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Dedicated to the memory of Henry A. Dye

We consider the problem of characterizing Poisson boundaries
of group-invariant time-dependent Markov random walks on locally
compact groups G. We show that such Poisson boundaries,
which by construction are naturally G-spaces, are amenable and
approximately transitive (see Definition 1.1 and Theorem 2.2).

We also establish a relationship between von Neumann algebras
and Poisson boundaries when G = R or Z. More precisely, there
is naturally associated to an eigenvalue list for an ITPFI factor M,
a group-invariant time-dependent Markov random walk on R whose
Poisson boundary is the flow of weights for A/ (Theorem 3.1).

0. Introduction. ‘Henry Dye’s work has a lasting impact on ergodic
theory and operator algebras. We present this paper, which deals with
both of these subjects, as a tribute to his mathematical achievements
and his gentle and unassuming character.

We consider the problem of characterizing Poisson boundaries of
group-invariant time-dependent Markov random walks on locally
compact groups G. We show that such Poisson boundaries, which by
construction are naturally G-spaces, are amenable and approximately
transitive (see Definition 1.1 and Theorem 2.2). We believe that the
converse also holds, namely that these two conditions precisely char-
acterize such Poisson boundaries. Under the pressure of time, we
have not yet completed our proof. However it is true in the transitive
case (Theorem 2.4), and when G = R or Z (Theorems 3.2 and 3.4).
Theorem 2.6 is the beginning of our attack on the general case.

We also establish a relationship between von Neumann algebras
and Poisson boundaries when G = R or Z. More precisely, there
is naturally associated to an eigenvalue list for an ITPFI factor M,
a group-invariant time-dependent Markov random walk on R whose
Poisson boundary is the flow of weights for M (Theorem 3.1). The-
orem 3.3 gives the corresponding result for G = Z. This unexpected
identification has interesting applications in both directions. Using
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226 A. CONNES AND E. J. WOODS

some non-trivial theorems from operator algebras, we determine the
Poisson boundaries for G = R and Z (Theorems 3.2 and 3.4). Con-
versely, the harmonic function description of Poisson boundaries gives
a remarkably simple proof of the 7-set condition for ITPFI factors
(Theorem 4.2). Just as the ITPFI factors are related to the Pois-
son boundaries of random walks on R and Z, the hyperfinite factors
(which properly contain the ITPFI factors) are related to the Poisson
boundaries of matrix-valued random walks on R and Z (see §3 (iii)).

Section 1 discusses the relevant results from von Neumann alge-
bras, including the approximate transitivity condition. In §2 we recall
the construction of the Poisson boundary, and present our incomplete
characterization. In §3 we give the relationships between approxi-
mately type I (hyperfinite) factors and random walks on R and Z.
Section 4 contains an application to the 7 set. Appendix A identi-
fies the Poisson boundary as the Mackey range of a certain cocycle.
Appendix B contains a remark on the Choquet boundary.

NoTtATION. All groups are second countable locally compact. Group-
invariant Markov random walk always means a right group-invariant
Markov random walk (see §2). Haar measure is always left Haar
measure. All measure spaces are standard measure spaces. If u is
a measure, then ||u| always denotes the L!-norm of u. If X is a G-
space, u is a finite measure on X, and A is a finite measure on G, then
Axu= [ di(g)gH(x) where dgh(x) = du(g'x). A is the measure de-
fined by di(g) = di(g~!). If A is a subset of a convex G-space, then
CogA denotes the closed convex hull generated by all ag(a), a € 4,
g€eaq.

1. Eigenvalue lists, ITPFI factors, and the flow of weights. A fac-
tor which can be constructed as an infinite tensor product of finite
type I factors is called an ITPFI factor. These factors are the non-
commutative analogues of product measures of probability on finite
spaces. An ITPFI factor M is determined by giving an eigenvalue list
(/lnl’ cee ﬂlnk,,)neN where lnl 2 '{nZ 22 /lnk,, >0 and Z?:l '1'11 =1
for all n. M is then of the form M = Q). ,(M,, ¢,) on the Hilbert
space H = ®;> | (Hy,, 9,) where the M, are type I; factors acting on
H,, and ¢,(x) = (x@n, @n) is a faithful state on M,. The 4,; are the
eigenvalues of p, € M, where ¢,(x) = Trace p,x.

