0. It remains to prove that G(v)f = 0. Toward this end let
y e G(v)A. We are to prove that f(y) — 0. We may assume | |/ | | = 1,
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f{y) > 0, and \\y\\ < 1. For ε > 0 choose x e E{v)A with ||JC|| = 1
and f{x) > 1 - ε. Then for t e R,

\\x + ty\\ > f(x + ty) = f(x) + tf(y) > 1 - ε + tf(y).

Therefore by Lemma 2.5

(1 - ε + tf(y)γn < \\x + tyγn = \\{x +

and so

(1 _ β ) 3- + 3ntf(y)(\ - a)3"-1 + O(\ί\2) < 1 + ί2Λ | |y| | + 0{\t\2).

Letting ε —• 0, and dividing by |ί| results in

Letting t —• 0, then n —• oo yields f(y) = 0. The proof of (b) is
similar. D

The following gives a useful characterization of the relation fog.

LEMMA 2.7. Let f and g be normal functionals on a von Neumann
algebra A. The following are equivalent

(a)/o#;
(b) There exist orthogonal partial isometries p, q in A such that

f(p) = \\f\\andg(q) = \\g\\;
(c) There exist orthogonal partial isometries p, q in A such that

f = E(p)f and g = E(q)g.

Proof, (a) => (b): Suppose that fog. By the weak*-continuity of
f + g there is an x e A, \\x\\ = 1 with (/ + g, x) = \\f + g\\. Choose a
partial isometry w by Lemma 2.3 with Fx = Fw. Then

11/11 + 11*11 = 11/+ *|| = </ + g>w) < \(fw)\ + \(g,w)\ < 11/11 +
Therefore f(w) = | |/ | | , g(w) = \\g\\ so that φ := f\Mw), ψ := g\Mw)
are positive normal functionals on the von Neumann algebra A^w)
with | |^ - ^ | | = ll̂ ll + | |^ | | . If p and q denote the support projections
in Aι(w) of φ and ψ respectively, then, as is well known, p and q are
orthogonal projections in Aι(w), i.e.

p = p . p = pw*p, q =

= wp*w, q =

p q = /ra;*# = 0.

p = p* = wp*w, q = q* = wq*w;
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From these equations we have

P = p p# p = pw*(wp*w)w*p = P(WW*PW*W)*P = pp*p

and

pq* = p(q*)* = p(wq*w)* = pw*qw* = 0.

Therefore p and q are orthogonal partial isometries in A.
We have f(p) = φ(p) = | |p | | = | | / | | and similarly, g(q) = \\g\\.
(b) => (c): This follows from Proposition 2.6.

(c) => (a): If there exist orthogonal partial isometries p, q in A
such that / = E(p)f and g = E(q)g, then since E(q) = F(p)E(q), it
follows from Lemma 2.1 that fog. •

We are now ready to show that the predual of a von Neumann
algebra is WFS. Let Fx be a norm exposed face inA*t\. With a partial
isometry w given by Lemma 2.3 such that F* = Fw, let S be the
"Peirce reflection" with respect to w9 i.e.

S = E{w)-G(w) + F(w).

Since the fixed point set of S is E(w)A* Θ F(w)A*, the fact that ,4* is
WFS will follow from the following two lemmas.

LEMMA 2.8. With S as above,

( 1 ) 5 2 = /;
(2) S is an isometry of A* onto itself

(3) spF™ = E(w)A* (= {geA*: E(w)g = g}).

Proof. (1) is obvious and (2) follows from Lemma 2.4 with λ = - 1 .

To prove (3), take g e Fw. Then

1 = g(w) = <£(«;)*,«;> < | |£(w)* | | < ||g|| = 1,

so that by Proposition 2.6, g = E(w)g. Therefore Fw c E(w)A* and

Since i 7^ is the normal state space of the von Neumann algebra Aι{w)
and E{w)A* is its predual, (3) now follows from the Jordan and
Cartesian decompositions of normal functionals. D

We now have the following consequence of Lemmas 2.8 and 2.4.
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COROLLARY 2.9. Let u be a partial isometry in a von Neumann
algebra A and suppose that Fu c Fx for some x E A with \\x\\ = 1.
Then E{u)x = u and G{u)x = 0.

Proof. Let

x = x2 + x\ + xo

be the Peirce decomposition of x with respect to w, i.e. x2 = E(u)x,
X\ = G(u)x9 Xo = F(ύ)x.

Since Fu c Fx,

On the other hand, u and x2 both vanish on G(w)(ΛU) ® F(u)(A*).
Thus x2 = u.

Let y = w - /Xi -Xo Then y = -Sι(u)x so that \\y\\ = 1 by Lemma
2.4. Therefore

z := \{x + y) = u + μ.Xi with μ = ̂ (1 - /)

and ||z|| < 1. We now have ||{zzz}|| = H'z||3 < 1, and therefore

2 = \\P2(u){zzz}\\ < \\{zzz}\\ < 1.

