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ALGEBRAIC CHARACTERIZATION
OF THE VACUUM FOR QUANTIZED FIELDS

TRANSFORMING NON-UNITARILY

IRVING SEGAL

Dedicated to the memory of Henry A. Dye

The vacuum as an expectation value form on the Clifford or Weyl
algebra over an orthogonal or symplectic real linear space, invariant
under a given group of automorphisms of such, is treated without
assumptions as to self-adjointness or positivity. This is necessary for
the quantization of fields that transform non-unitarily, in particular
indecomposably, such as the full section spaces of typical conformally
invariant bundles over space-times. A stability condition in the nature
of positivity of the energy is shown to be sufficient to characterize the
vacuum for the basic case of a one-parameter group. In application
e.g. to spannor fields transforming under SU(2,2), this results in a
vacuum invariant under the maximal subgroup K9 giving rise to a
natural broken symmetry.

1. Introduction. From early heuristic beginnings, quantization has
developed into a vast enterprise that is in large part rigorously mathe-
matical. The finite-dimensional case in standard quantum mechanics
was settled essentially by Stone and van Neumann, whose work paid
important mathematical dividends. The infinite-dimensional case was
more refractory, but there are now simple and natural characteriza-
tions of the free boson and fermion quantum fields. At first the quan-
tization procedure treated only systems whose single-particle struc-
ture transformed unitarily under the basic symmetry group, as in the
most familiar physical cases (e.g. the Klein-Gordon, Maxwell, and
Dirac equations). The associated unitary action on the quantized field
Hubert space was then essentially the direct sum of the symmetrized
or skew-symmetrized tensor powers of the single-particle representa-
tion, depending on the "statistics" of the field, i.e. whether bosons or
fermions were involved.

In practice, the \ single-particle action was often, in the more in-
teresting cases, such as when interactions were involved, not unitary
or at least not manifestly unitary, but only symplectic in the case of
bosons or orthogonal in the case of fermions. This led to the study
of the question on unitary implementability on the quantum field of

387



388 IRVING SEGAL

such single-particle actions, and in particular to the treatment of the
infinite-dimensional harmonic and spin representations, of the infinite
symplectic and orthogonal groups respectively. There was a definitive
answer, which showed that unitary implementability was limited to
those symplectics or orthogonals that were close to being unitary or at
least unitarizable.

This excluded many transformations that occurred in practice, as
so-called "canonical" transformations of quantized fields. In order to
accommodate these, it was necessary to give ground on the spatial im-
plementation and adjust to a C*-algebraic treatment, in which states
were no longer represented by vectors in a priori Hubert space, but
by normalized positive linear functional on the algebra. At the same
time, there was an a posteriori Hubert space, determined in part by
symmetry considerations, but not at all uniquely, particularly in the
infinite dimensional case. This a posteriori, or "physical" quantum
field Hubert space, was determined in part by stability considerations,
usually expressed by the phrase "positivity of the energy", but in gen-
eral the energy itself is an a posteriori concept.

This matter of stability has not yet received much attention in the
finite-dimensional case, which has otherwise been effectively explored
in the past several decades in connection with the representation the-
ory of semisimple and other Lie groups. In view of the relatively wide
familiarity with this context, it may clarify the present concern with
the infinite-dimensional case by comparing it with the better known
finite-dimensional context. The finite-dimensional harmonic oscilla-
tor is uniquely determined by its invariance under the unitary group.
Specifically, if H is a finite-dimensional complex Hubert space, and
if (K, W) is a Weyl system over H in the sense that W is a contin-
uous map from H to operators on the complex Hubert space K such
that W{z)W{z') = eV/2)iMz.z')w(z + z') for arbitrary z and z' in H,
there is then a unique (trace-class) state E of the W* -algebra gener-
ated by the W(z) that is invariant under the induced action of the
unitary transformations on H. This induced action Γ(C7) of the uni-
tary U on H is the unitary operator V on K, unique within a constant
phase factor, such that Vw\z)V~x = W(Vz) for all z. This state E
is roughly the ground-state of the harmonic oscillator. In the infinite-
dimensional case, the formalism is well-defined, and in particular the
continuous mapping Γ from unitaries on H to those on K exists, but
the state E invariant under all T(U) is not at all unique [9]. It becomes
unique and represents the conventional vacuum in this context only
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by virtue of a stability constraint. Indeed, the constraint of "positivity
of the energy" is itself strong enough to imply unicity, without any as-
sumption of invariance, except under the one-parameter group whose
generator represents the energy.