The ITPFI factors belong to a larger family, namely the approxi-
mately type I factors. A von Neumann algebra M is said to be ap-
proximately type 1 (or hyperfinite) if it is of the form M = (U;>, M,)"
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where M,, C M, and each M, is a finite-dimensional matrix algebra.
In the classification problem the approximately type I factors are the
most natural class [4]. The type II; approximately type I factor has
long been known to be unique [13]. The remaining non-type I ap-
proximately type I factors are completely characterized by their flow
of weights (an ergodic R-action which is naturally defined as an in-
variant of the factor) [12, 4, 6, 10]. All ergodic R-actions appear in
this way. It is trivial that ITPFI implies approximately type I, but the
converse is false and non-trivial [11, 3]. Recently we have completely
characterized the ITPFI factors by a new ergodic property of their
flow of weights, which we call approximate transitivity [7].

DerFINITION 1.1 Let G be a Borel group, (X,v) a standard mea-
sure space, and a: G — Aut(X,v) a Borel homomorphism. We say
that the action is approximately transitive if given n < oo, finite mea-
sures Uy,..., 4n < v, and & > 0, there exists a finite measure u < v,
gi,-..,8m € G for some m < oo, and A, >0, k =1,..., m, such that

<eg, j=1,...,n

m
uj— Z'ljkagkﬂ
k=1

If G = Z and « is approximately transitive, then we say that T = «a(1)
is approximately transitive.

For ITPFI factors, there is a straightforward formula for the flow of
weights in terms of the eigenvalue list (see §3). But since this formula
involves an ergodic decomposition, there is the obvious question of
giving a simple interpretation of the flow in terms of the eigenvalue list.
In this paper we give an answer to this question by identifying the flow
of weights for an ITPFI factor M as the Poisson boundary of a group-
invariant Markov random walk on R which is naturally associated to
an eigenvalue list for M. The Poisson formula then identifies the flow
of weights with the harmonic functions of the random walk.

2. Group-invariant Markov random walks, approximate transitivity,
and amenability. Recall that a right group-invariant Markov random
walk on a group G is determined by a sequence of probability measures
o, ([14], p. 27). Namely the transition probability from g € G to
the Borel set A, at the nth step, is given by P,(g, 4A) = o,(g"1A).
In particular P,(g, g4) = P,(e,A) = g,(A). The right random walk
is invariant under left translations (see (2.1) below). One defines a
Markov chain of random variables Y, as follows. Let X,((gx)) = &
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be the canonical sequence of G-valued independent random variables
with distributions ¢, on the probability space (GV,II® ,a,). Let gy
be a probability distribution equivalent to Haar measure on G (o is
the initial distribution for the random walk). Then on the probability
space Q = (G x G, 0y x 6) we define Yy((g,)) = g and Y, =
Y, X4, n=0,1,2,.... Note that Y, has the distribution g * g} *
-+« * g, which evolves, at the nth step, from the initial distribution g,
according to the random walk. G acts on Q by

(2.1) 8(gn) = (88), n=012,....

In general we shall shift freely from left group actions on a mea-
sure space Q to right group actions through the equality gx = xg~!.
The asymptotic algebra of the random walk is defined by & =
Npe; 0(Yy, k > n) where (Y, k > n) denotes the abelian von Neu-
mann subalgebra of L>°(Q) consisting of functions measurable with
respect to the g-algebra generated by the Y;, k > n. Thus an asymp-
totic random variable is one which does not depend on the first n
coordinates of the path. The Poisson boundary (B, 1) of the random
walk is defined in terms of the asymptotic algebra by .« = L°(B, u).
The Poisson boundary is a G-space under the restriction of the G-
action on L*°(Q) to &4, (which is invariant under this action). In fact,
the Poisson boundary can be identified as the Mackey range of a cer-
tain cocycle a: (G x GV) x K — G where K is the restricted infinite
product of copies of G (see appendix A).

