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ON INJECTIVE FACTORS OF TYPE IΠλ, λ φ 1
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Dedicated to the memory of Professor Henry Abel Dye

Actions a of a discrete amenable group G on an injective factor Jίί
of type IIIA, λ φ 1, are classified up to cocycle conjugacy in terms of
the module mod(α), the characteristic invariant χa and the modular
invariant va of a. These invariants live on the flow of weights. It is
also shown that each element of Hx(9^(Jί)\ the first cohomology
group of the flow of weights, has a C°°-representative cocycle.

0. Introduction. The purpose of this paper is to provide a classifi-
cation, up to cocycle conjugacy, of the possible actions of a discrete
amenable group G on an injective factor of type ΠI^, λ Φ 1; it thus
represents a continuation of the line of research initiated in [1, 2] and
continued in [7, 11, 8, 15]. We do not touch the remaining classifica-
tion problem (that of actions on the injective factor of type ΠIi) here.
This problem requires a deeper understanding of actions of R on the
injective factors of type IIi and type Hoc.

The principal tools involved in the classification are drawn from the
crossed product structure theorem for factors of type III of [16], from
ideas involved in the flow of weights [4], from the authors' previous
work [15] on classification of actions of discrete amenable groupoids
on semifinite injective von Neumann algebras, and from techniques
of reduction from continuous to discrete groupoids related to [5]. We
will draw heavily on results from these sources.

To help orient the reader, we first consider an action a of a discrete
amenable group G on an injective factor Jΐ of type III^, 0 < λ < 1.
In this case, one may use the discrete decomposition Jt — JV xi Z of
ι/# (see e.g. [3]) to reduce the problem to one of classification of an
action of G x Z on the 11^ injective factor JV. Unfortunately, this
method does not generalize to the type UIQ case, so we will briefly
describe an approach which does generalize, based on the continuous
decomposition of [16]. We may reduce to the case where α admits
an invariant dominant weight φ with σ$ = id, where T = -2π/\ogλ.
Observe that in this situation, {ag: g e G} leaves the centralizer jfy of
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φ invariant, and hence gives rise to an action γa of G on the centre Wφ
of Jfφ by restriction. This action commutes with the restriction of the
dual flow {σf: t G R} on Jtφ to g^; since this latter flow is periodic of
period - logΛ,, we obtain a homomorphism γ® of G into R/(- logλ)Z.
Of course, the restriction of the dual flow to Wφ is nothing but the
(smooth) flow of weights, [4], and the action γ is precisely modoα,
where mod is as defined in [4, p. 459]. Recall that the flow of weights
completely determines Jί. We will also need to look at the relation
of {ag: g G G} to the group of automorphisms of Jί of the form
Aduoσf, ί e R , w a unitary in Jΐ. This group, identified in [3] as the
group Cn\{Ji) of centrally trivial automorphisms, has the advantage
that if N(a) = a~ι(Cnt(jf)), then each automorphism an, n G N(a),
becomes inner on restriction to Jtψ: indeed, if we choose u{ή) G ̂ (^f),
tn e R with an = Adu(n) o σfn for n G N(a), u(n) G J£φ. Also it is
routine to check that there are functions μ: NxN -+Ί, λ: NxG-+Ύ
such that for m,n e N, g e G,

u(m)u(n) = μ(m, n)u(mn)

and
ag(u(g-ιng)) = λ(n, g)u(n).

As in [7, 11, 15], the pair (μ, λ) gives rise to an element χa = [λ, μ] in
the group Λ(G, N(a), T). Finally, although n -• tn e R is not necessar-
ily a homomorphism, it is modulo ΓZ, so we can obtain a homomor-
phism ι/a of N into R/ΓZ. We may thus construct from a an element
(7%,Xa,Va) e Hom(G,R/Zlogλ) x A(G,N(a),Ύ) x Hom(iV,R/ΓZ).

Note that it is not completely straight-forward to check that this
element is a cocycle conjugacy invariant for α, since the whole con-
struction has been predicated on the choice of an invariant, dominant,
periodic weight φ. To circumvent this problem we need to use more
of the machinery from [4]; at the same time this will give an invariant
adequate to classify actions on injective factors of type IΠo as well.
So let Jί be an injective factor of type IΠ^, λφ\, and let Cnt(^f) de-
note the group of centrally trivial automorphisms of J(. One knows
from [3, 4], that if φ is any dominant weight on <•# every element of
Cnt(^f) is of the form Ad u o σf where u e Jί is unitary, c is a cocycle
on the flow of weights ^{Jί) of Jt9 and σ is the extended modular
automorphism group of Jί. Thus for each n e N(ά) = a ι

we may choose u(n) e %f{jί) and c{ή) G Zx{9r(ty€)) such that

an = Ad u{n) o σf{n), n G N{a).
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The pair (u(n),c(n)) gives rise to two related invariants; one is a
"characteristic invariant" χa in the sense of [7], which comes from
comparing the expressions for amn and am o an, and for ag-ιng and
a~ι o an o ag. Note that this time there is much greater ambiguity
in the expression for an, n € N(a), since of is inner precisely when
the cocycle c is a coboundary i.e. c e Bι(&\Jf)). The corresponding
characteristic invariant thus falls in A(G, N{a)9ί^{9'{Jt))). The other
invariant, here called the "modular invariant" is the homomorphism
va\ N —• Hι{SΓ{Jί)) given by va(ή) = [cn]. Finally, we have the ho-
momorphism γa: G —• A\xt{^(Jt))9 the automorphisms commuting
with the flow of weights, given by γa = mod o a. This time, it is clear
from the functorial nature of the flow of weights that the orbit of

(ϊa>Xa,Va) in

Hom(G,Aat(^(Jt))) x A(G,N (a), &(&*(*))) x Hom(N,Hι(&~(jr)))

under Axxt(Jf) is a cocycle conjugacy invariant for a.
Our main theorem is a converse to this: if a and β are actions of a

discrete amenable group G on an injective factor Jί of type ΠI^, λ Φ 1,
then α and β are cocycle conjugate if and only if, up to an automor-
phism of 9Γ{^), N(α) = N(β), say N, and (γ^Xα^α) = (ϊβ^Xβ^β)-
We also give, in Theorem 5.14, precise conditions under which a sys-
tem (y, χ, v) e Aut(&'(jr))xA(G, N, &(f(jr)))xHom(N, Hι(^(^)))
is the system of invariants for an action α of G on Jf—γ can be arbi-
trary but x is restricted and the modular invariant v must be linked
to x in a suitable manner.

The method of proof is to show that up to cocycle conjugacy, α and
β admit invariant dominant weights, φ and ψ say, and that in the
associated decompositions Jt = Jtψ xi R = ^ xi R, α and /? fix the one
parameter unitary groups corresponding to R-actions on jfψ and J?Ψ.
We may thus consider actions α! and j J ' o f G x R o n J ^ and J?ψ, and
show that their characteristic invariants are determined completely by
(yα>Xα>Vα)- Note that Jtφ and Jtψ are of the form J/<8>^O,I> where
^o,i is the injective factor of type 11^ and sf is abelian; an extension
of the results of [15] now guarantees cocycle conjugacy of the actions
α! and /?', and a little further work secures cocycle conjugacy of α
and/?.

The plan of the paper is as follows. In § 1 we collect several pre-
liminary results; §1.1 discusses partial crossed products in relation
to cocycle conjugacy; §1.2 provides a "point-realization" of actions
of separable locally compact groups on algebras of the form
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(where si is an abelian von Neumann algebra and & a factor), via ac-
tions of a suitable groupoid on &\ §1.3 proves an isomorphism of the
relative cohomology group A(G, N, %{$#)) with the relative cohomol-
ogy groups Λ(^,^*,T) in the situation when G is a separable locally
compact group, N is normal, and &, JV are discrete groupoids arising
as reductions to a complete lacunary section of the groupoids obtained
from point realizations of the actions of G and N on $f.

In §2, we determine which characteristic invariants

extend to elements of Λ(C? x R, N, %{&)) and parametrize the exten-
sions for discrete G—this is vital for us to be able to describe which
extended characteristic invariants arise from actions. This is done by
exhibiting three exact sequences involving A(G x R, N, W{sf)).

Section 3 proves that any cohomology class of Hι(ΈL,&(s/)) has a
C°°-representative.

In §4, we give a classification of actions α o f G x R o n . / = j / φ ̂ o, l
under the assumption that JΓ carries a trace Tr such that T r o α ^ = Tr,
g e G, and Tr o as = e~s Tr, s e R, and that R acts ergodically on
s/ Φ C. The proof depends heavily on the reduction techniques of
§§1.2 and 1.3, and the authors' previous results [15].

Finally, we prove in §5 our main theorem, Theorem 5.9 by making
use of all the preliminary material and our result of §4.

1. Preliminaries, Here we collect several preliminary results which
will be needed in the sequel, and which may have independent in-
terest. Some of them are almost folklore, but we include proofs for
completeness sake. All von Neumann algebras occurring herein are
assumed to be separable in the sense of having separable predual.

1.1. Partial crossed products. Let Jt be a von Neumann algebra
acting on a Hubert space ^ , and let G = N xγ H be a semi-direct
product locally compact group with N normal in G and H acting on
N via γ: H -> Aut(N). Thus

G={(n,h):neN and heH},
( ' } (nh)(mk) = (nγh(m),hk)\

we identify N and H with the subgroups N x {e} and {e} x H of G
in the usual way.

Note that if a: G —• AvΛ(Jt) is a (strong* continuous) action of G
on Jt9 there is a natural action α of H on ^# χjα N. In fact, if πa(x),
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x € Jt, and λa(n), n e N, are the usual generators of Jt x α N on
L2(N;J^) given by:

(1.2) v ^

for ξ e L2(N,MT)y we have for each h e H,

(1.3) αA0£(x.N = rfWxN.

n s N.

PROPOSITION 1.1. Suppose that a and β are actions ofG =
on Jt, and ά, β are respectively the actions ofH on^x\aN
defined above. Then if a and β are cocycle conjugate as actions ofG on
Jt, the actions a and β ofH onJfy\aN andJT *β N are also cocycle
conjugate.

Proof. By our hypothesis, there is an automorphism K E AVA(J?)

and an element u e Zι

β(G, f/(Jt)) such that

κoagoκ~ι = Adu(g)o βg, g eG.

Since the case that u{g) = 1, g € G, is trivial, we may assume K is
trivial.

Define a unitary U on L2{N\β?) by

(1.4) (Uξ)(n) = u(n-ι)*ξ(n), ξeL2(N;^)t n e N.