In all of this work there is a so-called "single-particle" represen-
tation of the fundamental symmetry group that is irreducible, or a
direct sum or direct integral of irreducibles. Recent natural particle
models have however interlocked the elementary particles in a way
represented mathematically by indecomposability of the underlying
group representation [8, 9A, 11]. The physical processes of partical
decays and weak interactions are potentially quite economically de-
scribed in terms of indecomposable representations, and the section
spaces of induced bundles over space-times, which appear to represent
the natural habitat of classical fields, are often indecomposable. But
the indecomposability produces serious and unprecedented problems
of quantization, i.e. the appropriate replacement of the numerically-
valued components of fields by operator-valued components.

From a mathematical position, the key problem may be described
as the absence of a canonical or a priori adjunction operator * for the
algebra of field observables; rather the * must be solved for. The ba-
sis of the solution must be a combination of invariance and stability
constraints, for the reasons indicated. In general terms, the context
is algebraic, without being C* -algebraic on an a priori basis, as in
Haagerup [6], but more structured than in that work, by virtue of
the cited constraints. The treatment here will be purely mathemati-
cal, apart from some motivational comments, but some background
in algebraic quantum mechanics will be relevant (cf. e.g. Emch [4],
Varadhan [12]). The C*-algebraic analysis of physical issues involving
Dirac articles is treated comprehensively by Bongaarts [3].

Henry Dye made some of the most fundamental contributions to
operator algebra and its applications, especially to the modelling of
theoretical physical systems. This is an offering in honor of his orig-
inality and depth that is in the same technical and philosophic vein,
albeit concerned with particle rather than ergodic theory. As Henry
was a man of exceptional culture and scientific generosity, this should
be appropriate.

2. Fermion algebra. The need for an a posteriori determination of
the * is more evident in the fermion than in the boson case, and I begin
with that. However, in either case, the general mathematical context
is that one is given a real linear topological space L; a non-degenerate
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continuous bilinear form that is either symmetric (denoted as S) or an-
tisymmetric (denoted as A), depending on whether fermions or bosons
are involved. In addition, one is given a representation U of a given
group G into the orthogonal group O(L, S) or the symplectic group
Sp(L, A). The basic algebra in question, or "field algebra", is the Clif-
ford algebra C(L, S) in the fermion case. This is generated by 1 and L
with the relations xy + yx — S(x, y) for arbitrary x and y in L. It is
clear that if S is indefinite, L cannot map exclusively into either self-
adjoint or skew-adjoint operators in a Hubert space representation of
C(L, S), and indeed there is no a priori determination of x* for x
in L.

For any g e G there is an automorphism γ(g) of C(L,5) (denoted
simply as C when L and S are clear from the context) that carries
x into U(g)x, for all x e L. Physical states are represented in the
now familiar way by linear functionals on C having properties appro-
priate to the expectation value form for the state. These are usually
normalization: E(l) = 1, and positivity: E(A*A) > 0, but without
a * the latter important constraint cannot be directly imposed. But
invariance and stability provide further constraints, and my aim here
is to show that these provide a natural and effective substitute; in
particular, eventually a * is attained.

The method derives from the approach to the characterization of
the vacuum developed by Segal [9] and Weinless [13]. The basic case
is that in which G is a one-parameter group whose generator repre-
sents an inherently non-negative quantity, such as the "energy" or "to-
tal particle number". This suffices in particular for the treatment of
"chronometric" particle theory, which in mathematical form is initi-
ated in [8]; the group G is essentially SU(2, 2), but there is a "broken
symmetry", which reduces the invariance of the vacuum to the maxi-
mal compact subgroup K (which is also maximal). K includes a central
one-parameter subgroup, whose generator may be interpreted as the
energy, and in terms of which the vacuum may be defined and treated.

3. Some technical preliminaries. I recall here some terminology and
results that will serve also to fix notation.

A topological linear space L over the real or complex field will be
called Hilbertizable if it is isomorphic to a Hubert space over the
same field (linearly/bicontinuously). An orthogonal topological linear
space (L, S) includes a non-degenerate bilinear form S over L. It is
Hilbertizable as such if L is isomorphic to a Hubert space in such a way
that S is represented by a bounded invertible operator, i.e. takes the
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form S(x, y) = {Tx, y), where T is invertible. A symplectic topological
linear space is defined similarly; such a space (L, A) may alternatively
be defined as one which within isomorphism is a complex Hubert
space regarded as a real topological space, with the form A consisting
oflm( , ).