Since {x\X\ u) is a positive element of A2{ύ), it must be zero, and then
it follows by a simple matrix calculation that x\ = 0. D

LEMMA 2.10. For any partial isometry w in a von Neumann algebra
A

F«=F(w)A* (={geA*:F(w)g

Proof. Let g e F(w)A*, f e Fw. Then since / e E(w)A*9 we have,
by Lemma 2.1, \\f ± * | | = | |/ | | + | |*| |, proving that F« D F{W)A*.

Before proving the converse inclusion, note that since A2(w) is a
von Neumann algebra with unit w,

w = sup{^: φ e A2(w)*t+},

where eφ is the support projection in A2{w) of φ. By Zorn's lemma,
there is an orthogonal family {ea} such that

(12) W = Σ > β ,

where ea is the support of a normal functional φa on A2(w). As in the
proof of Lemma 2.7, {ea} is an orthogonal family of partial isometries
in A.
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Now let g e F^. We must show that g e F(w)A*. Consider
fa := φaoE(w) e E{w)A+. Then fQ(w) = φa(w) = | |p α | | = ll/α|| so
that ll/αlΓ1/^ € Fw and therefore faog for all α. By Lemma 2.7, there
exist orthogonal partial isometries pa, qa such that fa(Pa) = \\fa\\>
g(Qa) = \\g\\ and g = E{qa)g. We now have

Wfa\\-χfaeFwnFPn=FWn,

for some partial isometry wa (by Lemma 2.3). By Corollary 2.9, since

Pa = Wa + ba

with ba orthogonal to wa. Therefore wa is orthogonal to qa. Again by
Corollary 2.9

W = Wa + Ca

with ca orthogonal to wa. By direct calculation then, wa e A2(w) and

w* = wa - wa = wa.

Therefore wa is a projection in A2(w) with φa{Wa) = WψaW Since ea

is the support projection of φa, we have ea < wa as projections in
A2(w). Thus eα < wa as partial isometries in A and so eα and qa are
orthogonal for all α.

For the rest of this proof, it will be convenient to use the notation
l(u) = uu* and r{u) = u*u for a partial isometry u.

By (12)

E ) and

Therefore, for x e A and all α, since g = E(qa)g

g{l{w)x{\ - r(w)) = l i m ^ ^(/(&)/(^β)x(l - r(tι ))) = 0,

and similarly

£((1 - l{w)xr{w)) = 0 and g(l{w)xr{w)) = 0,

i.e. G(w)£ = 0. Similarly, E(w)g = 0. D

THEOREM 2.11. The predual of a von Neumann algebra A is a neu-
tral strongly facially symmetric space in which the set of generalized
tripotents coincides with the set of non-zero partial isometries. Ifu is
a partial isometry, then the generalized Peirce projections defined by u
agree with the Peirce projections defined by u, i.e.

(13) P2(u) = E(u), Px{u) = G{ύ) and P0(u)=F(u).
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Proof. It follows from Lemmas 2.8 and 2.10 that A* is a WFS space.
Let w be a non-zero partial isometry in A. Then ||tu|| = 1 and Fw Φ

0. Since F* = F(w)A*, and w e A2(w), (w,F°) = (w,F(w)A*) = 0.
Thus w is a projective unit. But clearly, S^w = w so that w is a
generalized tripotent. Conversely let u be a generalized tripotent. By
Lemma 2.3 there is a partial isometry w with Fu = i 7^ and y := u-w
orthogonal to w. We show that y = 0 by showing that g(j ) = 0 for
all g e A*. Since y e A0(w) we may assume that # e F(w)A*
(= F£ = F«), and hence g(w) = 0. Since (w,F£) = 0? ^(w) = 0.
Therefore g(y) = 0. Thus, the set of non-zero partial isometries co-
incides with the set of generalized tripotents.

It follows from Proposition 2.6 that A* is neutral.
By [15, Theorem 2.4], (13) holds.
To prove SFS let Fu c Fx for some generalized tripotent u and

some element x in A. Let

X = X2 + X\ + Xo

be the generalized Peirce decomposition of x with respect to w, i.e.
x/ = Pj{ύ)x for 7 = 0,1,2. We shall show that x2 = u and then that
JCI = 0, which implies S*x = x9 as required for SFS.

Since x2 = P2{uYx and F w c i7*,

On the other hand, since also u = P2(u)*u, u and x2 both vanish on
Pχ(u)(A*)®P0(u)(A*). Thusx 2 = w.