Routine calculations show that θ = Ad U defines an isomorphism of
Jί x α N onto Jt Xβ N with

θ(πa(x)) = πβ(x), xeJ?\

θ{λa{n)) = πβ{u{n))λβ{n), neN.

With v{h) = πβ{u{h)), h e H,we have v e Zι

β{H,W{J? κβ N)). It

then follows that θ o άh o θ~ι = Ad(υ(h)) oβh,heN. n

1.2. Actions on £/&£*. In this section, $f denotes an abelian von
Neumann algebra, & a factor and G a separable locally compact group.
We are interested in describing the actions a of G on J / ® ^ by means
of the actions of an appropriate measured groupoid 9 on ̂ . The case
where G is discrete is discussed in [15]; the non-discrete case is also
more or less known, but to establish notations and conventions, we
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include the following:

PROPOSITION 1.2. Let G and stf®^ be as above, and let a: G —>
Aut(j/®«^) be an action. Then there exists a separable compact G-
space X carrying a quasi-invariant measure m, a Borel homomor-
phism a: & = G K X —• Aut(^), and an isomorphism κ\ srf®3P —>

® ) such that for any T e sf®& and g eG,

(1.5) κ{ag{T)) = Γ a{gίg-,x){κ{T){g-χx))dm{x).
J x

Proof. Let A c stf®3? be a σ-weakly dense unital separable C*-
subalgebra such that (i) ag(A) = A, g e G\ (ii) the action a of G on
A is norm continuous; (iii) A Π {$/ ® C) is σ-weakly dense in s/f&C
We let X be the spectrum of 4̂ n {sf ® C), and let G act on X via the
inverse transpose of the restriction of a to A n (J/ ® C) so that X is a
separable compact (j-space, and carries a quasi invariant measure m

Let iA be the self-representation of A, and consider the disintegra-
tion:

r®
*A= πxdm(x)

Jx
of iA with respect to the diagonal algebra sf <g>C, [17, Theorem 4.8.25].
From the construction of the disintegration, it follows directly that for
each (g,x) G G x X there is an isomorphism β(gtXy πx(A) —> π
with

However, for almost every x e X, πx(yl)// is isomorphic to ^ , and
for almost every (g, x) G Gx X, /?(#,.*) extends to an automorphism of
ĉ 3. We thus obtain a Borel map /?: G K X —• Aut( ̂ ) which is a weak
(i.e. almost everywhere) homomorphism in the sense of [12]. Since
GK X is locally compact, we may apply [12, Theorem 3.2] to conclude
that there is a strict Borel homomorphism α: G t< X —• Aut(^) which
agrees with jff almost everywhere.

If now K is the evident identification oϊsf®&> with f® 3? dm(x) (so
that

r®
κ{a)= / θx(πx(a))dm(x), aeA,

Jx
where 0*: πx(A)" —• ^ is an almost everywhere defined Borel field of
isomorphisms), then K and a: G\κX —• Aut(^) satisfy the conclusion
of the proposition. D
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We note in passing that point-realizations as given in the proposi-
tion are far from unique; any two point-realizations will agree almost
everywhere, up to cohomology, but need not agree on contraction to
any saturated conull set of units.

1.3. Reduction ofA(GfN}^(j^)). In this section, G is assumed to
be a separable locally compact group with a normal subgroup N. Let
a be an action of G on an abelian von Neumann algebra s/.

We define groups Za(G, N, W{&)) and Ba(G, N, %(s/)) as follows:
First, Za(G, N, W{s/)) consists of pairs (λ, μ) such that λ: NxG->

%($/) and μ: N x N -+ 1/(sf) are Borel maps satisfying the following
conditions:

(i) μeZl(N,&(sf)), i.e.
(1.6) μ(m, n)μ(τnn, /) = am(μ(n, l))μ{m, nl), m,n,l e N;
(1.7) (ii) ag(λ(g~ιng,h))λ(n,g) = λ(n,gh), neN,gfheG;
(1.8) (iii) λ(n,m) — μ(m,m~ιnm)μ(n,m)*, n,meN;
(1.9) (iv) λ(m,g)am(λ(n,g))λ(mn,g)*

= ag(μ(g~ιmg, g~ιng)μ(m, n)*, m,neN, g eG;
(v) μ(m, ή) = 1 and λ(m, g) = 1 if any of m, n e N or

g € G is the identity.

Secondly, Ba(G, N, %{&)) consists of all pairs of the form (c^c, d\c)
where c: N —• f/(s/) is a Borel map and

(d\c)(m, n) = c(m)am(c(n))c(mn)*, m,neN;

(d2c)(n, g) = ag(c(g~ιng))c(n)\ n e N, geG

Finally Aa(G, N, W(sf)) denotes the quotient group:

(1.11) Λ α (G,^,^( j/)) = Zα(σ,iV,^(j/))/5α(G,iV,g/(j/)).

Of course, a similar definition holds for any abelian Polish G-module
in place of 2f(sf). For details, we refer the reader to [7], [11] and [8]
where these groups are defined for finite or discrete G and where an
interpretation of Aa(G,N, %(£?)) as well as its elementary properties
are discussed.

We now assume that N is discrete and acts trivially on J / , that the
centralizer CQ(N) of N in G acts ergodically on sf9 and that G/CQ(N)

is discrete, and hence countable. Let {Tg: g e G} on {X,mf} be
a point-realization of {J/,<?,a} as given by Proposition 1.2. By [5,
Theorem 2.8], there is a complete lacunary section B for the action
{Tg: ge CG(N)}. If 3?' = G κ Γ X and JIT' = N κ Γ X are viewed as
measured groupoids with Haar measure and m', then by [5, Proposi-
tion 3.6] or [12] there is a measure m on B such that {&\B = &
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is a reduction of {&', [m']}, and similarly for {SV'\B = -s^, [m]}. In-
deed, the relevant homomorphism p: &1 —> 9 may be described as
follows: for each x G X, choose h(x) G CQ{N) in such a way that

T~{

ι

χ)x = π(x) e B and x e X -> h{x) e CG(N), x e X -> π(x) e B

are both measurable; we then define p by

(1.12) p(g,x) = (h(Tgxyιgh(x),π(x)).

It then follows that p is the desired homomorphism of & onto '§.
Suppose now that (λ,_μ) G Z{&,jr,Ί) as defined in [8, p. 229].

We define an element (λ,μ) of Za(G,N,^(s/)) as follows: for each
(m, n) G NxN, μ(m, ή) is the element of sf — L°°(X, m1) represented
by the function: x e X -» μ(p(m,x), p(nfx)), and for each (n, g) G
N x G,λ(n,g) is the element of si represented by the function: x e
X^λ(p(n,Tgx),p(g,x)).

THEOREM 1.3. With notation as above, the map

determines a well-defined isomorphism

p:

Proof. The well-definedness of p as well as its multiplicativity is
obvious.

We first consider surjectivity of p. To this end, we prove first that
if (λ,μ) e Za(G,N9%ϊs/))9 then we may choose μ e Z2(NfΎ) so
that (λ, μ ® 1) is cohomologous to (λ,μ), where μ ® 1 means the con-
stant function: x e X -> μ(m} ή) e T. Let μ(m, n, x) and λ(m, g, x)
be functions on X which represent μ(m, n) and λ(m, g) respectively.
Writing gx for Tgx, and using (1.9), we have

μ{g~ιmg, g~xng, g~ιx)μ(m, n, x)* = λ(m, g, x)λ{n, g, x)λ(mn, g, x)*

for each m,n e N, g G G and for almost every x e X. By the lifting
theorem of Ionescu-Tulcea [6], we may assume μx(m,n) = μ(m,n,x),
x G X, gives an element μx G Z2(N,Ί) for each x G X. The above
identity yields that for each g G CQ(N) and m,n G N,

μg-ιx(m, n)μx(m, n)* = λ{m, g, x)λ(n, g, x)λ(mn, g, x)*

for almost every x G X. By Fubini's theorem, this same identity holds
for each x e XQ and almost every g G CQ(N)9 where XQ is a conull
subset of X. Thus for each x G XQ and # G G(x) c CQ{N), a conull
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subset of CG(N), we have

μg-ixμ* = dxc

where c(m) = λ(m,g,x). Hence the map x e X —> [μx] e H2(N,Ύ)
is almost everywhere constant on CQ(N) orbits. Since //2(N,T) is a
separable compact group (N being discrete and countable), the ergod-
icity of CG{N) on {X, m1} implies that [μx] is constant on X. Thus,
there exists μ € Z2(N, T) such that [μ] = [μx] for almost every x eX.

So assume (λ, μ <g> 1) e Zα(G, N, W(s/)). Let ̂  = sf κa,μ N be the
twisted crossed product of si by N, α, and the 2-cocycle μ (see [14]).
Since N acts trivially on s/9 & is generated on L2{N)L

2{Xym
1)) =

L2(Nt^) by the operators a ® 1, α e J / , and the operators 1 ® M^CΛ),

n e N, where

(1.13) u^{m)ξ{n) = μ{n~\ m)ξ{m-χn), ξ e 12(N).

As in [15, p. 1105], G acts on &> via β, where

(1.14) βg{a®\) =ag(a)®\, aes/,

βg{\ Θ M^U-^g)) = λ(n, g) (8) «^(/ι)f geG, neN.

With ^ = {u^(n): n e Λ }̂;/ on 12{N), we have ^ = st®β.
Let (g, x) G G K X -^ 7{g,X) € Aut(^f) be a point realization of

{< ,̂ G, β} as provided by Proposition 1.2. A straightforward calcula-
tion shows that βn = Adίw^fl)), n e N9 so that after deleting a null
set, we may assume y(Λ>JC) = Ad(w^(w)) on iV x I .

Define

(1.15) λ((/if ^ ) , ( g , x ) ) = y{g,x){u»{g-χng))u»{ny

for ((Λ, gx) f (g, x)) € ( ^ ' x S?') n_^ 2 ) . Note that the function: x e
X —• A((/ι,gx),(g,Jc)) represents λ(n,g) e srf = Loo{Xtm

l) for each
(n,g)eNxG. Set

(1.16) c(«,Jc)=A((n,x),(Λ(x),π(x)))-1, (n,x)eNxX.

We claim that

(1.17) μ(m,n) = μ(m,n)c(m,x)c(n,x)c(mn,x)~ι;

(1.18) *((/!,**),(*,*))

= c(g~ιng, x)λ{p(n, gx), p(g, x))c(n, gx)~ι

for each m,n e N, g e G and almost every JC € X. Note that if
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the above identities are true, then (λ,μ ® 1) is cohomologous, via
c(n, •) G %{&), to p(λ\g\ (μ <g> 1)|^), and surjectivity of p follows.