A covariant quantization of a structure (L, F, G, U), where L is a real
linear topological space on which F is a continuous bilinear form, G a
given topological group, and U a continuous representation of G on L
that leaves F fixed, will be defined here only in the cases in which F is
either symmetric or antisymmetric. When F is symmetric, it is defined
to consist of a structure (K, Φ,Γ, v), where K is a complex Hubert
space; Φ is a real-linear map from L into bounded linear operators on
K satisfying the canonical relations (ΆCR's for short):

Φ(x)Φ(y) + Φ(y)Φ(x) = F(x, y)\

Γ is a continuous unitary representation of G on K such that

Γ(g)Φ(x)Γ(g)-ι=Φ(U(g)x);

and υ is a unit vector in K that is cyclic for the Φ(x), X G L , and left
fixed by all Γ(g). (In these relations, x and y are arbitrary in L, and g
is arbitrary in G.) Such a quantization is stable if G is a Lie group in
the Lie algebra of which is given a convex invariant cone P (relative
to which stability is defined), such that for all I G P , the self-adjoint
generator of the one-parameter unitary group T{etX) is non-negative.

If L is a complex Hubert space H regarded as a real space, with
F = Re( , •), G = Rι as an additive group, and U a one-parameter uni-
tary group on H with positive self-adjoint generator, then it is known
that the structure F (for Fermi) = (K,Φ,Γ,υ) defining a stable co-
variant quantization exists, and is unique within unitary equivalence.
Moreover, this quantization has the property that the representation
Γ extends in the following manner. There is a continuous represen-
tation P of the unitary group on H by unitary operators on K such
that Γ'(U(g)) = Γ(g) for all g e G, and which moreover has the prop-
erty that the self-adjoint generator of V(V(t)) is non-negative for all
continuous one-parameter groups V(-) on H of non-negative genera-
tor. Thus stability with respect to one one-parameter unitary group
with positive generator implies stability with respect to all such groups.
The resulting universal structure (K, Φ, P , υ) is called the free fermion
field over H; v is called the vacuum vector. In the future the prime
on P will be dropped, the context sufficing to distinguish between this
representation and the related one Γ.
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When F is antisymmetric, the definitions are parallel, except for
the intervention of unbounded operators. The commutation relation

Φ(χ)Φ(y) - Φ(3>)Φ(*) = iA{χ, y)

must be interpreted as an inclusion between the operator on the left
and that on the right, that on the left being only densely defined, and it
is technically advantageous (and necessary to avoid irrelevant pathol-
ogy) to use instead the Weyl relations. A Weyl system over (L,A)
is a structure (K, W) in which K is a complex Hubert space and W
is a continuous map from L to the unitary operators on K that sat-
isfies the relations: W{z)W{z') = ehiΛW>W{z + z') I n terms of
W, Φ is defined as follows: Φ(x) is the self-adjoint generator of the
one-parameter unitary group W(tx), t e Rι. If H is a given complex
Hubert space, there is a universal free boson field with properties par-
allel to those in the fermion case, and denoted in a similar way. In
these terms the free boson and fermion vacua may be characterized
as follows (Segal [9], Weinless [13]).

Let (L,F) be a given Hilbertizable symplectic or orthogonal space,
and let U(-) be a given continuous one-parameter group of automor-
phisms of(L,F) leaving no nonzero vector fixed. Then there exists a
free quantization for (L,F,Rι ,U) if and only ifU( ) is unitarizable
with a positive self-adjoint generator, where unitarization includes the
mapping of F into the imaginary or real part of the complex Hilbert
structure. Moreover, the unitarization and the free quantization is then
unique, within unitary equivalence.

As noted earlier,the condition that the self-adjoint generator of the
group T{t) be non-negative is most essential; but in the case of a one-
parameter group of automorphisms γ(t) induced by the action of such
a group on an invariant algebra, there is no a priori equivalent con-
dition. When the algebra is a C* -algebra, and there is an associated
invariant state E, then the canonical representation associated with
E may be used to define the spatial group Γ(ί); but the Clifford al-
gebra associated with an indefinite symmetric form is not canonically
a *-algebra at all. Apart from the positivity of the linear functional
associated with the state vector v, the stability condition, i.e. the
non-negativity of the generator of the group Γ( ), may be stated as fol-
lows: For all elements P and Q of the invariant algebra under the y(ί),
the function of t, E(γ(t)(P)Q) is devoid of negative-frequency compo-
nents. I show here that this condition alone, without any assumption
of positivity, apart from the normalization £(1) = 1, is sufficient to
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characterize the vacuum of the putative quantized field. Moreover,
as earlier, the vacuum exists if and only if the representation £/(•) is
appropriately unitarizable.

