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CROSSED PRODUCTS AND GALOIS EXTENSIONS
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ROBERT J. BLATTNER AND SUSAN MONTGOMERY
To the memory of our friend Henry A. Dye

In this paper we explore further the subject of crossed products
A#;H of an arbitrary Hopf algebra H (weakly) acting on a non-
commutative algebra 4 over a field k. These general crossed products,
which play a fundamental role in the theory of extensions of Hopf
algebras, were introduced independently by Y. Doi and M. Takeuchi
and by the present authors and M. Cohen. Here we give several
characterizations of crossed products A#,H with invertible cocycle
o. These characterizations are then used to extend to such crossed
products known results for smash products concerning duality and
Maschke-type theorems. We also prove a Noether-Skolem theorem
using these methods.

Our first main result is that a crossed product B = A#; H with o in-
vertible is a cleft H-comodule algebra. Doi and Takeuchi had proved
earlier that cleft comodule algebras are crossed products with ¢ invert-
ible [DT], and thus this property characterizes such crossed products.
We note that a weaker version of the [DT] result was proved in [BCM],
with essentially the same proof.

Combining this characterization with a second result in [DT], it fol-
lows that B = A#,H with ¢ invertible if and only if 0 — 4 — B is an
H-Galois extension having the normal basis property.

In addition, although our crossed products were defined via a left
(weak) action of H on A, so that A#,H is a free left 4-module of
rank dim; H, we prove here that such crossed products are also free
right A-modules of rank dim; H provided H has bijective antipode.

We then give applications of these characterizations in the case
when dim; H < co. We first extend the “duality theorem” known for
smash products [BM,V] to the case of crossed products; that is, for
any crossed product with invertible g, (A#, H)#H* ~ AQEnd; H. We
next improve the Maschke-type results of [BCM] by eliminating the
hypothesis that H be cocommutative; in particular, we prove that if 4
is semisimple Artinian and H is semisimple, then A#,H is semisim-
ple Artinian. Moreover, if A4 is semiprimitive (resp. semiprime), H is
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semisimple, and the action of H is inner, then A#,H is also semiprim-
itive (resp. semiprime). Finally, we prove a Noether-Skolem theorem
for an action of a Hopf algebra on a central simple algebra B; as a
special case, if the invariants 4 = B¥ contain the center of B, A C B
is H*-Galois, and H is semisimple, then the action of H is inner
on B. This special case generalizes the Noether-Skolem theorem for
strongly graded rings due to J. Osterburg and D. Quinn [OQ]. An
earlier Noether-Skolem theorem for pointed cocommutative Hopf al-
gebras was proved by M. Sweedler [S1].

We assume the reader to be familiar with the basic notions of Hopf
algebra theory, including those of convolution, H-module algebra,
smash product, and right H-comodule (see [S2]). Throughout we use
Sweedler’s “sigma notation.” If an algebra A over a field k is a right
H-comodule via p: A — A® H, then A will be called an H-comodule
algebra if p is an algebra morphism. The comultiplication A of any
Hopf algebra H turns H into a right H-comodule algebra. Weak ac-
tions and coactions and inner actions and coactions are treated in
[BCM, §§1 and 2]. Finally, if B is an H-module algebra, then BY =
{beB:h-b=¢(1)b, all h € H} is the subalgebra of H-invariants;
if B is an H-comodule algebra, B°°? = {b € B: pb = b ® 1} is the
subalgebra of H-coinvariants.

1. A characterization of crossed products. The notion of crossed
product of a k-algebra A by a Hopf algebra H over k was introduced
in [BCM] by the present authors and M. Cohen and in [DT] by Doi and
Takeuchi, as follows: Let H act weakly on 4 [BCM, Definition 1.1]
and let ¢ : H x H — A be a k-bilinear map. Define a multiplication
on A® H by

(1.1) (a®h)(b®]) = Z a(h(l) . b)d(h(z), 1(1)) ® h(3)1(2)
(M)

and denote the resulting (possibly non-associative) algebra by
A#;H. If A#;H is associative with 1#1 as identity element, we call
A#;H a crossed product. A necessary and sufficient condition that
A#;H be a crossed product is that o be normal (g(h,1) = a(1,h) =
e(h)1), that o satisfy the twisted module condition

(1.2) Z (hay - (L - @)a (b, L)
(D)

> alhay. k)bl - a).
()
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and that it satisfy the cocycle condition

(1.3) " Thay oy, mayle by, layme)
(M) (m)
= Y a(hyy Ly o(hayla). m)
(M)
for all h,/,m € H, a € A [BCM, Corollary 4.6] and [DT, Lemma 10].
Let B = A#,H be a crossed product and define p: B — B ®; H by

(1.4) pla#h) =" (a#hg)) @ h) .
(h)

LEMMA 1.5. p turns B into a right H-comodule algebra and B®°H =
A#,1. Moreover, the map y: H — B defined by y(h) = 1#h is an H-
comodule map.