The proof that X\ = 0 is identical to the last paragraph in the proof
of Corollary 2.9. D

We can now combine Theorems 1.3 and 2.11 to obtain a geometric
proof of the Tomita-Sakai-EίFros polar decomposition of a normal
functional. We state the version of this theorem from the book of
Takesaki ([26, p. 140]).

THEOREM 2.12. Let A be a von Neumann algebra, f an element of
the predual

(1) There exists a pair (φ,υ) with the following properties:
(a) φ is a positive normal functional on A, and \\φ\\ = \\f\\\

(b) v is a partial isometry of A with v *v = supp φ (:= the support

ofφ)\
(c) f(x) = φ(v*x), φ(x) = f(vx), for x e A.
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(2) Let ψ be a positive normal functional on Ayu a partial isometry

of A with u*u = supp ψ and f(x) = ψ(u*x), for x e A. Then ψ = φ,

u = v.

Proof. For notation's sake, assume | |/ | | = 1.
(1) Given /, choose a generalized tripotent υ satisfying the con-

ditions in Theorem 1.3. Define φ e A* by the rule φ(x) = f(vx)y

for x e A. Then \\φ\\ < | |/ | | and φ(υ*v) = f(v) = | |/ | | so that
ll̂ ll = | |/| |. Also, v is a partial isometry and, with r = v*v, we have
φ(ί) = φ(γ + (l - r)) = φ(r) = 1 so that φ € A*t+ and supp φ < r. If
p is a projection in A with p < r, then vp < υ by Lemma 2.2. Hence
by (d) of Theorem 1.3, φ(p) = f(vp) > 0, proving that r = supp^.
Finally, φ(v*x) = f(υv*x) = /(x) for x e A, by neutrality.

(2) Obviously, | |/ | | < | |^| |. On the other hand, | |^| | = ψ(u*u) =
f(u) so 11/11 = ||ψ\\. Since u is a partial isometry, it is a generalized
tripotent with f(u) = ψ(u*u) = 1, i.e. / e /v Using the isomorphism
of Lemma 2.2, we see that ψ on Au corresponds to / on E(u)A and
since ψ is faithful on Au, f is faithful on E(u)A.

By [14, Corollary 1.3b], if g e {/}°, ||g|| = 1, there exist orthogonal
norm exposed faces Fx,Fy with / € Fx, g e Fy. Thus / e FXΓ\FU =
Fw for some projection w in E(u)A. By the faithfulness of / on
E(u)A, w = u and therefore Fw c FXy and F% D F% D Fy. Since
(w,F£) = 0 and # e Fy, g(u) = 0. Therefore (u, {/}°) = 0. By the
uniqueness part of Theorem 1.3, u = υ and y/(x) = f(ux) = f{vx) =
φ(x). D

3. Application to /5*-triples. A JB*-tήple (or Banach Jordan Triple
System) is a complex Banach space with a certain ternary algebraic
structure arising in the study of bounded symmetric domains in finite
and infinite dimensions ([21]). The class includes C*-algebras and
/!?*-algebras as well as the range of an arbitrary contractive projection
on a C*-algebra ([11]). A JBW*-tτiplε is a /£*-triple which is the dual
of a Banach space.

Recent results in the analytic and algebraic theory of Jordan triple
systems have led to a good understanding of their structure. The alge-
braic structure of a JB*-triple is uniquely determined by the isometric
structure of its unit ball. It is also uniquely determined by the holo-
morphic structure of its unit ball. Hence, results on the geometry
of JB*-triples underlie much of this structure theory. Some of the
principal advances in this direction include the following.
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GEOMETRIC STRUCTURE

(1) Affine geometric structure of a JBW*-triple and its predual:
facial structure ([10]), and state space properties ([12]).

(2) Geometric tools: stability under contractive projections ([22],
[25]), and weak* continuity of the triple product ([3],[8],[16]).

(3) Foundations in holomorphy ([20], [21], [27], [30]).

ALGEBRAIC STRUCTURE

(4) Gelfand-Naimark Theorem ([13]).
(5) Classification Theory for JBW*-tήples: atomic ([6], [24]), type

I ([17]), and continuous ([18]).
This theory has had and continues to have significant connections to

other areas of analysis. (An introductory survey of several applications
of Jordan theory to analysis, operator theory, and the foundations of
quantum mechanics has been given by Upmeier [29].) A Riemann
Mapping Theorem for the bounded symmetric domains in complex
Banach spaces was proven by Kaup ([21]), who showed that there
is a one-to-one correspondence between the biholomorphic equiva-
lence classes of these domains and the algebraic isomorphism classes
of /2?*-triples. Upmeier has developed a definitive theory of mul-
tivariable Toeplitz operators over finite dimensional bounded sym-
metric domains using the correspondence between these domains and
/£*-triples (cf. [29, Lecture 8]).