4. The fermionic vacuum. In the simplest cases such as that of the
Dirac electron, a stable unitary representation of a group on a complex
Hubert space is substantially given. In this case the Poincare group
acts unitarily on the Hubert space of normalizable wave functions,
in an entirely explicit way (cf. Bargmann and Wigner [1]; Mackey
[7]). In more complex cases, much less is given. Consider for exam-
ple the tensor product of the action of the group G = SU(2,2) on
the section space of the scalar bundle of weight 2 over the conformal
compactification of Minkowski space with the defining representation
R of G, which forms an interesting model known as the spannors (cf.
Paneitz et al. [8]). The action V on the scalar sections is unitary and
decomposes as a direct sum V = V+ © V° © V~~, respectively of pos-
itive, mixed, and negative energy. The component F + x R of the
tensor product has a 3-step composition series whose factors are all
stably unitarizable; but the representation as a whole is indecompos-
able. This poses not merely a technical challenge, but may serve to
describe observed decay processes more effectively than the nonlin-
ear Lagrangians that have been the exclusive model for interactions in
conventional relativistic theory.

This section treats the general issue of how to deal with this type
of situation, by means that will yield concrete results for cases such
as that indicated. The ideas of stability and broken symmetry will be
seen to be effective, in conjunction with symmetry.

Let the group G act on the Hilbertizable real orthogonal space (L, S)
by the representation £/(•). The associated fermion field is represented
algebraically by the Clifford algebra C over (L,*S), on which G acts
canonically as a group of automorphisms, but there is no given * on
C. The basic case is that in which G is a one-parameter group. The
Clifford algebra here will be understood throughout as that with com-
plex coefficients, irrespective of whether the underlying linear space-
cum-quadratic form is real or complex.

THEOREM 1. Let U( ) be a continuous one-parameter group of au-
tomorphisms of the Hilbertizable (real) orthogonal space (L, S) that
leaves no vector in L fixed, other than 0. Let C denote the Clifford
algebra over (L, S), and let u( ) denote the one-parameter group of
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automorphisms ofC canonically induced from U( ). Suppose there ex-
ists a linear functional E on C with the following properties {where
u(t)(Q) is denoted as Qι, for Q e C): (i) E(l) = 1; (ii) E is u( )
invariant: E(Qt) = E(Q) for arbitrary β e C ; (iii) for arbitrary Q and
R in C, E{QtR) is as a function oft the boundary values of a bounded
analytic function in the upper half plane; (iv) E{x\X2 --xr) is a jointly
continuous function of X\,Xι>... ,xr (Xj € L); (v) z/L+ and L- are
U(-)'invariant linear submanifolds ofh on which S is respectively posi-
tive and negative definite, then Έ{xχx2 xr) = {-\)rE(xr X2X\)> if
the Xj are either in L+ or L_, and r is the number ofxj in L_.

Then there exists a complex Hubert structure on L, compatible with
its given real Hilbertizable structure, and a projection P on L as a
complex Hilbert space, denoted H, such that:

(1) [/(•) is unitarizable with positive self-adjoint generator on H;
(2)S(x,y) = Re((2P-l)x,y);
(3) E coincides with the free fermionic vacuum over H.

Proof. Applying E to both sides of the equation xty+yxί = S(xt, y),
it follows that E{xty) + E{yxt) = Stfy). Now E(x', y) is bounded
as a function of t for arbitrary fixed x and y, and E(yxt) = E(y~tx),
which is similarly bounded. Thus S(U(t)x, y) is bounded as a func-
tion of t for arbitrary x and y.

Now choose an arbitrary real orthogonal structure on L that is rep-
resentative of its given Hilbertizable structure, with real inner product
((•,)). Relative to this structure, S takes the form S(x,y) = ((Bx, y))9

where B is a bounded invertible self-adjoint operator. In particu-
lar, S(U(t)x,y) = ({BU{t)x,y))9 from which it follows by the uni-
form boundedness principle that ||2H7(ί)|| is bounded as a function
of t. Hence ||C/(ί)ll als° is bounded. Now let T denote a translation-
invariant generalized mean for bounded functions on Rι, arbitrary but
fixed, and let Q{x, y) = Ί((U( )x, U( )y)). Then Q is a t/( )-invariant
positive definite form on L that is topologically equivalent to ((•,•))•
Consequently there exists a bounded linear operator R on L that is
self-adjoint relative to Q, and such that S(x, y) = Q(Rx, y) for arbi-
trary x and y in L. R is invertible by virtue of the Hilbertizability of
(L, S), and the unicity of R implies that it commutes with all U(t).