Proof. Left to reader. (See [BCM, p. 701 and Lemma 5.10].) O

Now B, A, H, and p as above give us an example of a notion of
right H-extension, due to Sweedler [S1], Chase and Sweedler [CS],
and Kreimer and Takeuchi [KT]:

DEFINITION 1.6. Let 4 and B be k-algebras and let H be a Hopf
algebra defined over k. Suppose that

(1) B is a right H-comodule algebra with structure map p: B —
B ®, H, and

(2) we are given an algebra injection 1: 4 — B such that

(3) 1(A4) = B,

We then say that 0 — 4 5 B is a right H-extension of A. For short,
we shall sometimes simply refer to the H-extension B/A, where 1 is
understood. If A4 is a subalgebra of B, we will refer to the H-extension
A C B. If, moreover, 0 — A — B’ is another right H-extension of A,
we say that the two extensions are equivalent if there exists a bijection
w: B — B’ such that the diagram

commutes, and y is a right H-comodule morphism as well as an al-
gebra morphism.
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If A, H, and o are as in the beginning of this section with A#, H = B
a crossed product, and if we define 1: 4 — B in the obvious way

(1.7) 1(a) = a#l,

then 0 — 4 5 B is a right H-extension of A.

According to Lemma 1.5, the map y: H — A#,H defined there is
an H-comodule map. Our first result gives a necessary and sufficient
condition that y be convolution invertible. It is a significant strength-
ening of [BCM, Lemma 6.2], the proof of which required H to be
cocommutative.

ProrOSITION 1.8. Let B = A#,H be a crossed product. Then y
is convolution invertible in Homy (H, B) if and only if ¢ is convolution
invertible in Hom (H ®; H, A).

Proof. Using 1 to identify 4 with A#,1, we have
(19) }’(h)y(l) = Z 0'(}1(1), 1(1))}’(h(2)l(2)), h,leH.
(h)(1)

If y is invertible with convolution inverse y~!, we have

(110) Z y(h(l) 1(1) l(h(z)l(z)), hle H,

from which it is obvious that o is invertible with inverse
o7 (D) =Y v(haylny)y ) (h) -
(M)
Conversely, suppose ¢ is invertible with inverse o1, and write
(111) h) Z g Sh(z),h(::,))#Sh(l)
(h)
It was shown in [BCM, Lemma 6.2] that u is a left inverse for p, that
(112) (}’ * /l)(h) = Z [h(l) : O'_I(Sh(4), h(5))] O'(h(z), Sh(3))#1 s
(h)
and hence that u is a right inverse for p if and only if
(1.13) 3 [h(l) -a“(Sh(4),h(5))] o(hy, Shs) = &(h)1
(h)
forall he H.
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Since o is invertible, the cocycle condition (1.3) gives
(L14)  hoolm)= Y a(hyy.ln)olhala. mm)
(h)()(m)
o~ (he3), lizymz)

for all h,/,m € H. Letting h € H act on the identity

Z O'_l(l(l), m(l))O'(l(z), m(z)) = s(l)e(m)l ’

(H)(m)
we have

(1.15) > Thay - 07 gy, ma)1lhe) - 62y, ma)]
(h)()(m)

= ¢e(h)e(l)e(m)1,
that is, A®/®@m — h-6~(l, m) is the convolution inverse of A®/®@m
h-o(l,m) in Hom;(H ® H ® H, A). Hence, from (1.14) we obtain

(116) h'O'_I(l,Wl)= Z a(h(l),l(,)m(l))
(h)(1)(m)
o~ (hyli), m2))o ™ (B3, Li3)).
We may now verify (1.13) using (1.16):
Y [hay - 07! (Shey. hs)lo(hey. Shiz)
(h)
= o(hqy, (Shes))he))o ™" (he)(Sh), b))
(h)
o~ (hs). Sh))o (hay, Shs))
=" (k). (Shie)h)) o~ (ha)(Shs)), hs))e(he3)e(ha)
(h)
= alhqy, (Shey)hs)a ™" (ha)(Shes). b))