To prove (1.17), we compute as follows:

λ{{mn,x),(h{x),π{x)))

= yth{x),n{X))(uμ{rnn))u»{mnγ (Note h{x) e CG(N))

= y(Λ(x),π(χ))(w/i(w)M"(«))^(«)*M'i(m)*, (since μ(m,«)eT),

= λ((m, x), (h(x), π(x)))λ((n, x),

so that c(mn,x) = c(m,x)c(n,x).
To prove (1.18), set

(1.19) u(n,x) = γ{h(x)Mx))(u"(n)), n e N.

We will calculate y(g,X)(u(g~ιng,x))u(n, gx)* in two ways. First, by
making use of the definition (1.19), we compute

y(g,X)(u(g~ιng,x))u(n,gx)*

= λ((n, π(gx)), (h(gxΓιgh(x), π(x)))

= λ(p(n,gx),p(g,x)).

On the other hand, since

u{n,x) = λ((n,x), (h(x), π(x)))uμ(n),

we may also calculate

y{g,x){u{g~xng,x))u{n,gx)*

= y(g,x)(λ((g-ιng,x),(h(x),π(x)))u»(g-1ng))utι(ny

xλ((n,gx),(h(gx),π(gx)))-1

= c(g-χng,x)λ{{n,gx),{g,x))c(n,gx)-χ.

Thus (1.18) follows.
To prove the injectivity of p, it suffices to show that if (λ,μ) e

zφ,JT,T) and p{λ,μ) = 1 in Aa(G,N,%?(sf)), then {λ,μ) G
Bi&.Jf ,T). But if p(λ,μ) = 1, then there is a measurable function
c: JV x X -• T such that

μ(p(m,x),p(n,x)) = c{m, x)c{n, x)c{mn, x)~x;

λ(p(n, gx), p(g, x)) = c(g~lng, x)c(n, ι
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where the first equation holds for almost every x and all ra,« e N and
the second holds almost everywhere in x for each g e G and n G N.
Let

Xo = {x e X: λ(p(n, gx), p(g,x)) = c(g~ιng,x)c(n, gx)~ι

for almost every g e CG(N) and every n e N}.

By Fubini's Theorem, XQ is conull in X. For each x e Xo, let G(x) be
the set of g e CG(N) for which the above identity holds, so that G(x)
is conull in CG(N). Also set

Go(x) = {ge CG(N): p(g,x) = p(e,x)},

and note that GQ(X) has a positive measure in CG(N). For g e G(x) n
G0(x), and x e Xo,

λ(p(n, gx), p(g, x)) = λ(p(n, gx), p{e, x)) = l,

so that
c{n,x)c(n,gx)-χ = 1.

Thus, we conclude that c(n, •) is constant almost everywhere on the
fibres of π, so there is a measurable function d onB such that c(«, x) =
d{n, n{x)) almost everywhere in x. It is now routine to check that
(λ, μ) = (did, d\d) as required. D

2. Extension of Aa(G,N, &(<%?)) to Λα/(C? x R , 7 V , ^ ( J / ) ) . In this
section, si is an abelian von Neumann algebra, G is a separable locally
compact group acting via α o n j / , which is extended to an action of
G x R denoted by a again. We will determine which elements of
Za{G, N, W(sf)) can be extended to elements of Za(G x R, N,

LEMMA 2.1. Suppose (λ,μ) e Za(G,N,^(^f)) extends to (λ',μ') e
Za(G x R, N, W{sf)). Then for each t e R,

(2.1) (at(μ)μ*)(m, n) = λ'(m, t)am(λ'(n, t))λ'{mn, ί)*, rn,neN;

(2.2) (at(λ)λ*)(n, g ) = a g ( λ 9 ( g ' ι n g 9 t ) ) λ ' { n , t), g e G

Proof. The first assertion is a consequence of the defining identity
(1.9) for (λf,μf) e Za(GxR,N,&(j/)).

The second follows since

{at(λ)λ*)(n, g) = at(λ(Γιnt, g))λ'{n, g)*

= λ/(n,gt)λ'(n,t)*λ'(n,gγ

= ag(λ'(g-{ng, t))λ'(n, g)λ'(n, t)*λ'{n, g)*

= ag(λ'(g-ιng,t))λf(n,t)*. π



416 COLIN E. SUTHERLAND AND MASAMICHI TAKESAKI

Thus, any extendable (λ,μ) e Za{G,N,^{sf)) is, up to cohomol-
ogy, invariant under the action of R. Namely, if χ e Aa(G, N, %ί(sf))
is extendable, then χ e A^Cr.iV, ̂ (j/))R. The following result char-
acterizes extendable characteristic invariants, and also parametrizes
them.

THEOREM 2.2. Suppose that N acts trivially on sf. Then we have
three natural exact sequences which describe the structure of

(i)

(2.3) Hom(N, %{stf))G -> Hom(JV, z£(R,

-> Aa(G x R, N, 1ί{st)) -> Aa(G, N,

Λ H*(G, Hom(N, Z\(R, ^ ( ^ ) ) ) ) .

(ii) C/n<fer ίΛe assumption that R acts ergodically,

(2.4) Hom(iV, ̂ (j/))G -*• Hom(iV, ̂ (j/)/T)σ -^ Λ^G x R, ΛT,

, ΛΓ, ^ ( J / ) ) R x Hom(JV; ^

(iii) Assuming again that R arts ergodically, we have

0 -• A(G, N, Ί) -* Aa(G x R, ΛΓ, S^(J/)) Λ Hom(iV# ^

To prove the theorem, we need some preparation.
Suppose [λ,μ] = χ € Aa(G,N,^(j^))R, and choose a Borel map

6: (n, t) € JV x R -+ fc(«, ί) € ^ ( J / ) such that

(2.5) (at{μ)μ*)(m, n) = b(m, t)b(n, t)b{mn, t)*, m,neN;

(2.6) (at(λ)λ*)(n,g)=ag(b(g-ing,t))b(n.tγ, geG,teΈL

We then define

(2.7) c{m,s,t) = b{m,s)as{b{m,t))b{m,s + t)*

for meN,s,teR.

LEMMA 2.3. (i) c(m, , •) e

(ii) c( , 5, /) € Hom(iV, W{sf))\
(iii) α^ίcί^- mg.ί.O) = c(m,s,t), geG.

In other words, c belongs to Hom(iV, ̂ ( R ,

Proof, (i) This follows from the definition of £2(R,2φ/)) and
(2.7).
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(ii) For m,n e N and s, t e R, we compute:

b(m, s + t)b{n, s + t)b{mn, 5 + ί)* = (as+t{μ)μ*)(m, n)

= (as(μ)μ*)(m, n)as{(at(μ)μ*)(rn, n))

= b(m, s)b(n, s)b(mn, s)*"as(b(mf t)b(n, t)b(mn, t)*),

so that c(mn, s, t) = c(m, s, t)c(n, s, t).
(iii) This follows from examination of as+t(λ)λ* in a manner similar

to (ii). D

We write Map(R, %{$/)) for the group of all Borel maps from R
into ίί{s/) with pointwise multiplication. Set

(2.8) B = Hom(iV, Map(R,

C = l
where in the definition of A, B and C we consider only Borel maps in
the natural sense. We then have a short exact sequence:

(2.9) l-^A->B^C->l,

where (db)(n, s, t) = b(n, s)as(b(n, t))b(n, s + ί)*, s,t eR,neN. The
surjectivity of d may be seen as follows: if ^ is the groupoid obtained
by point realization of the action of R on &(s/)9 & is hyperfinite and
we have evident identifications

B2(g?, N) = 9(Map(^, N))

= d(Hom(N, Map(R,

Here N is the Pontrjagin dual of N, and d is the differential in
groupoid cohomology. Since G acts on N by conjugation and on %{stf)
via α, there is an action, denoted again by α, of G on the exact se-
quence (2.8). Thus we obtain a long exact sequence:

(2.9') 1 -+ AG -> BG -+ CG •£> H*(G,A) -+ H*(G,B) -> •- ,

where φ is the connecting map in cohomology [9]. Given

(2.10) R

we set

(2.11)

where c is defined in (2.7).
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LEMMA 2.4. The above map γ is well-defined.

Proof. Suppose that b\ is another 1/($f) -valued Borel function on
N x R satisfying (2.5) and (2.6). Let C\ be the element of

associated with b\ by (2.7). Then we have d\{bb\) = 1 = di(bbl)9 so
the map: (m, s) e N x R -> 6(m, 5)61 (m, 5)* belongs to

Γ Map(R,

But

c(m,s, t)cι(m,s, 0*

= b{m, s)bx(m, s)* asψ{m, t)bx{m, t)*)b(m,s + t)b\{m,s + t)*,

so that ccj* = d{bb\). Hence 0(cc*) = 1.
Now suppose that (λ, μ) = (#20, #10) for some <z G Map(iV, ^ ( J / ) ) .

In this case, we can choose b so that b(m,t) = at{a(m))a(m)*> and
obtain φ(c) = 1. This shows that γ is well-defined. D

Proof of Theorem 2.2. (i) Exactness at Aa(G,N, %S(jzf))R: Suppose

χ

f = [λ'f μ

f] G Aa(G x R, ίί[s/)) and let A = λf\NxG and // = μ'. Then
we can take λ'(n, t) for fc(/2, ί) in (2.5) and (2.6). The identity (1.7)
for λ1 implies c = 1. Thus γ([λ, μ]) = 1.

Conversely, suppose y([λ,μ]) = 1. With έ and c as in (2.5)-(2.7),
we have φ(c) = 1, so that we can choose d e BG such that c = d(d),
i.e.

(2.12) c(m, 5, t) = rf(m, s)as(d(m, t))d(mf s

(2.13) 1

Define 5(n, ί) = ft(π, t)d(n, t)*. By (2.13) and the multiplicativity of
d in m, we have

= β2(δ(.,ί)) and at{μ)μ* = dx(b(-, t)).

By (2.11), B(nr) e Z ^ ( R , ^ ( J / ) ) . Now, we set

(2.14) μf(m,n) = μ(m,n), m,neN;

λ\n, (g, 0) = ^ ( δ U " 1 / ! ^ ί)M(/i, g)> geG,te R.