From the β- s elf-adj°in t n e s s of R it follows that R — R+ - i?_,
where the R± are non-negative Q-self-adjoint operators with orthogo-
nal ranges L±, relative to which they are respectively invertible. Now
setting \S\(x,y) = Q(\R\x,y) (where \R\ = R+ + Λ-), then \S\ is a
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positive-definite symmetric form on L that is representative of the
given Hilbertizable structure, invariant under all U(t), and such that
S{x, y) = \S\{Kx, y), with K = sgni? = R\R\~K

To construct the complex structure, note the

LEMMA. Let V be a continuous one-parameter group of orthogonal
transformations on the real Hilbert space N leaving no nonzero vector
fixed. Then there exists a unique complex Hilbert space structure on N
relative to which V is unitary and has a positive self-adjoint generator.

Proof of lemma. V has the spectral resolution

where E( ) is a resolution of the identity. Since no nonzero vector
is fixed by all the V(t), 0 is not in the point spectrum for E(-). For
negative values of λ the integrand is equivalent to that for |λ|, via
a similarity transformation on the underlying 2-dimensional space.
Accordingly, by a corresponding redefinition of E( ), the integration
range may be restricted to the interval (0, oo). Now setting / =
/o°° (? "o*) dE(λ), J is a complex structure that is orthogonal and com-
mutes with the V(t). If P is the given real inner product, let {x,y) =
P{χ> y) + iP{x>Jy)\ then the V{t) are unitary relative to ( , •), having
the spectral resolution V(t) = feitλdE(λ). The self-adjoint genera-
tor of V(') relative to the complex Hilbert structure on N is f λdE(λ),
and so positive. The unicity of/ follows from Lemma 1.6 of Weinless
[13].

Completion of proof of theorem Let J± be the complex structures
on L± given by the lemma, with N replaced by L±, V by U, and
the orthogonal structures defined by S\ L + and —5* | L_. Setting / =
/+ Θ /_, then / is a complex structure on L that commutes with the
U(t), is orthogonal with respect to both S and |5 | . Since the U± each
have a positive self-adjoint generator, so also does U. Now combining
the positive definite form \S\ with the complex structure /, a unique
complex Hilbert structure H, whose real linear space is L is obtained,
for which \S\ is the real part of the inner product.

Now let Lc denote the complexification of L, consisting of all x + iy
with X J G L (here / is a coefficient in the Clifford algebra, and distinct
from / ) . For any symmetric bilinear form F on L, let Fc denote the
corresponding complex symmetric bilinear form on Lc:

Fc(x + iy9 x1 + iy1) = F{x, x') - F{y, y') + i(F(xf y1) + F{x', y)).
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O(L, F) is mapped isomorphically into the complex orthogonal group
O(LC,FC) by the map U -> U'9 where U'(x + iy) = Ux + iUy. The
complex Clifford algebra over (LC,FC) is identical as an algebra to
C(L,F), and the respective actions of O(LC,FC) and of O(L,F) on
these algebras are intertwined by the indicated map of O(L,F) into
O(LC,FC).

Applying this to the cases F = S and F = \S\, the resulting forms
Sc and \S\C are equivalent as complex symmetric bilinear forms on Lc,
via the complex linear map W: (x+ + x~) + i(y+ + y~) —• ( x + - y ~ ) +
/(y+ + JC"), where the superscripts indicate the respective components
in I/ . For this means that Cc(z, z') = \S\c{Wzy Wz') for arbitrary z
and z' in Lc. This is straightforward to verify by consideration of the
separate cases z or iz in L±, and similarly for z'. The Clifford algebras
C(I/,F C ) and C(LC, |S|C) are thus canonically identifiable.

The real linear subspace L + + iL- of If, as a complex Hubert space
with real part of its inner product equal to Sc |L+ + /L_, and the
complex structure /+ on L+ and /_ extended by commutativity with
/ on L_, is isomorphic to H via the mapping from x++x~ to x+ + ix~.
On C(H) there is a natural adjunction operation * uniquely determined
by the condition that the elements of H are self-adjoint; and by the
preceding observation, C(H) is identifiable with C(L, S). With respect
to the * in C(H), E(u*) = Έ(u) for arbitrary ueC. To establish this
it suffices by linearity to consider the case when u = y\y2 yn, where
the yj are either in L+ or L_. Now y* = ±y according as u e L±,
so that E(u*) = (-\)rE(yn ^2^1), where r is the number of yj that
are in L_; and by hypothesis on E this is the same as E(y\y2 yn)

To show that E coincides with the vacuum of the free fermion field
over H, it therefore suffices to establish

LEMMA 2. Let H be a complex Hubert space, let £/(•) be a one-
parameter unitary group on H having positive self-adjoint generator,
and let E be a self-adjoint linear functional on C(H) with the property
that E{QtR) is as a function oft the boundary values of a bounded ana-
lytic function in the upper half-plane, for arbitrary Q, Re C(H). Then
E is the vacuum expectation value functional of the free fermion field
over H.