We define a harmonic function h for the random walk to be a se-

quence &, € L>°(G, dg) satisfying
2D (@)= [ (8 don(8) = huey O

where & denotes the image of ¢ under the map g — g~!. This con-
dition is just the meanvalue property, namely 4,(g) is the average,
according to the random walk, of 4, . (This definition corresponds
to the Q-harmonic functions in [14].) The harmonic function 4 is
called bounded if sup, ||/|l0 < co. The Poisson formula (see [14],
Proposition 2.3, p. 165)

(2.3) hn<g>=/z<go,g1,...,gn...>dP;”>(gn,gn+1,...>

associates a bounded harmonic function to any bounded asymptotic
random variable .Z". Pg(”) is the Markov measure for the Markov ran-
dom walk which begins at the rth step at the point g and then con-
tinues according to the random walk defined by the sequence 0,1,
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On42,-... Note that Z does not depend on the first n coordinates.
This association is one-to-one since one can use the martingale theo-
rem to show that

Z(w) = nlLIBO hn(Yn(w))

for a.e. w € Q. The operators Py ,,: L°(G,dg) — L*(G,dg) defined
by

(2.4) Penf =f %0nxGpy % %0y,  k<n,
satisfy
(25) hk = Pk,nhn’ k< n.

This identification of L*°(B, u) with bounded harmonic functions
is basic for our results. We begin with

LEMMA 2.1. Let ¢ € L(G), h = (h,) € L*(B). Then the equation

(2.6) (1. Thg) = [ ha(ep(8)de
defines a contraction I1,,: L'(G) — L!(B) satisfying
(2.7) I.(Pg,9) =Ik(p), k<n

Proof. For fixed ¢, the right-hand side of (2.6) is a normal linear
functional on L*°(B). Therefore it defines an element I1,¢ of the
predual L*(B), = L'(B). It follows directly from (2.6) that ||I1,|| < 1.
(2.7) follows from

(Lo, k) = (9, b)) = (@, Penhn) = (P, 0. hn). o

THEOREM 2.2. The Poisson boundary of a group-invariant Markov
random walk on the group G, considered as a G-space, is approximately
transitive and amenable.

Proof. (i) Since approximate transitivity (see Definition 1.1) is an
approximation property in L!(B), it suffices to prove it on a dense
set. We will do this by exhibiting L!(B, ) as an inductive limit of
L(G,dg), i.e. of transitive actions of G on G. (Transitive actions are
trivially approximately transitive.)

Let h € L*(B), 9 € L'(G). Since h # h' implies h, # h, for
some n, the linear functionals L, ,(h) = (h,I1,9) = (h,, ¢) sepa-
rate points in L*°(B). The Hahn-Banach theorem now implies that
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Uneny A (LY(G)) is dense in L'(B). It follows from (2.7) that
I1,(LY(G)) c II,,,1(L'(G)), so that the embedding is inductive.

(ii) The idea of the proof of amenability is that L>°(B) is a projective
limit of L*°(G), and that the transitive action of G on G is amenable.
Our definition of amenability ([15], [8]) is the existence of a map
P: L>®°(B x G) — L*(B) satisfying

(1) P =0,

(ii) P(F (b)) = F(b), and

(iii) P(hF) = h(PF) for all h € G,
where hF(b,g) = F(bh,h~'g) and hF(b) = F(bh). We begin by
proving the amenability of the transitive action of G on G. Let F €
L>*(G x G) and let p be any probability measure on G. Then

(2.8) (PpF)(81) = F(gi. &)dp(g; ' &)

€6

satisfies (1) and (ii) trivially, and

29 wpE) = [ FOs g)dnie) s

= | F(h'g.h7'&)dp(gy' &) = Py(hF)
£:€G
where we set g, = hgj). Note that with our conventions, when B = G,
we have (g) h = (h~!g).