Clearly, (λf,μf) extends (λ,μ). We want to show that (λ',μr) satisfies
the conditions for Z α (GxR,JV,^(j/)), (1.6)-(1.9). But (1.6) is ob-
vious. To check (1.7), let H be the set of all (g,t) e G x R such
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that

a{gJ)(λ'((g,t)-ιn(g,t),h)λ'(n,(g,t)))

= λ'(n,(g,ήh), neN, heGxR.

If hx, h2 € H, we have

= λ'(n, hιh2h)λ'(n, hx)*λ'{n, hxh2)*λ'(n, hx)

= λ'(n,hxh2h)λ'{n,hxh2y,

so that hxh2 e H. To see R C H, we compute:

at(λ'((e,tΓιn(e,t),(g,s)))λ'(n,t)

= at(λ'(n,(g,s)))b(n,t)

= at(ag(b(g-ιng,s))λ(n, g))b(n,t)

= at(as{λ(n, g))b{n,s))b(n,t)

= as+t(λ{n, g))b(n, s + ί) (since b{n, •) e Zι

a(R,

= λ'(n,(g,s + t)).

Similarly, GC.H because for g,h eG and s e R,

ag(λ'(g-ιng,(h,s)))λ(n,g)

= ag(ah(b(h-1 g-ιngh,s))λ(g-ιng,h))λ(n, g)

= agh(b(h~ιg~ιngh,s))λ(n,gh)=λ'(n,(gh,s)).

Thus, H = G x R, and (1.7) for λ' follows.
To prove (1.9), we consider the set K of all (g, t) e G x R such that

λ'(m,(g,t))λ'(n,(g,t))λ'(mn,(g,t))*

= a(gιt)(μ(g-ιmg, g'xng))μ{m, n)*, m.neN.

Then a similar calculation shows that K is closed under multiplication
and contains G and R, so that (1.9) for (λ1, μ') follows.

Therefore, ker(y) is precisely the image of Λα(GxR) N, %($?)) under
the restriction map.

Exactness at Λα(Gx R, N, %f(sn?)): Suppose that c is a G-equivariant
homomorphism of Λ̂  into Z^(R, ̂ ( J / ) ) . Set

μ'= I and λ'{n,(g,s)) = c(n,s), neN.seR.
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Then (1.6), (1.8), and (1.9) for (λ',μ') are obvious. For (1.7), we
check:

a{g,s)(X'(g-lng,(h,t)))X'(n,(g,s))

= asag(c{g~ιng,t))c{n,s) = as(c(n,t))c(n,s)

= c(n, s + t)= λ'(n, (gh, s + t)) = λ'(n, (g, s){h, t)).

Thus (λ', μ!) e Za(G x R, N, %{&)). We set

j{c) = [(λ', μ')] G K(G x R, N, V(s/)).

It is obvious that the restriction of (λ',μ') to (G,N) gives a trivial
element.

Suppose that (λ'.μ') e Za(G x R,N,^(J^)) gives a trivial restric-
tion to (G,N). Then the class [λ',μ'] is represented by a cocycle
(A', μ') € Za(G x R, JV, %{$/)) such that //'(m, n) = 1 and λ'(n, g) = l.
Let c(n,s) = λ'(n,s), neN,seΈL. Then (1.7) and (1.9) for λ' imply
that the map: n e N -+ λ'(n, •) e Zι

a(R, ΪS(s/)) is a (?-equivariant ho-
momorphism. Hence c e Hom(iV, Z^(R, ^(s/)))G. By construction,

Exactness at Hom(N,Zι

a(R,%f(tf)))G: Let 6 € Hom(iV,^(j/))G.
That is, δ(m«) = b{m)b{ή) and ^(^(g- 'ng) ) = b{ή). Let c(n,/) =
b(n)*at(b(n)). Then c(rc, •) € Z ^ R . ^ J / ) ) and c is a G-equivariant
homomorphism of Λ̂  into Z^(R, %{&)). We put c = db. Then a is
a homomorphism of Hom(JV, &(JZ))G to Hom(iV, Zι

a(R, %{$f)))G. If
[A',μ']=7(c), thenμ'= 1 and

A'(n, ( ί f 0) = c(n, t) = b(n)*at(b(n))

= atag(b(g,trιn(g,t))b(ny

= (d2b)(n,(g,t)).

Thus we get [λ'.μ1] = 1. Hence Im(d) c kerQ).
Conversely, suppose j{c) = 1, c € Hom(Λ^,Z^(R,^(j/)))G.

Namely, with μ' = 1 and λ'(n,g,t) = c{n,t), we have (λ',μ') e
^ ( G x R, iV, ^ ( J / ) ) . Hence there exists b e Map(N, %f{sf)) such that

b(n)b{m)b(nm)* = dxb{n, m) = 1;

, (S. 0)

The first identity shows that b € Hom(N,^(s/)). In the second
identity, with t = 0, we get α g ^ g " 1 ^ ) ) = 6(n). Hence b €
Hom(iV, ^ ( J ^ ) ) G and c = db. π
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We now move on to the second part of Theorem 2.2. Given χ' =
[λf, μ'] € Λa(G x R, N, %{s/)), we studied the restriction (λ, μ) of
(λ1, μ') to (G, N). But the restriction c of λ' to N x R gives an ele-
ment of Hom(iV, H*(ΈL, %{stl)))G. In fact, (1.9) for λ' shows that the
map c: n € N -^ λ'(n, •) € Z^(R,^(J/)) is multiplicative up to coho-
mology. Furthermore, the calculation of Lemma 2.1 shows that

(2.2') (ag(λ')λ'*)(n, t) = (at(λ')λ'*)(n, g),

so that c is G-equivariant up to cohomology. Hence the map vine
N —*• [c(n)] e H^(R, f/(sΐ)) is a G-equivariant homomorphism.

Now, suppose χ = [λ, μ] e Λ ^ G , N, ̂ ( J / ) ) R . We define

(2.15) λ(t,n,g) = (α,μμ*)(«,g) = at(λ{n,g))λ{n,g)*;

(2.16) /{(/, m, Λ) = (at(μ)μ*)(m, n) = at(μ(m, n))μ(m, n)*

for ί G R, m, n e iV and £ € (7. Since at{χ) = χ, (λ(t, , •)./*(*, , •))
is an element of Ba{G,N,%f{stf)), and hence gives an element of

LEMMA 2.5. The cohomology class [λ,μ] e H*(R,Ba{G,N,&(sf)))
depends only on χ; we write it as δ\{χ). The map

δx: χ € Λα(G,N,&(sf))* - . δdχ) e H*(R,Ba(G,N,%(tf)))

is a homomorphism.

Proof. The map (λ, μ) —• (λ, μ) is multiplicative, so that it suffices
t o s h o w t h a t i f (λ, μ) e B a ( G , N, fί{s/)), t h e n [λ, μ ] = l . B u t i f (λ, μ) e

which means that [λ, μ] = 1 in Hx

a(R, Ba(G, N, %{&))). D

Next, suppose v e Hom(N,Hx(R,^(jιιf))), and let c: n € N -»•
c(n) G Z^(R, ̂ ( J / ) ) be a Borel map which projects to v. Consider
{d2c( , t),dxc{ , t)) as an element of Zι

a(R, Ba(G, N,

LEMMA 2.6. ΓAe cohomology class [^c, die] /«

depends only onv\ we write itδι(y). Of course, the map

δ2: Hom(N,H*(R,V(sf))) -H- ^(R,B(G,N,

is a homomorphism.
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Proof. Since the map: c —• (d2C,dχc) is multiplicative, it suffices
to prove that if c(n, •) e B^(R, &(J/)), then [d2c, dλc]= 1. Choose a
Borel map b: N -> %{srf) so that c{n,t) = at(b(n))b{n)*. Then we
have {d2c,dxc){t) = at(d2b, dχb)(d2b*,dιb*), so that [6^,01 c] = 1. π

Proof of Theorem 2.2 (ii). Exactness at Aa(G,N,^(^))Rx
Hom(N,H*(R,&(j/))): We define

(2.17) δ{χ,u) = δx{χ)-δ2{u),

for (χ, v) e Aa(G, N, &(sf))R x HomCiV, /^(R, V(s/))). If / = [A', μ']
G Λα(G x R,Λζ^(^)) gives rise to (χ,u) as restriction, (2.1), (2.2)
and (2.2') mean that ^i(^) = δ2(v). Conversely, suppose that δ\{χ) =
S2(u). Choose (λ,μ) e Za(G, N, W{s/)) withχ = [λ,μ] and c: iVxR -»•
c ( n , ί ) € ^ ( J / ) l i f t i n g i / . C h o o s e b : n e N -+ b{ή) € ^ ( . J / ) S O t h a t

(at(λ)λ*)(n, g)(at(d2b)d2b*)(n, g) = (δ2c)(n, g, t),

(at{μ)μ*)(m,n){at(d{b)d2b*)(m,n) = (dιc){m,n)

for m,n e N, g e G and ί e R . Replacing (A, μ) by (A^έ, μd\b), we
get

α,(λ(ιi, ί))A(π. g)* = ag(c(g-ιng, t))c{n, t)*,

at(μ(m, n))μ(m, n)* = c(m, t)c{n, t)c(mn, t)*.

We then extend (λ, μ) to (A', ̂ ') G Za(G x R, JV, ̂ ( J / ) ) by setting

λ'{n, g, t) = at(λ(n, g))c{n, t), geG, te R;

μ'(m,n) = μ(m,n), m.neN,

where the cocycle property of (λ'.μ1) can be checked by applying the
arguments of the second paragraph of the proof of Theorem 2.2 (i).

Exactness at Aa(G x R,N,&(s/)). Let φ e
Choose a map b:neN^b{ή)e %S(sf) and σ: N x JV ->• T such that

= 6(n)T and

(2.18) b(m)b(n) = σ(m,n)b(m,n), m.neN.

Since 0 is G-equivariant, there exists a function />: iV x G —> T so that

(2.19) α ^ t e - V ) ) = />(«,£)£(«), geG, n eN.

Clearly (/>, σ) € Z(G, N, T). Set

(2.20) c(n,s) = as(b(n))b(n) , neN,s<=R,
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and compute:

c(m,s)c(n,s) = as(b(m))b(n)b(m)*b(n)*

= as(σ(m, n)b(mn))σ(m, n)b(mn)* = c(mn,s);

ag(c{g-ιng,s)) = as{ag(b(g-ιng)))ag(b{g-ιng)*)

= as(p(n, g)b(n))p(n,g)b(n)* = c(n, s).