Proof of lemma. For arbitrary X G L , E(X) is a continuous linear
functional of c, and hence of the form E(x) = (x, y), where y is a
unique vector in L. On the other hand, E(xt) = E(x)9 which by the
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unicity of y implies that U{—t)t = y for all t. But U(-) leaves no
nonzero vector fixed, i.e. y = 0 and E(x) = 0 for all x e L.

This is the first step of an induction argument, of which the second
is logically superfluous, but clarifies the general step. Applying E to
both sides of the equation xιy + yxι — Re{U(t)x, y), it follows from
the self-adjointness of E that RtE{xty) = ±Re(U(t)x,y). Both the
left and right sides of the last equality are the real parts of the bound-
ary values of a bounded analytic function in the upper half-plane, as
functions of t. Accordingly, as functions of t they differ only by a
constant as regards their ^-dependence. But the vacuum of the free
fermion field satisfies the hypothesized conditions also. Denoting this
vacuum functional on C(H) as E\ the difference = E(xty) — El{xty)
is accordingly independent of t, but for each y a continuous linear
functional of x, which by the argument above can be invariant under
the U(t) only if it vanishes.

Now as the basis of an induction hypothesis, assume that

E(x\x2 - - xm) = E'(x\X2 Xm) for m < n.

Let y and X\, x2,..., xn be arbitrary in H, and consider

D = E{ytxxx2 •••*„)- {-l)nE(xn x2x\yt)\

by the Clifford relations, ylX\X2 - Xn - (-l)nxn - x2x\yt is an el-
ement of C(H) whose E and E' expectation values agree by virtue
of the induction hypothesis. But the indicated expression is of the
form E(u)±E(u*), showing that either its real or its imaginary part is
determined by the induction hypothesis, and so the same as that for
E'. By analyticity, E[ytX\X2 xn) and E'(ytxχx2 --xn) as functions
of / can differ only by a constant, but again a continuous linear in-
variant functional of y, so they are identical, in particular for t = 0,
completing the induction.

REMARK. If E was known a priori to be a positive linear functional
relative to the *, the lemma would follow from [13], Theorem 2.1, via
the formation of the canonical Hubert space representation of C(H)
associated with E, but this follows only a posteriori. However, the
induction argument given there carries over to the present case.

EXAMPLE. Let G denote the group SU(1, 1), acting in the usual way
by linear fractional transformations on Sι. Let V denote the unita-
rized action of G on the space M of real square-integrable functions on
Sx (unitarized by multiplication by the square-root of the Jacobian).
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Let R denote the defining representation of G, as a real 4-dimensional
representation. Let S denote the (/-invariant real symmetric form

S(φ,ψ)= / Rc(φι(x)ψι{x)-φ2(x)ψ2{x))dx.

With L = M x R, and U = V x R, the context of Theorem 1 is
exemplified, with however U defined on the entire group G rather than
only on a one-parameter subgroup. However, there is a vacuum for
C(L, S) only with respect to the maximal compact subgroup K of G\ no
other one-parameter subgroup admits a vacuum. The corresponding
Hubert space H is identifiable naturally with L2(Sι,C2), with U(t)
acting by rotations on Sι and as eιt on C 2 .

G as a whole acts continuously but non-unitarily on H, and as a non-
*-preserving group of automorphisms of C. In particular it transforms
the vacuum into a linear functional with certain positivity properties
(an infinite-dimensional analog of the finite-dimensional linear func-
tional of the form X —> trXD, where D is a similarity transform of a
positive hermitian matrix of unit trace). This may be interpreted as
an unstable particle production process.