Since the analog of the polar decomposition is known in the con-
text of JBW*-triples, and since the latter are intrinsically geometric
objects, it should not be surprising that this polar decomposition is a
consequence of the theory of facially symmetric spaces. Indeed, we
have the following two theorems, which are analogues of the main re-
sults of §2. In order to state these results we now recall the definitions
and basic properties of /2?*-triples (cf. [28]).

A /#*-triple is a complex Banach space U endowed with a con-
tinuous sesqui-linear map D: U x U —• 3S{U), such that for x e U,
D(x, x) is Hermitian positive, \\D{x,x)\\ = \\x\\2, and, setting {xyz} :=
D(x,y)z9 one has

{xyz} = {zyx}t

and
{xy{uvz}} + {u{yxv}z} = {{xyu}vz} + {uv{xyz}}.

For example, a C*-algebra is a /i?*-triple with

{xyz} := j(xy*z + zy*x)f
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and a JB*-algebra is a JB*-triple with

{xyz} := (x o y*) o z + (z o y*) o x - (z o x) o y*,

where o denotes the Jordan product in the JB*-algebra.
Denote by Q the quadratic operator on the /2?*-triple U, i.e. Q(x)y

= {xyx}, for x, y e U. Then set

so that Q{x, z)y = {xyz}, for x,y, z e ί7.
A tripotent in a /5*-triple is an element e with e = {eee}. Define

the Peirce projections Pk(e), k = 0,1,2 relative to a tripotent e by

e) - Q(e)2),

Note that X) Pk(e) = I and Z)(^, e) = P2(^) + 3Λ (e). K follows from
purely algebraic considerations that each Pj{e) is idempotent and that
Pk(e)Pj(e) = 0 if k Φ j . Let Uk(e) be the range of Pk{e). The P«rcβ
decomposition is

(7 = t/2(^) Θ Ui(e) Θ C/0(β)

and Uk(e) is the /:/2-eigenspace of D(e,e). We have the following
fundamental properties:

{Ui(e)Uj(e)Uk{e)} c Ui-j+kie);

{U2(e)U0(e)U} = {C/o(OC/2(^)t/} = 0.

The Peirce 2-space Uι(e) is a complex Jordan *-algebra, with prod-
uct x o y — {xey}, unit e, and involution z# = {eze}. If C/ is a
/2?*-triple, then C/2(̂ ) is a /2?*-algebra with these operations.

THEOREM 3.1. The predual £/* of a JBW*-triple U is a neutral
strongly facially symmetric space in which the set of generalized tripo-
tents coincides with the set oftripotents. Ifu is a generalized tripotent,
then the generalized Peirce projections associated with u agree with the
adjoints of the Peirce projections associated with u.

Proof. If Fx is a norm exposed face in (7*fl then by [12, Proposition
8], there is a tripotent u in U with Fx = Fu. By [12, Lemma 1.1],
S-ι(u) := Pi{u) - P\{u) + PQ(U) is an isometric symmetry. By the
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Jordan decomposition of hermitian normal functional on a JBW*-
algebra, P2(u)U* = spFu. By an algebraic analog of Lemma 2.7 one
can show that P0(u)U* = F°. Therefore £/* is WFS.

By an argument similar to that in Theorem 2.11 one can show that
the set of generalized tripotents coincides with the set of non-zero
tripotents.

By [12, Proposition 1], £/* is neutral.
By [15, Theorem 2.4], the generalized Peirce projections agree with

the adjoints of the Peirce projections. Now by [12, Lemma 1.6] and
the argument of Theorem 2.11 it follows that £/* is SFS. D

THEOREM 3.2 {Proposition 2 of [13]). For each functional f in the
predual of a JBW*-triple, there is a unique tripotent e such that f =
Pi(e)*f and f\u2(e) is a faithful normal positive functional on the
JBW*-algebra U2(e).

Proof. Since £/* is a neutral strongly facially symmetric space, given
/ (with 11/11 = 1), there is a generalized tripotent e satisfying the con-
ditions in Theorem 1.3. Then e is a tripotent and since f e Fe,
11/11 = \\Pi{eYf\\ so by [12, Proposition 1], / = P2(e)*f. Since
f\u2(e)(e) = 1? / is positive, and since / is normal, so is f\u2{e) Let
p be a projection in U2(e). Then p is a tripotent in U with p < e and
therefore f(p) > 0 by (d) of Theorem 1.3. The existence is proved.
Here we have used [15, Lemma 4.2].

To prove the uniqueness, it suffices, by Theorem 1.3 to show that
any tripotent u satisfying the above conditions also satisfies / e Fu

and (u, {/}°> = 0.
Since / is a positive functional on the /2?*-algebra U2{u), f e Fu.

Now continue as in the last paragraph of the proof of Theorem 2.12.
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