Thus, we obtain c e Hom(Λ^(R,^(j/))) G . We now apply the ho-
momorphism j of Hom(N, Zι(R, %(stf)))G into Aa(G x R, TV, Vί{st))
in (2.3) to get [λ',μf] = j(c) € Aa(G x R,iV,^(j/)). We have seen
in (i) that [(Λ/,μ') !(<?,#)] = l It is also clear that λ'\NxR = 1 in
Hom(N,H* (&,&(&)))•

Suppose that [λf, μ!\ = χ' e Aa(Gx R, N, %{$?)) has trivial restric-
tion to (G, N) and N x R. Then / ' is represented by

such that //' = 1 and λ'(n, g) = 1, n e N and g e G. With C(Λ,.S) =
λ;(n,5), as in (i) c gives an element of Hom(NfZ

ι

a(Rf^(^)))G. But
c{nt -) e B*(R, %{&)) due to the triviality of λr\NxR, so that there ex-
ists a map b: n e N -• &(«) € ^ ( J / ) such that C(Λ, 5) = as(b(n))b(n)*.
Since R acts ergodically, the ambiguity in choosing b(n) is precisely
T, so that the map b: n e N -+ b(n) e %S(sf) is a homomorphism
up to phase, i.e. φ{n) = b(n)Ύ G ^ ( J / ) / T is a homomorphism. It
is now clear that φ e Hom(7V,^(j/)/T)G and the image of φ in
Aα(G x R, iV, W{sf)) is precisely / ; .

Exactness at Hom(Λ^,^(j/)/T)G: The natural projection of 2^(j/)
onto f/(s/)/T gives rise to a homomorphism of Hom(7V, ^ ( j / ) ) G into
Hom(iV, ^ ( J / ) / T ) G . The image of this homomorphism are precisely
liftable homomorphism φ e Hom(TV, ̂ ( J / ) / T ) G , i.e. those φ such that
the map b in the last paragraph is a G-equivariant homomorphism;
equivalently p = 1 and σ = 1. Then the c in (2.20) is in the image of
Hom(iV, %f(stf))G under the homomorphism in (2.3). Hence the image
of φ in Aa(G x R, N, %{s/)) is the identity.

Conversely, suppose that φ e Hom(iY,^(j/)/T)G gives rise to the
identity element of Aa{G x R, N, &(&)). Then the c in (2.20) is given
by an element b' G Hom(iV, ^ ( J / ) ) G in such a way that

c(n,t) = at(b\n))b'(ny.

Hence with b as in the last paragraph, we have
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so that the ergodicity of R on J / implies that b(n)bf(n)* eΊ. Hence
we have φ(n) = b'{n)T. Thus φ is given as the projection of b' in

D

Proof of Theorem 2.2 (iii). We first construct the injection of
A(G, N, T) in Aa(G x R, N, fί{s*)). If χ = [λ, μ] e Λ(G, N, T), the ar-
guments of the proof of 2.2 (i) show that there is an element (λ'9 μ') e
Za(Gx R,N,W(J/)) with μf{m,n) = μ(m,n)9 λ'(n,g) = λ(n,g) and
λ'(n,t) = 1 for m, n e N, g e G and t e R (see equation (2.14)).
It is evident that χr = [λf,μr] depends only on χ and that the map
χ —> χ' is a homomorphism. To see that it is injective, suppose
(λ,μ) e Z{G,N,Ύ) is such that (λ',μf) e Za{G x JL,N,W{j*)) con-
structed as above, cobounds. Thus there is a map b: iV —• ^ ( J / ) such
that (λ;,/ι;) = (92*, dib). Thus 1 = λ;(/i, t) = at(b(n))b(n)* forneN
and / e R, so that, using ergodicity of R, b{n) e T. It now follows
that (λ, μ) e B(G, N, T), as required.

It remains to prove exactness at Λ(G x R, N, %($/)). It is clear that
A(G, N, T) c ker r. Conversely, suppose χ1 = [λf, μ'] e ker r. By defini-
tion, there is a map b: N -> %{$/) such that λ'(n, t) = at(b(n))b(n)*.
However, since λ'(n, gt) = λ'(n, tg)9 we conclude using (1.7) that

at(ag(b(g-ιng))b(nyλ'(n, g)) = ag(b(g-ιng))b(nyλ'{n, g).

Since R acts ergodically, we conclude that ag(b{g~l ng))b(n)*λ1 (n, g) =
κ{n,g) G T. Similarly, using (1.9) with g = ί e R, we conclude
b(m)*b(nyb(m,n)μ(m,n) = σ(m,n) e T. Thus {λ'd2b*,μ'dxb*) =
(κ;, σ;) € Z(G x R, ΛΓ, T), and since κ'(n, ί) = 1, [λ;, //'] = [K', σ'] is in
the image of λ(G, N, T). D

3. Reduction and C°°-representatives of H*(ΈL,W(s/)). In this sec-
tion, we consider a strongly continuous one parameter automorphism
group {at} on an abelian von Neumann algebra sf. Here we assume
that {at} is ergodic and aperiodic, i.e. free. By the Ambrose-Kakutani-
Kubo-Krengel theorem, we may assume that the point realization {Tt}
on {X, m1} of {at} on sf is the flow built over the base {B, m, Q} under
the ceiling function / : B —• R+ where / is a Borel function bounded
away from zero. Thus, X is identified with the quotient of B x R by
the action of Z generated by the transformation Q:

Q(b, r) = (Qb, r - /(£)), b e B, r e R,

i.e. with {(n,r) G ί x R O < r < f(b)}9 and the measure m! is
identified with the restriction of m x Lebesgue to this fundamental
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domain. The flow {Tt} is determined by the flow:

xs(b, r) = {b,r + s) on X x R.

Let p: (ft, r) G X —> & G 5 be the projection.
We will view g" = R tx X and f = ^ | 5 = Z κ β 5 as groupoids.

Since we are assuming {7^} acts freely, both &f and & may be viewed
as equivalence relations.

To each A e Zι(S?,Ύ), there corresponds p*(A) G Zι(&'9Ύ) by

(3.1) (p*A)(Ttx,x) = A(p(Ttx), p(x)), x e X, t G R.

Also if A G Z 1 (3?', T), so that

A(Ts+tx,x) = A(Ts+tx, Ttx)A(Ttx,x)

almost everywhere in x for each s, t G R, we may define L°°(A)(t) G
L°°{X, m') to be the element represented by the function x G X —>
^(Γ/JCJC). Evidently, L°°(^) G Z ^ ( R , ^ ( J / ) ) . The maps /?* and L°°
give rise to maps, also denoted by p* and L°°, from Hι(&,Ύ) to
//H^'^T) and from Hι(&',Ύ) to //i(R,^(j/)). The following re-
sult was proved in [4, Proposition A. 2]. Since the proof given there
is slightly imprecise in handling null sets, and the notations will be
needed later anyway, we present a proof.

THEOREM 3.1. The maps p*: Hι{S?,Ί) -> Hxφ\Ύ) and L°°:
are isomorphisms.

Proof. It suffices to prove that L°° o p* is an isomorphism. Let
a G Z£(R, ̂ ( J / ) ) . Since sf may be identified with the fixed point
algebra L°°(B xR)2 of L°°(B x R) under the action determined by
(2, and (B,m) is Borel isomorphic to (T, Lebesgue), we apply the
equivariant lifting theorem of [6] with the group T x R and obtain a
measurable function ^4 :Rxi?xR—>T with the properties:

(i) A(s + t,b,r) =A(s,b,r)A(t,b,r-s) for all r,s,t GRandZ? Efi ;

(ii) for each S G R , A(S, Q(b, r)) — A(s, b, r) almost everywhere in

(iii) for each s G R, a(s) is represented by the function (b, r) —>
A(s,b,r).

Define

B(τs(b,r),(b,r)) = A(s,b,r);

from (i) above, ΰ e Z ' ( R xτ (B x R),T).
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Let c : ΰ x R - + T b e the Q-periodic function which extends the
map (b, r)eX-+ B(φ, r), φ, 0)) and define D e Zι{R κτ (B x R),T)
by

D((b, r), φ,s)) = c(b, r)~lB((b, r), (b,s))c(b,s).

By definition, D is cohomologous t o β i n Z ' ( R κ r ( 5 x R ) , T ) . By
(ii) above, and since c is Q-invariant, we see that for 0 < r, s < fφ),

D{Qφ,r),QnΦ,s))=\

almost everywhere in (bfr,s). Thus, for almost every b G B, the
function: (r,s) G [0,f(Qb)[ x [0,/(£)[-+ D((b,r),(b,s)) is constant
almost everywhere in (r,s); we let E'{b) denote this constant value,
and let E G Zι(&,Ί) be the unique cocycle with E(Qb, b) = E'φ).

It is now clear that if c G L°°{X, m!) is represented by the above
function c, then L°°(p*E) = (dc*)a in Z ^ ( R , ^ ( J / ) ) ; we leave the
routine verification to the reader. D

THEOREM 3.2. Under the same assumptions and notations as in the
previous theorem, every a G Z^(R, ̂ ( J / ) ) is cohomologous to a cocycle
which is infinitely differentiate in norm.

Proof. By the previous theorem, there is a cocycle A G Z 1 (Ztxβ B, T)
such that a is cohomologous to L°°(p*A). Let C: B —> [0,1] be a
Borel function such that

A{Qb, b) = exp{2πiC(b)),

and let C G Z 1 (Z\xQB, R) be the unique cocycle with C{Qb, b) = C'(b)
for b e B. Evidently, exp(2π/C) = A, so that L°°(exp(2π/p*C)) is
cohomologous to a.

Choose a C°°-function g: [0,1] —• R+ with /Q1 g(s) ds = 1, and such
that g is zero outside of [1/3,2/3]. For b e B and 0 < s < f(b), define

8b{s) = ~iwr8 v/ik
and

Gφ,r)= [ gb{s)ds.
Jo

Set

D(Tt(b, r), (b, r)) = G(Tt(b, r)) + C(p(Tt(b, r)), b) - G(b, r),

so that D is cohomologous in Zι(R κ Γ X, R) with p*C.
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Using the properties demanded of g and the fact that / is bounded
away from zero, it is easy to see that the function: ί e R - > D(Ttx, x)
is C°° for each x e X, and that each derivative of this function is uni-
formly bounded in t and x. From this, it follows that L°°(exρ 2πiD) is
infinitely differentiate in norm as an element of Z£(R, %(&)). Since
this cocycle is cohomologous to a, the proof is complete. D

4. Actions of Gx R on j/<g>^o,i Throughout this section, G denotes
a countable discrete amenable group, stf an abelian von Neumann
algebra, and ̂ 0,1 the unique injective factor of type Πoo We are
concerned with cocycle conjugacy classification of actions of G x R on
J/8>^O,I Our technique does not apply to the case that $f = C and G
is trivial. Thus we need to make some assumptions; these assumptions
will be sufficient to allow us, in §5, to classify actions of G on injective
factors of type III^, λψ\. Now, we make the following:

Assumption 4.1. (i) si Φ C, and {at: t e R} is ergodic on si;
(ii) there is a faithful semi-finite normal trace Tr on J / ® ^ O , I

 s u c h
that

Troα* = Tr, g e G\

Tr o as = e's Tr, s eR.