In the case of the group G = SU(2,2) acting similarly on C/(2) by
linear fractional transformations, with R the real 8-dimensional form
of the defining representation of SU(2,2), the situation is similar. The
vacuum is then invariant under the maximal compact (and maximal)
subgroup K of SU(2, 2); K is in fact the isometry group of £7(2) in its
invariant metric, and identifiable locally with the isometry group of
the Einstein Universe, which is identifiable with the universal cover
of 17(2). Cf. esp. [8]. The non-invariance of the vacuum under all of
SU(2,2) is expected in the case of a non-compact simple Lie group
such as SU(2,2), and represents in physical terms a "broken symme-
try" playing an essential role in a proposed comprehensive model [11].

The non-invariance of the vacuum also gives rise formally to a co-
cycle on the whole symmetry group, via normalization of the vacuum
expectation values of the formal implementing operators. Propos-
als for the use of analogous cocycles, related to so-called "Schwinger
terms", have been made by Faddeev [5] and others in the mathemat-
ical physical literature. These raise the question of the effective and
rigorous extension of the action of the group in K by the introduction
of appropriate generalized vectors.

5. The bosonic vacuum. The absence of a Hubert space adjunction
operation is intrinsic to the treatment of the Clifford algebra with
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an indefinite symmetric bilinear form, in a way that differs from the
situation for bosons. The existence of an adjunction operation can
then be regarded as implicit in the conventional assumption that the
Weyl operators are unitary. There is however no compelling necessity
for the universal unitarity of Weyl systems in quantum mechanics.
Such unitarity is often argued on the basis of stability, but metastable
systems are commonplace in quantum physics, and can arguably be
associated with non-unitarity. Moreover, even in one dimension, there
exist regular Weyl systems that are non-unitary and not similar to any
unitary Weyl system (this observation is due to U. Mosco).

It will facilitate and clarify the treatment to introduce an algebraic
Weyl algebra W over a given Hilbertizable linear symplectic space
(1J,A). Relative to any given not necessarily unitary Weyl system
(K, W) over (L,A), the set of all finite linear combinations of the
W(z), z e L, forms an algebra WQ; and if (K;, W) is another such
Weyl system, there is a unique algebraic isomorphism of WQ onto W'o
that carries W{z) into W'(z), for all z e L. The algebraic Weyl alge-
bra is defined as the equivalence class of all such algebras Wo, within
algebraic isomorphisms of the type indicated.

THEOREM 2. Let (L, A) be a Hilbertizable linear symplectic space,
and let U( ) be a continuous one-parameter group of linear symplec-
tic transformations fixing no nonzero vector in L. Suppose also that
A{U(t)x, y) is bounded as a function oft e Rι for fixed x, y in L.

Let E denote a linear functional on the algebraic Weyl algebra over
(L,A) with the properties: (i) E(l) = 1; (ii) E(W(-z)) = Έ(W{z))\
(iii) ifQ —• Q} denotes the automorphism o/W that carries W(z) into
W(U{t)z), then for all Q,R e W,£(Q'i?) is as a function oft the
boundary values of a bounded analytic function in the upper half-plane\
(iv) φ(z) = E(W(z)) is continuous as a function of z, and for fixed
z, φ(sz) = o{eksl) for arbitrarily small k> 0, as s —• oo.

Then there exists a complex Hubert structure on L, whose real Hilber-
tizable structure is the same as that given in L such that

(1) U(') is unitary with positive self-adjoint generator on H;

(3) E coincides with the free vacuum over H.

REMARK. The condition that A(U(t)x, y) be bounded for fixed x, y
is essentially implied by the other assumptions in case E can be natu-
rally extended to polynomials in the "fields" Φ(x), i.e. the generators
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of the one-parameter groups [JV(tx): t e Rι], using the observation
that the commutator of these fields is substantially the given form A.
This property of E, in the nature of the existence of moments of the
pseudo-distribution (in the probability sense) defined by E (indeed
the existence of first and second moments suffices) is often assumed
in considerations involving the vacuum of a quantized field.

LEMMA. Irrespective of the assumptions on E, L admits a complex
Hilbert space structure, to be denoted as H', whose real Hilbertizable
structure is the same as the given one in L, relative to which the U{t)
are unitary, and such that A(x, y) — Im(x, y) for arbitrary X J G L .

Proof of lemma. As in the proof of the analogous lemma for The-
orem 1, there exists a [/( )-invariant positive definite real symmetric
form S on L defining the given Hilbertizable structure. By the Hilber-
tizability of (L, A), there exists a unique bounded invertible real-linear
operator R on L such that A(x,y) = S(Rx, y) for all I J G L ; more-
over, R commutes with the U(t), by virtue of its unicity and the in-
variance of S and A. Since

A(x, y) = S(Rx, y) = -A{yf x) = -S(Ry, x) = -S(x, Ry),

R is skew-adjoint relative to the real Hilbert space with fundamental
form S. Setting J = -R(-R2)~1/2, then J is a bounded invertible
linear operator on L, commutative with the U(t), and such that J2 =
— 1. Moreover, A(Jx,x) is non-negative and vanishes only if x = 0,
since

A(Jx,x) = S(RJx,x) = S(-R2(-R2yι/2x,x) = S({-R2yχl2xfx).