= Z 6(h(3))0(h(1), I)G_l(l,h(4))8(h(2)) =¢(h)l. O

Now if 0 — 4 — B is a right H-extension, B becomes an A-
bimodule in the obvious way. We recall the following definitions:

DEFINITION 1.17. The right H-extension 0 - A — B

(1) is (right) cleft ([S1, p. 229], [D, p. 1162]) if there exists a
right H-comodule map y : H — B which is invertible in the
convolution algebra Homy (H, B).
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(ii) is (right) H-Galois ([CS, Definition 7.3], [KT, Definition 1.4])
if themap S : B 4B — B®; H given by B(b®4¢) = (b®1)p(c)
is bijective.

(ii1) has the (right) normal basis property [KT, Definition 2.6] if
there is a bijection from 4 ®, H to B which is a left 4-module
and right H-comodule morphism.

It is clear that the right H-extension 0 — A — A#;H has the nor-
mal basis property if A#,;H is a crossed product, and Proposition 1.8
implies that the extension is cleft if ¢ is invertible.

The following theorem, which combines results of Doi and
Takeuchi with Proposition 1.8, ties all of the foregoing notions to-
gether.

THEOREM 1.18. Let 0 — A - B be right H-extensions.
Then the following are equivalent:

(i) 0 - A — B is equivalent to 0 — A — A#,H for some weak
action of H on A and some invertible normal cocycle o satisfying
the twisted module condition;

(ii)) 0 = 4 — B is cleft;

(ii1) 0 — A — B is H-Galois and has the normal basis property.
Moreover, if the antipode of H is bijective, then any of the equivalent
conditions (1), (ii), or (ii1) implies that B ~ H ® A as right A-modules.

Proof. [DT, Theorem 9] proves that (ii) and (iii) are equivalent.
Suppose (ii) holds. Then there exists an invertible H-comodule
map y: H — B with convolution inverse y~!. Since y(1)y~!(1) =
(y » y~1)(1) = 1 and similarly y~!(1)y(1) = 1, we see that y(1) is
an invertible element in B with inverse y~!(1). According to [D,
Lemma 3.2], p(y~!(1)) = y~1(1) ® 1 so that y~!(1) € B®H. De-
fine (h) = y~'(1)y(h) for h € H. It is then easy to check that ¥
is an H-comodule map with (1) = 1 and with convolution inverse
5=1(h) = y~Y(h)y(1) for h € H. [DT, Theorem 11] then produces a
weak action of H on B®°H a normal cocyle ¢’ satisfying the twisted
module condition, and an algebra isomorphism ' of B®#,. H onto
B. These are given, respectively, by

(1.19) h-b=> 5(hu)bi ' (ha),
(h)

(1.20) o'(h 1) =" 5(ha) )7 (hoyl2)
(h)(1)
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and

(1.21) y'(b#qh) = b (h)

for b € B°H h | ¢ H. As in Proposition 1.8, it is clear that ¢’ is
invertible. From (1.21) it is equally clear that ' is an H-comodule
map, since j is. Therefore the H-extensions 0 — B°# — B and 0 —
BeoHl _, BeoHy H are equivalent. Using the algebra isomorphism :
to transport the weak action of H and the cocycle ¢’ over to 4, we
obtain a weak action of H on A4, an A-valued invertible cocycle g and
amap y: A#,H — B setting up an equivalence of 0 — 4 - B with
0 — A — A#,H. Thus (i) holds. Finally if (i) holds, 0 — 4 = B is
cleft because 0 — 4 — A#;H is by Proposition 1.8. Therefore (ii)
holds.