Our strategy for classifying actions of G x R satisfying our basic
assumption is to show that the problem may be reduced to that of
classifying actions of a discrete groupoid on «#o,i> a n d to use results
about such actions from [15].

4.1. The invariants and the classification. Let

be an action satisfying our basic assumption. We may associate cocy-
cle conjugacy invariants for a in the same way as is done for discrete
groups. Let

(4.1) N(a) = {geGxR:age Int(j/®^b,i)}

Note that our assumption concerning the trace guarantees that
N(a) < G, and so is discrete and countable. Choose a (Borel) map:
n e N(ά) -> u(n) e %{srf®^Λ) such that

(4.2) an=Ad(u(n)), neN(a)
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and define μa(m,n) e f/{s/) for m,n e N(a) and λa(n,h) e
for n e N{a) and h e G x R by

(4.3) u(m)u(n) = μa{m, n)u(mn),

ah{u{hΓxnh)) = λa(n,h)u(n).

Observe that the pair (λQ, μa) falls in Za(G x R, N(a), ^ ( J / ) ) , and
the class χa of (λa, μa) in Λα(GxR, N(a), ^ ( J / ) ) , depends only on the
cocycle conjugacy class of a (see below for a more precise statement).

THEOREM 4.2. Let a and β be actions ofGxR on J/<3>^O,I satisfying
Assumption 4.1. Then the following two statements are equivalent:

(i) There exists θ e Aut(j/®^b,i) and ueZι

β(GxR, 2φ/&S?ofi))
such that

θoahoθ~ι =Aduhoβh, heGxR;

(ii) There exists θ e Aut(j/) such that

θoahoθ~ι = βh onsΐ, heGxR;

θ(Xa) = Xβ.

The implication: (i) => (ii) is routine, so we leave the details to
the reader. The rest of this subsection is devoted to the proof of the
implication (ii) => (i). To this end, we need a further reduction of the
problem.

We first consider a alone. Let H = G x R, and let a1: H tx X -+
Aut(^b.i) be a point realization of this action as provided by Propo-
sition 1.2, and let ά be the restriction of a! to 9 - H K ΛΓ|̂ , where B
is a base for the R-action on X. We wish to calculate the invariants
as defined in [15] for the action a of the discrete amenable groupoid

To this end, define, for x e X,

(4.4) J%c = {heH:hx = x}

(4.5) jrx = {h e J%: a[hx) e

Since R is central in H, we have

(4.6) ^ x = ^ and

(4.7)

The ergodicity of R then implies that we may delete a saturated null
set from X so that %?x and Jfx are independent of x. Hence we may
assume that J^ = N for all x e X where JV is a normal subgroup of
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G, and therefore that the "inner part" JV of the action a is nothing
but jr = N x B.

To get the invariants for α, choose, for each (n, b) G NxB, tt(n, b) e
) such that

(4.8) ά{n>b)=Ad(U(n,b)).

Since we may choose (n,b) € N x B -> ΰ(n, b) G %(β§λ) Borel, we
obtain (λά,μά) G Z a ( ^ , ^ , T ) by defining:

(4.9) μa((m, b), (n, b)) = ΰ(m, b)n(n, b)ΰ{mn, b)*\

(4.10) Λfi((/ι, gb), (g, b)) = ά{g>b)(ΰ(g-ιng, b))n(n, gb)*

for (m, b), (/i, b) e Jf and ((/i,

LEMMA 4.3. L°°(p*(λa,μά)) is cohomologous in Za(H, N, W(sf)) to
(λa,μa).

Proof. Let h(x) G R, p, and π be as in §1.3, and define

υt{n,x) = <*[h{x)tK{x))(u(p(n,x))), (n,x) eNxX.

Then α' ( n x ) = Adw'(w,JC) for (n,x) eN x X,so that

re
u[n) = / u(n,x)dmf(x)

Jx

implements αw. However, we have

u'(m, x)u\n, x) = //«((m, π{x)), (n, π(x)))u'(mn, x)\
a[gfx)(uf(S~lngf x)) = λδ(p(Λ, gx), p(g, x))u\n, gx)

for any ^ e f f and x eX. n

To determine the modular invariant for ά, choose a Borel field Z? G
5 —• Tr^ of faithful semi-finite normal traces on ^b,i> a n d define

(4.11) δ&(g, b)Ίrb = T V o*{gtb), (g, b) G ̂ .

Define also, for each x G X,

We then choose a Borel function: x e X -+ k(x) e R+ such that

Tr =
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where Tr is the trace on sf <8>̂ b,i gi y e n *n Assumption 4.1. It is easy
to check that

(4.12) Tr^ oa[g)X) = δά(p(g,x))Ύrx for g e H.

If we define ψ: G x R —> R* by

(4.13) ψ(g,s) = e-s, geG, seR,

the fact that Troα^ = ψ(g)Tr forgeH may be rewritten as

ψ{g) I k(x)Trx dm\x) = T r o %

= / k{gx)Ίτgx oa[gx)dm'{gx)
J x

' k(gx)δ&(p(g, x))k{x)-χp'{g,x)k{x) Ίτx dm'(x),

where pf(g,x) = (dm; o g/dm')(x) is the Radon-Nikodym cocycle of
G x R on (X, m1). Hence we get

Ψ(g) = k(gx)δά(p(g,x))k(x)-ιp'(g,x), geH, xeX,

so that we conclude that p*(δά) is cohomologous in Z 1 ^ ' , R+) to the
cocycle: (g,χ) e & -> ̂ ( g ) ^ ^ , ^ ) " 1 .

We are now ready to prove the theorem.

Proof of Theorem 4.2. Suppose that two actions a and β of Gx R on
j/®^o,i satisfy the condition (ii) of the theorem. After identifying a
and θaθ~ι, we may assume that a and β agree on J / and χa = Xβ-
Thus we obtain point realizations oί and /?' which are actions of the
same groupoid&' = HKX on^b,i If ώ a n d ^ a r e ^ restrictions of
oί and /?' to 9 = ̂ ' |^, then the hypotheses now imply that χά — Xβ
by Theorem 1.3, and δά = δβ in Hι(&, R+) as seen above.

By the main result of [15], there are Borel maps θ: B —• Aut(^o,i)
and 17 G Zl(^, ̂ (^ 0,i)) such that

θgb o άigΛ) o 0" 1 = Ad(β(^ f ft)) o β{gfb), (g, b) e sr.

Define ΘΊX-+ Aut(^b.i) and v': & -+ %f(^0,ι) by

θx = β(h(x).π(x)) ° Oπ{x) ° δ(Λ(j

Evidently, θ1 and ι/ are both Borel maps; it is routine to check that
v' e Zι

βl φ\ Wiβnλ)) a n d t h a t
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Setting

0= Γθf

xdm'(x);
Jx

r®
v(g)= / v'(g,x)dm'{x),

Jx
we conclude that

θ o ag o θ~ι = Ad(υ{g)) o βg, υ G Zι

β{G x R,:

and that θ commutes with {ag: g G G x R} on sf. u

4.2 Realization of the invariants. In §4.1, we have shown that actions
of G x R on j/<g>^b,i satisfying Assumption 4.1 are classified up to
cocycle conjugacy in terms of the associated characteristic invariant.
The following result tells us which invariants actually occur for these
actions.

THEOREM 4.4. Suppose that β: G x R -+ Aut(j/) is an action of
GxR on an abelian von Neumann algebra stf with s# φ C, and that
the restriction of β to R is ergodic. Suppose further that G is a countable
discrete amenable group as above, and that N is a normal subgroup of
G which acts trivially on si. For every (λ, μ) G Zβ(G x R, N, &(sf)),
there exists an action a of GxR on sf&3l§,\ such that

(i) a satisfies Assumption 4.1
(ii) a restricted to stf is β;

(iii) χa = [λ,μ] in Kβ{GxR,N,^{^)).

Proof. Let &' — H K X, H = G x R, be the groupoid arising from a
point realization of {βg: g e H} on sf, and let B be a base for the R-
action on X. Set 9 = &'\B By Theorem 1.2, we may choose (λ, μ) G
Z(^,yΓ = N x B,Ύ) with L°°(p*(λ,μ)) = (λ,μ) up to cohomology.
Let ψ be the homomorphism of H into RJ defined by (4.13) and
p' e Zι(&, R+) be the Radon-Nikodym cocycle, i.e.

geH, x G X.

Then a variant of Theorem 1.3 guarantees the existence of δ G
Zι(&,R*) such that the cocycle (g,x) e &' -+ ψ{g)pl{g,x)'x G Rj is
cohomologous to (p*δ)(g,x).

By the realization theorem of [15], there exists an action a of & on
whose associated invariants are precisely



432 COLIN E. SUTHERLAND AND MASAMICHI TAKESAKI

Define an action a1 oϊ§" on ^0,1 by

and set
ag(a)(gx) = a[gιX)(a(x)), a( )

It is then clear that {Gx R, α,j/®^0,i} * s a n action which satisfies
our Assumption 4.1 and for which χa = [λ, μ]. D

5. Actions on injective factors of type ΠI^, λ Φ 1. Throughout this
section, G will denote a discrete countable amenable group, and Jt
an injective factor of type III^5 λ Φ 1, acting (when necessary) on
a separable Hubert space &. Let 2Γ(ΛT) denote the space of semi-
finite normal weights on Jί and Wd(J£) the set of dominant weights
(see [4, §11.2]). The smooth flow of weights on Jί will be denoted by
{^(Jt)9F}9 and its first unitary cocycle group by Zι(^(Jt)). (Here
we use the additive group R instead of the multiplicative group Rj
under the identification: s e R <-• es e R^.) Each c e Zl(^(^)) gives
rise to an extended modular automorphism σf for each φ e
(see [4, §IV.2]).

For each (/> G Wd(J(), we define a group 2^(^f) by

(5.1)

where the product is given as follows:

(5.2) (u,c){υ,d) = (uσ*(υ),cd).