Accordingly the definition (x, y)1 = A(Jxy y) + iA(x, y)> together with
J as complex structure, endows L with the structure of a complex
Hilbert space H'. Since the U(t) commute with / and leave A invari-
ant, they are unitary on H'.

Proof of theorem. Let H denote the self-adjoint generator of the
unitary group U{ ) on H that exists by the lemma, and let H± denote
the subspaces on which H is respectively positive and negative. Ac-
cording to the Weyl relations, W{-z)W{zl) = eWΛβwφ - z). It
follows that eiA^ι'z^2E(W(zt - z)) is as a function of t in the class
C of functions on Rι that are continuous and are boundary values of
bounded analytic functions in the upper half-plane.
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Now suppose z e H_. Then g(t) = e<z~''z> is in C, and setting
/(/) = eW WEiW^z1 - z)), then f{t)g{t) is also in C. Now

f(t)g(t) = eKt{zt'z)l2E{W{zt - z))

since

(z-t,z)=Rφί,z)-ilm(zt,z).

Replacing z by - z , it follows that eR e< z ' ' z>/2£(W(-z r + z)) is also
in C, but this function of t is the complex conjugate of f(t)g(t),
since E(W(-z)) = Έ(W(z)). It follows that f(t)g(t) is a constant,
and setting ί = 0, it results that E(W{zt - z)) = e<^)/2-Re<z',z)/2 =

e\\z'-z\\2/4^ o n r e p i a c i n g z by sz, this grows too rapidly as a function
of 5, unless zt = z, which is impossible for all t unless z = 0. Thus H
consists only of the zero vector.

If z € H+, then Λ(ί) = έHz''z> is in C, and

f(t)h(t) = e-R e<z ' 'z>£(fF(z' - z))

is also in C. The same argument as earlier shows that fh is constant,
as a function of /, and evaluating it by setting t = 0, it results that
E(W(zt - z)) = e~Hz'~zH2/4. Since vectors of the form zι - z are dense
in H (the generator of £/(•) is positive as a consequence of the absence
of fixed nonzero vectors), it follows that E{W(z)) = e~Hzll2/4 for a\\
z in H. Thus E coincides with the free vacuum expectation value
functional for the boson field over H.

6. Discussion. The question of unicity of the vacuum is readily
treated by the methods used above. In the fermionic case, the com-
plex structure is unique, but the remaining Hubert space structure is
unique only within a complex-linear transformation in O(L, S). Such
a transformation may be interpreted physically as that between dif-
ferent observers, whose vacua may thus appear distinct, although re-
lated by a well-defined symmetry, in the non-unitary case. In the
non-unitary case the boson vacuum is unique [13].

Although the parallel between fermion and boson fields is strik-
ingly close, there are fundamental differences both mathematically and
physically. The antiparticle phenomenon appears inherent in the case
of fermions, but some bosons such as photons appear as their own
antiparticles. This seems reflected in the natural occurrence of indef-
inite forms, representing algebraic particle number, or a generalized
charge, in the case of fermions, as in the Dirac theory. The murky
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treatment of antiparticles via "hole" theory, or the clearcut but op-
portunistic treatment via the interchange of creation and annihilation
operators for the antifermions, may be regarded as in part precursors
to the transition from an indefinite to a definite form deduced here
via the constraint of stability for the vacuum.

For the stabilizable unitary representations of the conformal group
SU(2,2), such as that for the massless Dirac equation, the vacuum
gives rise to bounded holomorphic functions not only in the dual half-
plane to the energy as above, but to such functions in the tube over
an invariant convex cone in the dual of the Lie algebra (that of all
infinitesimal conformal displacements into the future, in the case of
the Dirac equation). In the section space of the spannor bundle, how-
ever, the massless Dirac equation characterizes non-trivial (indecom-
posable) quotients of /^-representations, which cannot be separated
from the other factors in the composition series, resulting in a fun-
damental overall vacuum that is only X-invariant, and so observer-
dependent. The choice of an observer at a point is interpretable as
a choice of K, so that the isotropy subgroup implements changes of
local frame of observation.
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