Finally we prove that B = H ® A as right A-modules, provided the
antipode S of H is bijective and 0 — 4 — B is cleft. Thus let .S denote
the composition inverse of S and let y: H — B be an invertible right
H-comodule map. Then [DT, Proposition 8] tells us that u =y~ 1o §
is a right H-comodule map from H to B and that, if we set i = yo0.S,
we have

(1.22) Zu )L Zﬂ @) u(h)) = e(h)1

forall h € H. Moreover it follows 1mmed1ately from [D, Lemma 3.2]
that i satisfies

(h)

Define a: H ®;, A — Bby a(h®a) = u(h)(ia) forh e H, a€ A. We
next note that

p Y bu))b Z £(b(3))bio) ® (Sb2))bay

= (Z f‘(buﬂb(m) ®1
(b)

for b € B, so that Y, (b)) € B©H. Thus we may define
P(b) = 171 (X4 A(bu))b)) for b € B, and P: B — A. Further-
more P(b(ia)) = P(b)a for b € B, a € A. Now define a: B — H ®; A
by a(b) = 35 b1)® P(b(g)). Both a and & are right 4-module maps.

Now
Z a(u(h) ) u(h) o) = Z a(hy)ulhay) = e(h)l
(u(h)) (h)
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so that P(u(h)) = e(h)1 for all h € H. It follows that

a(a(h®1)) = a(u(h)) =Y hoy® P(u(hy)) =h @1
(h)

and so @ o a = id. And a o a = id follows immediately from (1.22).
Thus a: H ®, A — B is a right A-module isomorphism. O

REMARK 1.24. The justification for calling extensions satisfying
Definition 1.17 (ii) Galois may be found in [CS, pp. 54-60] and
[CHR, Remarks 1.5]. However, why extensions satisfying Definition
1.17 (iii) should be said to have the normal basis property needs fur-
ther explanation: Suppose dim;H < co. Then by results of Larson
and Sweedler (see [S2, Theorem 5.1.3 and Corollary 5.1.6]) we have
that H contains a non-zero left integral x (i.e. Ax = &(h)x for all
h € H) and that the map

(1.25) fe(f—x), feH

maps H* bijectively onto H and so maps k-bases of H* to k-bases of
H. Now let 9: A®, H — B be a bijective left 4-module and right
H-comodule morphism. Then it is also a left H*-module morphism,
where as usual /- (@a®h) =a® f— hand f-b =3 (f b1 bo)-
Let u = ¢(1 ® x). Then it follows that if {fi,..., f,} is a k-basis for
H* {1®(f1i = x),...,1®(fn — x)} is an A-basis for AQ; H, and so
{fi-u,..., fn-u} is a basis for the free left 4-module B. Conversely,
suppose that for some 0 # u € B, {f| - u,..., f, - u} is a basis for
the free left 4-module B. We may then define ¢: 4 ®, H — B by
p(a®(f— x))=a(f -u) since (1.25) is bijective. It follows that ¢ is
a bijection and is a left 4-module map. Since it is a left H*-module
map, it must be a right H-comodule map. So for finite dimensional
H, (1.17 (ii1)) corresponds exactly to the idea of a normal basis. Note
however that if dimyH = oo, (1.25) cannot be a surjection for any
x€H. O

ExAMPLE 1.26. Let B be a field, k C B, and let G be a finite
subgroup of Gal(B/k). Let A = BY. If we set H = (kG)*, then
H* = kG. B is a left H*-module algebra. Since dimH < oo, the
left H*-action is associated to a right H-coaction and 4 = B Let
{Px: x € G} be the k-basis of H dual to the basis {x: x € G} of H*.
Then the coaction p of H on B is given by

(1.27) pb=> (x-b)®px, beB.

xe€G
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Since B is a Galois extension of A with a normal basis in the ordinary
sense, the left H-extension 4 C B is Galois with the normal basis
property in the sense of Definition 1.17 by [CHR, Theorem 1.3 and
Remark 1.5 (a)] and Remark 1.24 above. Thus by Theorem 1.18, the
extension 0 — 4 — B is equivalent to 0 — A — A#,; H for some weak
action and some cocycle o. Since B is commutative, (1.19) says that
the weak action is trivial. We now compute o. Choose 0 # u € B so
that {x-u: x € G} is an 4-basis for B. ClearlyO #c =) ; x-u € 4.
Dividing by ¢ we may assume that ) . x-u = 1. Themapy: H — B
of Definition 1.17 (i) is related to the normal basis isomorphism ¢ of
Remark 1.24 via y(h) = ¢(1 ® h) for h € H. Now p, is a left integral
in H [S2, p. 92]. Thus y(px) = ¢(1® (x~' — p.)) = x~! - u for all
x € G. Since y(1) = X, ?(Px) = 1, we see that § = y in (1.20).
Therefore the cocycle is determined by the equations