Now let F € L>®(B x G). For fixed g, F (b, g) € L*(B) for a.e.
2 € G. Hence F (b, g,) corresponds to harmonic functions F, (g, £)
satisfying Py ,Fr(g1,82) = Fr(g1, &) where k < n and Py, acts on
the first variable g;. Note that PF is determined by giving (PF, ¢) on
the dense set of ¢ € L1(B), which, for some k < oo, are of the form
¢ = I (¢1), 9x € L'(G). Now let (py),en be probability measures on
G, and let w be an ultrafilter on N. We define

@10)  (PEg) =tim | (B, F)(&)(BE,p) (1) d

where P, is given by (2.8). Trivially P > 0 so (i) is satisfied. Since
P(1) =1, it follows that || PF || < ||F|lcc and hence PF is well defined
by (2.10). If F(b, go) = F(b) has no g dependence, then F,(g;, £2) =
F,(g1) and P, F, = F,. Using (2.5), (2.6) and (2.10) we have

(2.11) (PF, ¢) = Wim(Py , Fy, 1) = Uim(Fy, gic) = (F, 9).

Hence (ii) is satisfied.
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To check condition (iii), note that using (2.1) we have for G €
L>(B),

(G, T (g1)) = (hG)i, o)
- / G (h™' g)7e(g) dg

Hence
h* (i (9k)) = T (B ).
Thus
(h(PF),9) =(PF.h*p) = licgn(PpnFn,P;;*,n(h“(/)k)).

Using (2.9) and (2.10) we have
(P(hF), ¢) = im(P, (hFyn), P{ 0k
= lim(h(Pp, Fn), P, 01)
= lim(P,, Fu, h™" (P}, 04))
= lim(Py, Fu, P, (A" 9)

where the last step used the fact that the right-invariant Markov ran-
dom walk commutes with left translations. Thus (iii) is satisfied. O

Zimmer has proven the amenability of the Poisson boundary of
stationary group-invariant Markov random walks ([15], Theorem 5.2).
However his mehod does not seem adaptable to the non-stationary
case.

REMARK 2.3. Theorem 2.2 has an obvious generalization to the case
where the state space for the random walk at the nth step is a G-space
X,, rather than the group G itself. Group-invariance has the obvious
meaning here, but the transition probability at each step is no longer
specified by giving a single probability measure on G. It is clear from
the proof of Theorem 2.2 that if each X, is approximately transitive
(resp. amenable) then the Poisson boundary is approximately transi-
tive (resp. amenable). In particular, for matrix-valued random walks
on G (see §3(iii) for a discussion of matrix-valued random walks on
R and Z), the state space X, is a finite disjoint union of copies of G
acting transitively on G, and hence amenable. It follows that the Pois-
son boundary of a matrix-valued random walk on G is an amenable
G-space.
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THEOREM 2.4. A transitive amenable action of a group G is the Pois-
son boundary of a group-invariant Markov random walk on G.

We prove first

LEMMA 2.5. Let %, j = 1,2, be group-invariant Markov random
walks on G defined by the probability measures (o, oV ))ke yonG. If

(2) (2

. 1
(212)  lim flow) x o)+ k0l =0« g x w0 =0

n+l

then the Poisson boundaries of %, and %, are isomorphic (i.e. they are
conjugate as G-spaces).

Proof. Let (B;, u;) denote the Poisson boundaries of .%;. Recall
that any h/ € L®(B;, u;) corresponds to a harmonic function (4},)nen,
hy € L®(G,dg). On L®(G, dg) we define the operators

(2.13) Pr{,mf=f*5,(y{)*&,(,{)l *O'(J) n<m

(see (2.4)). Then we have ||P/,,|| < 1, P} .hi, = hj, and (2.12) be-
comes

(2.14) Lim_||Py, ~ Prpll =0

n.m—

We will show that the equation
(2.15) h? = Jim P2,.h},

defines an isometry © from L*®(By, u;) onto L*®(B;, uy). Let (h)) be
harmonic for #;. Define h2,, = P2,hl,, m > n. If m' > m we have

(2.16) h2 = hi .= P[P — Pl kL.