By [3, §3.8] we have an exact sequence:

(5.3) 1->KΦ-+ Wφ{Jt) -^ Cat(Jt)

where Cn\{Jt) denotes the group of centrally trivial automorphisms
of Jf, kάφ is the map given by

(5.4) Adφ(u, c) = Ad(κ) o σf> (u, c) e

and Kφ is simply the kernel of

LEMMA 5.1. The normal subgroup Kφ of&φίJt) is central and iso-
morphic to %{^oφ) under the map:

(5.5) ueV(%)^(

where %φ is the centre of the centralizer Jίφ and

(5.6) (dφu)(s) = Pφ(u*)Fs(pφ(u)).
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Here pφ is the isomorphism of&ψ onto 9~{Jΐ) described in [4, Theorem
1.11]. In particular, Kψ is abelian.

Proof. This assertion follows from the following easy chain of equiv-
alences for (u, c) G

(«, c)eKφ& Aά{u) o σf = i <» of = Ad(u*) <*

u* e Cφ and c(s) = pφ(u*)Fs(pφ(u)).

Here the last step requires the relative commutant theorem of [4]. A
direct computation shows that Kφ is central. D

In view of the above fact, we define an isomorphism
-* Kφ as follows:

(5.7) qφ{u) = (Pφl(u),dFu) eKφ, ue

where

(5.6') (dFύ)(s) = u*Fs(u), seR.

Thus we obtain an exact sequence:

(5.30 1 - ^ & ^

We will need to view this exact sequence in the category of Aut(^f )-
"modules". The action of Axx\{Jt) on Cnt(^f) will be by conjugation,
β e Cnt(Jt) -* aβa~ι e Cat{Jt) for a e Aut(Jt); the action on

will be the module action mod of [4, p. 549]. For a e
and (u,c)e &φ(Jt), we define

(5.8) &φ(u,c) = (a(u)(Dφ o a'ι:Dφ) ( m o d α ) ( c ) l ( m o d α ) ( c ) ) .

In order to take the action of Aut(Jt) on the exact sequence (5.3') into
account, we need the next easy result:

LEMMA 5.2. Ifφ, ψ e Wdis*) a n d v ε &{&(-*))>

(5.9) σ$FV=Adp-ι(v*),

(5.10) (Dψ:Dφ)dFυ = pϊι(v*)pjι(v).

Proof. In the continuous decomposition, Jt = Jtφ t<θ R, of Jt, ([4,
15]) let {u(s)} be the one parameter unitary group corresponding to
θ. Then we have for each c e Zι

F(R,

9*(au(s)) = p7ι(c(s))au(s), ae^φ, seR,
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so that

σlFV{au{s)) = p-\v*Fs{v))au{s) = p-\v*)au{s)p-φ\υ).

Hence (5.8) follows.
For (5.9), consider the balanced weight p = φ ® ψ on M2{^) and

compute:

{Dψ :Dφ)dFV ®e2ι = σ^υ(\ ®e2{) = P^x{v*)(\®e2x)p-\v).

Since ppl(v*) = pφl{v*) <g> en + PψX{v*) ® e22, the formula (5.9)
follows. D

We now have the following:

LEMMA 5.3. The exact sequence (5.3') is an exact sequence of
Kx\\(J?)-modules.

Proof. We first show that the map: a e Aut(-#) —• α^ is actually a
homomorphism of Aut(^) into Aut(^(^#)). For this, we calculate,
using [4, §IV.2] or [13, p. 405], as follows: for each a G Aut(^) and

άφ{uσf{v),cd)

= {a{uσf(v)){Dφ o a~ι : Dφ) (moάa){cd), (mod a){cd))

= (a(u)σ^-d'a){c)(a(υ))(Dφ o α" 1 : Dφ) {moda){c)

X Ίmod a)(c)((DΦ ° α - 1 : DΦ) (mod a)(d))> (™& Ot){cd))

= (a(u)(Dφ o a~ι : Dφ) ( m o d a){c)

X °Φ(moda)(c)(a(V)(DΦ ° a~] • DΦ) (mod a)(d)) (mod Ct){cd))

= άφ(u,c)άφ(v,d).

So άφ is a n a u t o m o r p h i s m of &ψ(jf). Similarly, for a,β e A u t ( ^ f )
and (u, c) e ^(Jf), we have

aφβφ(u,c) = άφ(β(u)(Dφ o β~ι : Dφ) {modβ)(c), (mod β)(c))

= (aβ(u)a((Dφ o β~x:Dφ) ( m o d β)(c))

x {Dφ o a'1 : Dφ) ( m d a Λ ( c ) ) (mod αjί)(c))

= (aβ(u)(Dφ o ^ - ' o a'1 :Dφ o α" 1 ) ( m o d α j 8 ) ( c )

x (Dφ o α" 1 : Dφ) (modα/?)(c)' ( m o d α ^ ) ( c ) )

= (aβ(u)(Dφ ° β-χ oa~x: Dφ) ( m o d α / ? ) ( c ) , (mod aβ)(c))

= (aβ);(u,c),

so that a —• ά^ is a homomorphism.
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We next prove that Ad^ άφ(u, c) = a o Adφ(u, c) o a~ι. This is seen
by the following calculation:

Ad{a{u)(Dφ o α ' 1 : Dφ) {moάa){c)) ° 9φ

{mod a){c)

= Ad(α(u)) o ϋ%S£a)(c) = a Ad(u) o of o α" 1 .

It now remains to show that for u e ί/(^(Jt))

(5.11) qφ(moda(u)) = άφ(qφ(u)).

Now, we have

qφ(moda(u)) = (p~ι (mod a(u)),dF (mod a(u)),

whilst

ά(qφ(u)) = &φ(PφX(u),dFu)

= (a(Pφ\u))(Dφ o α" 1 : Dφ) {moda)(dFu)>™oda(dFu)).

Since 5^(modα(w)) = moda(dFu), it suffices to show that

a(Pφl(u))(Dφ o a'1 : Dφ) {mOda)(dFu) = Pφlmoda(u)).

By Lemma 5.2, we have

(Dφ o a~ι : Dφ) ( m o d a){dpU) = (Dφ o α " 1 : Dφ)dp ( m o d α ( l / ) )

= Pφla-^ (mod α ^ * ) ) ^ - 1 (modα(ιθ),

so that the fact a o pφ = Pφl

oa-{ o modα, yields the desired conclu-
sion. D

In order to remove the dependence of the exact sequence (5.3') on
the choice ofφe Wd(Jί), we introduce the maps κψtφ\ %ίφ(Jf) —•
&ψ(Jt) given by

(5.12) κΨ,φ(u, c) = (u(Dφ : Dψ)c, c)

and prove:

LEMMA 5.4. (i) The map Kφtψ is an isomorphism.
(ii) The following diagram commutes and is Aut(^)-equivaήant:

(5.13)

for φ,ψe

Ad,

κ
ψtφ

Ad ψ
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(iii) For φ, ψ and p € W&{Jί\ we have

Proof. The facts that κψtψ is an Aut(^#)-equivariant isomorphism,
and that Ad^ oκψψ = Adφ both follow from routine calculations using
[4, §IV.2] or [13, p. 405].

For each u e ^ ( ^ p f ) ) , we have, by Lemma 5.2,

κΨ,Φ o qφ{u) = {p-\u)(Dψ : Dφ)dfUfdFu),

= (Pjl(u)pjl(u*)p-l(u),dFu) = {p-\u),dFu) = qψ(u).

The last assertion (iii) is a trivial consequence of the chain rule for
the Radon-Nikodym cocycle derivatives. Q

The groups ^(Jt), and the exact sequences of (5.3') are thus inde-
pendent, up to isomorphism, of the choice of weight φ e Wd{Jί). At
this point, we know of no intrinsic description of this group, and so
are obliged to remove the dependence of φ by the following device:

DEFINITION 5.5. We set

(5.15)

Evidently, we have now an Aut(^f) equivariant short exact sequence:

(5.16) 1 -+ &{?-{*)) Λ &{JT) -^ Cn\{J?) -> 1,

where we set, using Lemma 5.4,

(5.17) q(u)φ = qφ(u), u e

Aά{{uφ)) = Adφ(uφ), (uφ) e

Before using the exact sequence (5.16) to construct invariants for
actions, we need one further preparatory result. We omit, however,
the proof, as all computations involved are routine.

LEMMA 5.6. For w e &(Jt), set

(5.18) w = ((w
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Let v e &{Jt) be arbitrary. Then

(i) The map w e &(Jt) -> w e %{Jί) is an

Aut(e/#) - equivariant homomorphism;

(5.19) (ii) ϋw(ϋ)'1 =[Ad(ϋ)(w)Γ;

(5.20) (iii) Adw = Adw.

Now, let α be an action of G on Jt. The exact sequence (5.13) may
then be viewed as an exact sequence of (7-modules. The restriction of
a to

(5.21) N(a)=a

now canonically defines an element

Xa = [λa, μa] e Λ(G, N(a),

as in [11, p. 8]. More specifically, for each n e N(a) choose ύ(n) e
%{J£) with an = Ad(δ(/z)), and note that we have

u{m)ύ{n) = μa(m, n)ύ(mn), m,n e N(a),

άg(u(g-ιng)) = λa(n, g)ύ(n), geG,

where μa: N(a) x N(a) -+ W{&{*)) and λa: N(a) xG-+ ^{^{Jt)).
The pair (λa,μa) is an element of Z{G9N{μ)9

(^{Sr{Jt)))9 and hence
defines an element χa of Λ(G, N(a), ^{^{Jt))).

There is however another invariant coming from the obvious ho-
momorphism of &(Jt) onto Zx{&~(Jί)), the projection to the second
component in (5.1), which induces a homomorphism of 2?(^f) onto
Hι(^(Jt)). With u(n), n e N(a), as above, we write

(5.22) ύ(n) = (iι^(/i)f c(n)) φ e W i e ϋ

and set, for each n e N(ά),

(5.23) va(n) = [c(n)]

The previous arguments show that the cohomology class ua(n) is in-
dependent of the choice of {u(n)}, so that va is an invariant of α.

PROPOSITION 5.7. Let a and β be two actions ofG on Jt. Suppose
that

θ o ag o θ~ι = Ad(w(g)) o βg, ge G,

with θ e Aut(Jt) and w e Zι

β(G, 1ί{Jl)). Then N(a) = N(β) and
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where Aut(^f) acts on

Aut(^pf)) x Λ(G,N(a)9^(^(Jt))) x Hom(iV,Hι

via the diagonal action coming from the module.