(1.28) (x7'-w)(y~'-u) = y(px)7(py)
= Z a(pxz“’pyw'l)}'(pzpw)

zZ,WeG
= Z O(Dxz-1, pyz—')y(pz)
zeG
= Z O'(sz—n,pyz—l)(z" -u), or better,
zeG
(1.29) (x-u)(y-u)=>_ 6(px-1z, Py-12)(Z - ).
zeG

Equations (1.29) are solvable. In fact, the structure constants af , € 4
of B/A with respect to the normal basis {x - u: x € G}, that is, the
solutions of (x - u)(y - u) = X, a% ,(z - u), satisfy the condition

ai, = a;.., ,-, because the x € G are automorphisms of B/A4. So we
can set o(px, py) = a5, poi This shows that every finite Galois field

extension B/A is a twisted product in the sense of [BCM, Example
4.10] of 4 with (k Gal(B/A))*. O

REMARK 1.30. Theorem 4.14 of [BCM] is a special case of The-
orem 1.18 ((ii) = (i)), or more, precisely, of [DT, Theorem 11]:
Let H 5 H — 0 be an exact sequence of Hopf algebras and let
y: H — H be a coalgebra splitting of 7 such that y(1) = 1. Then
[BCM, Theorem 4.14] says that H is algebra isomorphic to A#,H,
where 4 = LHKer n = Ker(id ® ) o A, for a suitable weak action of
H on A and a suitable cocycle a. We obtain this from Theorem 11
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of [DT] by noting that H is a right H-comodule algebra via the map
p = (id® ) oA and LHKer n = H®#_ Moreover, 7 is a H-comodule
map since poy =(id®7n)ocAoy=(Id@m)o(y®@7y)ocA=(y®id) oA,
and y~! = Soy since y is a coalgebra map. Thus Theorem 11 of [DT]
applies, giving the conclusion of Theorem 4.14 of [BCM]. We note
that the proof of the theorem in [BCM] is virtually identical to that
of [DT].

However, in the situation of an exact sequence H - H — 0 of Hopf
algebras, [DT, Theorem 11] is actually stronger than [BCM, Theorem
4.14]: the exact sequence may have no coalgebra splitting, yet the H-
extension 0 — LHKer 7 — H may be cleft. In fact, let G be any finite
group and let L be a subgroup of G. Set H = (kG)* and H = (kL)*.
The inclusion map L — G induces a surjection n: H — H. Define
the H-coaction on H by p = (id® ) o A as above. Using the notation
of Example 1.26, we write p, € H for x € G and p, € H for y € L.
Let S be a set of coset representatives for G/L so that G = SL. Define
y: H— Hby y(Dy) =Y cs Pxy for y € L. Then y is an H-comodule
map with convolution inverse y~! given by y~1(p,) = > .cs Pxyp-1, and
y(1) = 1. So this extension is always cleft. But if k = C and we take
G to be S5 and let L be {(1, 2, 3)), there is no coalgebra map from H
to H splitting 7 since there is no surjective algebra morphism from
H* = CG to H* = CL (see [M]). O

REMARK 1.31. We can also define /eft H-extensions and the proper-
ties of being left cleft, left H-Galois, and having the /eff normal basis
property. Thus, y in Definition 1.17 (i) would be a left H-comodule
map, B in Definition 1.17 (ii) would be defined by B(b ®4¢) =
b bi-1) ® bp)c, and the bijection in Definition 1.17 (iii) would be
a right A-module, left H-comodule map from H ®; A to B. We can
also define a crossed product H;#4 from a right weak action of H on
A by replacing (1.1) with

(h@a)(l®b)= Z h(l)l(l) ® O'(h(z), 1(2))(61 . l(g,))b .
(M)
Then Lemma 1.5, Proposition 1.8, and Theorem 1.18 all go through
in this setting.

2. Applications: finite dimensional Hopf algebras. When H is finite
dimensional, Proposition 1.8 and Theorem 1.18 can be used to obtain
a duality theorem, some Maschke-type results, and a Noether-Skolem
theorem.

We assume throughout §2 that dim; H < oo.
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A. Duality. A crossed product A#,H is an H*-module algebra via
the formula

(2.1) S (a#h) = a#(f— h) = Z (f, h2y)a#hy
(h)

forae A, h € H, f € H*. Thus we may form the smash product
(A#,H)#H*. When o is trivial, that is, when A#,H = A#H, an
ordinary smash product, the present authors proved in [BM] that
(A#,H)#H* is algebra isomorphic to 4 ®; (H#H*) under certain
hypotheses on the action of H on A. This is the duality theorem.
These hypotheses automatically hold if dim; H < oo, in which case we
also have H#H* ~ End; H. Independently, in the finite dimensional
case with trivial o, proofs were given by Van den Bergh [V] and by
Koppinen (unpublished). In [BCM, Proposition 5.6], it was observed
that the duality theorem held for arbitrary ¢ when H = kG, G a finite
group. Here we prove the duality theorem for invertible ¢ and for
arbitrary finite dimensional H.

THEOREM 2.2. Let dimy H = n < oo and let A#,H be a crossed
product with invertible cocycle a. Then

(A# H)#H* ~ A® End, H ~ M, (A).

Proof. By Theorem 1.18, 0 — A4 5> A#,H = B is H-Galois and has
the normal basis property. By [KT, Theorem 1.7], B#H* is algebra
isomorphic to End’,(B), the right A-linear morphisms from B to B.
The antipode S of H is bijective by [S2, p. 101]. So Theorem 1.18
says that B ~ H ® A, as right A-modules, and we have End’,(B) ~
M,(A). g

B. Maschke-type theorems. In [LS, Proposition 3], Maschke’s clas-
sical theorem on semisimplicity of group algebras was extended to
Hopf algebras: a finite dimensional Hopf algebra H is semisimple if
and only if ¢(x) # 0 for x a nonzero left integral in H. Their method
was to prove that every left H-module is completely reducible via an
averaging argument which extends the classical Maschke proof.

In [CF, Theorem 4] this argument was extended to smash prod-
ucts A#H by showing that the [LS] averaging map was also a left
A-module map. A partial extension to crossed products A#,H was
proved in [BCM, Corollary 6.6] under the additional hypotheses that
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o is invertible and H is cocommutative. In this subsection we im-
prove results in (6.3-6.10) of [BCM] and, in particular, remove the
cocommutativity hypothesis in the [BCM] Maschke theorem.

First, our improvement of [BCM, Lemma 6.3]:

LEMMA 2.3. Let A#,H be a crossed product with invertible a and
finite dimensional H, and let x be a left integral in H. Let V, W be
left A#, H-modules and let A € Homf‘m‘a1 (V,W). Define A: V — W by

(2.4) Aw) ="y N xqay) - A (x)v)
(x)

forallv e V. Then i € Hom'y, ,(V,W).

Proof. Note that y~! exists by Proposition 1.8 so that (2.4) makes
sense. We identify 4 with A#,1. Then 4 is a left 4-module map
by the same argument as in [BCM, Lemma 6.3], which only requires
the invertibility of y. Similar to the argument on [BCM, p. 707], we
have

(2.5) h®Ax = Z h(l) R X(l)h(z) ® X(z)h(:;), heH.
(h)(x)
Now let h € H, v € V. Then

A(y(hyv) = Z Y xy) - Ay (x) 7 (h))

= Z Y~ ) - Ao (X2, Bty 7 (xayh2)v)
(x)(h)
= > v xay)oxe), k) - A (xEke)v)
(x)(h)
= > y(ha) " (b)) - A (x2)h)v)
(x)(h)

=Y y(h)y~ (xwy) A (x)v) = 7(R)A(v)
(x)

where the second equality follows from (1.9), the third from the fact

that  is an 4-module map, the fourth from (1.10), and the fifth from
(2.5). Since a#h = ay(h), A is an A#, H-module map. a

We next remove the cocommutativity hypothesis from [BCM, The-
orem 6.4 and Corollary 6.5] obtaining our version of Maschke’s the-
orem.
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THEOREM 2.6. Let H be a finite dimensional semisimple Hopf
algebra, and let A#;H be a crossed product with o invertible.

(1) Let V be a left A#,H-module. If W C V is a left A#,H-
submodule of V' which has an A-complement in V, then W has an
A#sH-complement in V. Consequently, if V is completely reducible
as a left A-module, it is completely reducible as a left A#,H-module.

(2) If A is semisimple Artinian, so is A#;H.

Proof. The proofs in [BCM] work here if we use Lemma 2.3 instead
of [BCM, Lemma 6.3]. a

The last result of this subsection improves [BCM, Corolary 6.6
and Theorem 6.10].