Proof. It is trivial that N(a) = N(β), since lnt(Jt) C Cnt(Jt) and
Cnt(JP) is normal in Aut(^f).

Similarly, since lnt{Jt) c ker(mod),

0(modα) = mod(0)mod(α)(mod 0)""1 = modίflαfl""1) = mod/?.

To prove the remaining assertions, choose ϋ(n) e %{J() for n e
N(ά) = N(β)9 say N, with Adv(^) = βn. By Lemma 5.6, we have

Adw(n) o βn = Ad(w(n)~ϋ(n));

however, for m, n e N, we have

w(m)~ϋ(m)w(n)~ϋ(n) = w(m)~βm(w(n))~ϋ(m)ϋ(n)

= w(mn)~ϋ(m)ϋ(n) = ββ{m, n)w(mn)~ϋ(mn),

using U; £ Z^(£?,^(.#)), Lemma 5.6 and the centrality of

in &(Jt).
Similarly, foτneN and g eG,we have

= (w(g)βg(w(g-ι))w(n)βn(w(g)))~λp(n, g)ϋ(n)(w(g)~rι

= w(n)~ βn(w(g)w(g)-ι)~λβ(n, g)ϋ(n)

= λβ(n,g)w(n)~ϋ(n).

These calculations show that there are choices of implementing el-
ements in &(jr) for βn and Ad(w(n)) o βn, n e N, for which the
corresponding elements in Zβ(G, Ny^{^{Jί))) agree. The assertions
that θ(ua) = Vβ and θ(χa) = χβ follow now immediately. D

DEFINITION 5.8. The invariant va of a in the previous proposition
will be called the modular invariant of a. We caution that the modular
invariant ua of a should not be confused with the module mod a of
a. They are in some sense dual to one another.

We now turn to our main result on classification of actions.
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THEOREM 5.9. Let Jΐ be an injective factor of type Hlλ, λ Φ 1, and
let a, β be actions of a countable amenable group G on Jΐ. Then a
and β are cocycle conjugate if and only if

(i) N(a) = N(β);
(ii) For some θ e Aut(^ (.#)), we have

θ(moda,χa,vQ) = (modβ, χβ,vβ).

One implication has been established in Proposition 5.7. The con-
verse will be shown via the following sequence of lemmas.

LEMMA 5.10. If a is an action ofG on Jt, then a is cocycle conjugate
to an action a1 which admits an invariant dominant weight.

Proof. Let φ be an arbitrary faithful semi-finite normal weight on Jΐ,

and let φ be the second dual weight on {Jf κ α G) κ ά G = Jf<8>Jϊf(l2(G)).

By [10], φ is invariant under the second dual action ά. If ω is the

weight on the /«, factor J?(L2(R)) described in [4, p. 496], then φ®ω

is dominant and invariant under a ® id. However, by [16, Lemma

4.7], a is cocycle conjugate to a ® id. D

LEMMA 5.11. If a is an action ofG on J?9 then there is an action a'
ofGonJί and a dominant weight φ on jf such that

(i) a' is cocycle conjugate to α;
(ii) φ is a'-invariant;

(iii) There is a one parameter unitary group { φ j s e R } such that

(a) σf(u(s)) = eistu(s), s.teΈL;
(b) a g ( u ( s ) ) = u{s), geG

Proof. By the last lemma, we may assume that a admits an invariant
dominant weight ψ on Jΐ. We consider the action a'g = ag ® pg and
the weight φ = ψ ® Tr on jt®Jϊf(l2(G)), where p is given by the right
regular representation /?(•) of G on /2(G). By [16, Lemma 4.7], a and
a' are cocycle conjugate.

Clearly, φ is dominant and invariant under a'. Further, by [4, p.
497], there exists a one parameter unitary group {v(s): s e R} in Jί
with σ?(v(s)) = e"istυ(s)9 s,teR. Since {ag: g e R} and {σf: teR}
commute, we have

w(g,s) = ag(υ(s))v(s)* EJ?Ψ, g € G, seR.
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We then have, with θs = Ad(v(s)),

w(g,s + t) = w(g,s)θs(w(g,ή), geG, sjeR;

w(gh, s) = ag(w(h, s))w(g, s), h e H.

For each t e R, the map: geG-+ w(g, ή* is in Zι

a(G, %{Jtψ)). We
set

(w(t)ξ)(g) = w{g-\ tγξ(g

It then follows that

a'g(w(t))w(ty =

and that
w(s)*(θs ® id)(w(t)*) = w(s + t)\

Hence the map s e R -+ w(s)* is in Zι

mή(R, %S(J?®£?(12(G)))Φ). But
θ ® / is stable on jrψ®5?(l2(G)) by [4? p. 497 and 544], so there is a
unitary w eJίψ®^(l2(G)) with

w(t)* = w(θt ® id)(w*), t e R.

It then follows that

w(t)*(v(t) ® 1) = w(v(t) ® l)w*, t e R;

a'g(w(ty(v(t) ®l)) = w(ty(w(t, g)* ® l)(ag(v(ή) ® 1)

= w(ty(w(t, gy ® i)(w(t, g)v(t) ® i)

= w(ty(v(ή®l);

σf{w(sy(v(s) ® 1)) = e~istw(sy(v(s) ® 1).

Therefore, with u(s) = w(υ(s) ® l)w*, we obtain the desired one
parameter unitary group {u(s)}. D

Replacing the action a by α', we assume that a satisfies the con-
clusion (i), (ii) and (iii) of Lemma 5.11, and fixes the one parameter
unitary group {u(s)} of (iii).

LEMMA 5.12. In the above context, let a1: H = G x R —> Aut(Jtφ) be
the action defined by:

(5.24) a[ga) = ag o Ad(u(t)) = ag o θt, {g, t) G H,

and choose a map:

(5.25) n e N(a) -^ vφ(n) = (υ(n), c{n)) e %{Jt)

such that

(5.26) an = AdφVφ(n) = Ad(t;(π)) o 9*{n)9 n e N(a).
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We then conclude the following-.

(i) a'{gt) is inner if and only if(g, t) e N(ά) x {0};

(ii) For n e N(a), v(n) G ̂  and

(5.27) a'n=Adv(n);

(iii) The characteristic invariants of the restriction of a' toGx {0} c
H coincide with the characteristic invariants of a;

(5.28) (iv) oίt{v{n)) = c(n, t)υ(n), n e N(a), t e R,

where c(n, t) is the value ofc(n) e Zι(^(Jt)) at t.

Proof. Let Tr be the faithful semi-finite normal trace on Jtφ such
that the weight φ is dual to Tr, so that Tr o θs = e~s Tr. Since Tr is the
unique trace on Jtφ such that φ = Tr o Eψ9 where Eψ is the ^-valued
weight:

Eφ(x)= [ σf(x)dt, xeJ?+,
JR

the α-invariance of φ implies that Tr o a'g = Tr5 g e G. Thus if a',g t,
is inner, t = 0. Also, if ag = Adv(g) on Jtφ9 then Ad(v(g)*) o ag is
trivial on Jtφ, so that ag = Ad(v(g)) o σf^g) for some c(g) e Zx(Sr{Jί))
by [4, p. 557]. Since φ o ag = φ, v(g) must be in Jtφ, so that g belongs
to N(a). Thus (i) and (ii) are proven.

The assertion (iii) is obvious.
(iv) Since an(u(t)) = u(t), we have

u{t) = v{n)σt{n){u{t))v{ny = v{n)c{n,t)u{t)v{n)*,

which implies (5.25). D

We are finally ready to complete the proof of our main theorem.

Proof of Theorem 5.9. Let a and β be actions of G on Jt as in the
theorem. By Lemma 5.10, 5.11 and 5.12, we may change a and β
within their cocycle conjugance classes and assume

(i) a and β both admit invariant dominant weights φ and ψ re-
spectively;

(ii) there are one parameter unitary groups {u(s)} and {v(s)} in Jt
such that

σf(u(s)) = eisίu(s), σ*(υ(s)) = eistv(s);

ag(u(s)) = u(s), βg{v(s)) = v(s)

for g e G and s, t e R.
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Let a' and β1 be the actions of H = Gx R on Jtφ and Jtψ respectively
as described in Lemma 5.12. Observe that a' and βr both satisfy
Assumption 4.1. By the hypothesis of Theorem 3.5 for a and β, there
is an isomorphism θ of Wφ onto %>ψ (which may be extended to an
isomorphism oί Jtφ onto J?ψ), which intertwines the actions oί on g^
and βf on g^, and which carries the characteristic invariants for a! to
those for β'.

By Theorem 4.2, the actions a' and β1 of H = G x R on ^ and ^
are cocycle conjugate. Now form the partial crossed products / ^ i x R
and Jtψ tx R and the actions α' and β1 (of §1) of G on these algebras.
By Proposition 1.1, these actions are cocycle conjugate. However, δί
is nothing but α, and the same is true for β' and β. Therefore, a and
β are cocycle conjugate. D

Remark 5.13. Our conclusions, up to Lemma 5.12, are all valid for
any factor Jί of type III and for any action of any separable locally
compact group G.

Finally, we turn to the problem of realization of a given set of
invariants by a suitable action. This is not completely straightforward,
as we shall see. One form of solution is, however, easy to give.

THEOREM 5.14. Let β: G-*Aat(&~(jr)) be given, and let

where N is a normal subgroup acting trivially on ^{Jί) via β. Then
there is an action aofGonJί such that

αjα,^) = (β,χ,v)

if and only if

where δ is the homomorphism appearing in the exact sequence (2.4).

Proof. We have seen in Lemma 5.12 that if

for some action a of G on Jt9 then (χ,v) is the restriction of the
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characteristic invariant χa, for the action a' of H = (? x R on / ^
given in Lemma 5.12, so that δ{χ, v) = 1 by Theorem 2.2.

Conversely, suppose that {χ,v) satisfies (i) and (ii). Since β com-
mutes with the flow of weights, it extends to an action a of H =
G x R on &{Jΐ) = srf. By Theorem 2.2 (ii), there exists χ' e
Aa(G x R,N,2S(sf)) such that the restriction of / ' to G and R
gives (χ,v). By Theorem 4.4, there exists an action a' of G x R on
j/<8>^b,i satisfying Assumption 4.1 such that (i) a1 extends α, and
(ϋ) χa, — χ\ Now, let Jt = (j/®^b,i) κ α R be the partial crossed
product, and take a as the canonical action a1 of G on . # . We then
have (χa,va) = (χ,v). •
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