THEOREM 2.7. Let H be a finite dimensional semisimple Hopf
algebra, and let A#;H be a crossed product with invertible o such
that the weak action of H on A is inner. If A is semiprimitive (resp.
semiprime), then so is A#;H.

Proof. Since the (weak) action of H on A is inner, [BCM, Theo-
rem 5.3] implies that A#; H is algebra isomorphic to a twisted product
A.[H], where 7 is invertible. That is, the action of H can be trivial-
ized by changing cocycles; this means that we may assume that the
elements of 4 commute with the elements of H. Now a standard
induced module argument shows the semiprimitive part of the theo-
rem: follow the proof of [BCM, Corollary 6.6, case (2)], substituting
Theorem 2.6 for [BCM, Corollary 6.5]. Then the semiprime part of
the theorem follows exactly as in the proof of [BCM, Theorem 6.10],
using the Lorenz-Passman “primitivity machine” and substituting the
above semiprimitive result for [BCM, Corollary 6.6]. a

REMARK 2.8. The question as to whether Theorem 2.7 is true
without the inner hypothesis remains open. The method of induced
modules does not extend, as noted in [BCM, Example 6.7]; it is false
in general that if V is a completely reducible A-module, then ¥V =
(A#,H) ® 4 V is completely reducible as an A-module, even if o is
trivial. We note however that if H = (kG)*, G a finite group, then 4
semiprime implies A#,H semiprime even if the weak action is not
inner. For if 4#; H contains a non-zero nilpotent ideal N, then x- N
is also a nilpotent ideal for all x € G, where - is the usual action of
H* =kGon A#;H,and so M =) _;x - N is nilpotent. Since M is
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G-stable, M#kG is a nilpotent ideal of (A#,H)#H* ~ M,(A4). But 4
semiprime implies M,(A4) semiprime, a contradiction.

C. A Noether-Skolem theorem. 1In [S1, Theorem 9.5], Sweedler
proved a Noether-Skolem theorem for actions of pointed Hopf alge-
bras H, i.e., H having only one-dimensional minimal subcoalgebras.
When k is algebraically closed, this includes all cocommutative H
and hence the known cases of actions by groups of automorphisms
(the classical Noether-Skolem theorem) and by Lie algebras of deriva-
tions (a theorem of Jacobson).

For non-cocommutative H, the first progress was made recently by
Osterburg and Quinn [OQ] who considered the case of an action by
H = (kG)*, G a finite group, that is, the case of a G-graded algebra
B over k. They also assumed that B is strongly graded by G. By a
result of Ulbrich [U1, Lemma 2.1], this assumption is equivalent to
A C B being a right H*-Galois extension, where 4 = B = B, the
identity component of B under the grading.

In this subsection, we will extend the [OQ)] result to right H-Galois
extensions 4 C B for arbitrary finite dimensional Hopf algebras H.

We first need a lemma which will guarantee that certain Galois
extensions have the normal basis property. It extends [KC, Proposi-
tion 2].

LEMMA 29. Let A C B be a right H-Galois extension,
dimy, H < co. Suppose that A is a field contained in the center of
B. Then A C B has the (right) normal basis property.

Proof. We must show that B is left 4-module, right H-comodule
isomorphic to 4 ®;, H. Since dim; H < oo, right H-comodule iso-
morphism is the same as left A*-module isomorphism. Since 4 =
BoH — BH" the left actions of H* and 4 commute. Thus 4 C B has
the normal basis property if and only if B ~ A ® H as left A ® H*-
modules.

Since A C B is (right) H-Galois, B®,4 B ~ BQ®, H as left A® H*-
modules. Since B®; H ~ B®,4 (A ®; H), we have

(2.10) BR,B~BQ,4(AQ, H)
as left A® H*-modules. Now B is a finitely-generated projective right

A-module because 4 C B is H-Galois [KT, Theorem 1.7]. Since 4 is
a field central in B, it follows that B ~ A" for some » both as left
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and right A-modules. Substituting in the left factor on both sides of
(2.10), we obtain

(2.11) B" ~ (A& H)"

as left A® H*-modules. Again using [B: A] = n, it follows that B sat-
isfies both the ascending and descending chain conditions on 4 ® H*-
submodules. Now apply the Krull-Schmidt theorem: by uniqueness
of decomposition into direct sums of indecomposable submodules,
we must have B ~ 4 ®;, H as left A ® H*-modules. a

The left version of Lemma 2.9 also holds (see Remark 1.31).

We next require some results of K.-H. Ulbrich [U2]. Let 4 C B
be a right H-Galois extension and let £ denote the centralizer of 4
in B. There is a right H-action on E defined as follows: Let # € H
and write B~1(1® h) =Y, b; ®4¢;, B as in Definition 1.17 (ii). Let
ec E. We set

(2.12) e— h=Y_ bec;,
i

a formula which makes sense because e centralizes A. Ulbrich shows
that — turns E into a right H-module algebra and hence, since
dim; H < oo, into a left H*-comodule algebra. The right action — is
completely characterized by

(2.13) eb =Y boe— by)) forallecE, beB,
(b)

where p: b — 3, bo) ® by € B® H is the original H-coaction
on B. The subalgebra EF = E®H" is simply Z, the center of B
[U2, Lemma 2.1]. We call this action the Miyashita-Ulbrich action,
following a suggestion of Doi and Takeuchi.

The next result is part of [U2, Satz 2.7], restated in our notation:

THEOREM 2.14 (Ulbrich). Let A C B be a right H-Galois exten-
sion, and assume that A is a left A-module direct summand of B. If
B is separable over Z and Z C A, then Z C E is a left H*-Galois
extension (see Remark 1.31).

We can now prove our Noether-Skolem result.
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THEOREM 2.15. Let B be a central simple algebra with center
Z D k- 1. Let H be a finite dimensional Hopf algebra acting (on the
left) on B with A = BH D Z. Assume that

(1) A C B is a right H*-Galois extension and
(2) A is a left A-module direct summand of B.

Then the action of H on B is inner.

Proof. We must find a convolution invertible #: H — B such that

(2.16) h-b=Y u(hy)bu'(hy) forallheH beB.
()

Note that (1) and (2) are just the hypotheses of Ulbrich’s theorem
with H and H* interchanged. Thus Z C E, the centralizer of 4 in
B, is left H-Galois, with the right H*-action as in (2.12).

Since Z is a field central in E, the left version of Lemma 2.9 implies
that Z C FE satisfies the left normal basis property of Remark 1.31.
Then by the left version of Theorem 1.18 (or [DT, Theorem 9]),
Z C E is left cleft: there exists a left H-comodule map u: H — E
which is convolution invertible in Hom, (H, E). Hence u is a right
H*-module map. This is the map u that satisfies (2.16). In fact, let
h € H and b € B. We have

u(h)b = boy(u(h) — b)) = boyuth — b))
() (b)

= Z boyu (Z (by. h<1)>h<2))
(h)

= Z (ba1y, hay)boyu(hey) = (hay - bulhg) ,
(b)(h) (h)

where the first equality is (2.13), the second holds since « is a right
H*-module map, the third holds by the definition of the right action
— of H* on H, and the fifth expresses the relation between the right
H*-coaction and the left H-action on B. Since u is invertible, we get
(2.16). O

Note that by Theorem 1.18, E = Hy #Z, a right crossed product
over Z. Thus we may view the map u: H — E in the above proof as
u(h) =9~ '(h®1), where ¢: E — H,#Z is the isomorphism.

REMARK 2.17. Hypothesis (2) of Theorem 2.15 will always be
satisfied if H is semisimple. For then H contains a left integral x
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with ¢(x) = 1. The mapping ¢: B — A given by ¢(b) = x - b is then
an A-module projection of B onto A so that A4 is an A-module direct
summand of B.

Finally we obtain the Osterburg-Quinn result as a consequence of
Theorem 2.15.

COROLLARY 2.18. Let B be a central simple algebra with center
Z. Assume that B is strongly graded by the finite group G (that is,
B =3 .c;®Bx and BxB, = By, for all x,y € G) and that Z C B,
the identity component of B. Then the grading is inner, considering
the grading as an action of (ZG)* on Bvia f-b = Y . (f, X)bx,
where b =3, .- bx and by € By.

Proof. By [U1, Lemma 2.1], B, C B is right ZG-Galois since B is
strongly graded, giving hypothesis (1) of Theorem 2.15. Hypothesis
(2) holds by Remark 2.17, since (ZG)* is semisimple. a
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