Since ||h!}|oo = sup ||} ||eo, it follows from (2.14) that 42, is Cauchy
in m, and hence the limit in (2.15) exists in L®-norm. In particular
we have

2.17) sup 2o < 1o

and hence ||©|| < 1. We also have

2 1
h n%l_l'gop n+1 n+lmh

P2

n+l,m

Since ||P2,, [l < 1 and |2 L = 0 we have

n+1

(2.18) h2 = P2, . h2,.,
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i.e. (h2) is harmonic for %,. Thus we have
©: L™(By, u1) — L=(By, wa).
To prove that © is onto, we define ¥: L>®(B,, uy) — L*(By, u;) by
(¥h?), = lim P}k,
Using (2.14) we have
(219)  (O(¥h?) = lim PL,,(¥h)n
= lim P?,P) P2

m,m’'—o00
— 3 2 2 1 _ p2 2
- m}rll;goo{hn + Pn,m[Pm,m' Pm,m']hm'}

— K2
= h?,

which proves that ©¥ = 1, and hence © is onto. Since |[¥| < 1, it
follows that © is an isometry. Finally, since P?,, commutes with left
translations (see (2.1)), it follows directly from (2.15) that © inter-
twines the G-actions. O

Proof of Theorem 2.4. A transitive action of G is necessarily the
canonical action of G on G/H where H is the fixed-point subgroup
(G/H denotes the space of right cosets). This action is amenable if and
only if H is amenable ([16], Proposition 4.3.2). Since G and therefore
H is second countable, Reiter’s condition ([9], pp. 43-44) gives a
sequence of probability measures u, on H such that || gu, — un||; — 0
for all g € H, where (gu,)(A) = un(g~'4). We will show that for
the random walk %, defined by the u,, the harmonic functions are
precisely the constant sequences /4,(g) = f(Ilg) where f € L*(G/H)
and I1: G — G/H is the quotient map. Le. the Poisson boundary is
L>*(G/H).

Let f € L*(G/H). Since the measures u, are supported on H and
Il(gg') =Il(g) if g’ € H, it follows from (2.2) that 4,(g) = f(Il(g))
is harmonic. Conversely, let (4,) be harmonic. Fix x € H. Then for
all g € G we have, using (2.2),

(2.20)  |Am(8) — hm(gx)|
= l / Pons1 (88N Apme1(8') — A1 (x7'g")]

< Nalloolltm+1 = Xttmatll " 0.

—00
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Hence
|nn (&) — hn(8X)| = |(Prmhm) (&) — (Pumhm)(gx)|
< HAm () = Am(-X)[loo oo 0

and 4,(g) is constant on H cosets for any n. It now follows from
(2.2) that h,(g) = h,(g) for all m < n, and hence h,(g) = f(Il(g))
for some f € L*(G/H).

The random walk %Z; is confined to the subgroup H. The desired
random walk %, is now defined by the measures g, = ayu,+(1—a,)¢n
where the {, are probability measures equivalent to Haar measure on
G, 0 < a, < 1, and the «a, — 1 sufficiently fast that (2.12) is satisfied
(take o, = 1 — 1/n? for example). It then follows from Lemma 2.5
that %, has the same boundary as %, . m]

(2.21)

THEOREM 2.6. Let (X, g, G) be an approximately transitive G-space.
Then there exists a group-invariant Markov random walk % on G with
Poisson boundary (B, u, G), and a G-equivariant isometry 6: L*(X, o)
— L%(B, n). Le. an approximately transitive G-space is a factor of the
Poisson boundary of some group-invariant Markov random walk on G.

Proof. Let P(X, o) be the space of finite measures » on X, v < o.
We will construct a sequence of probability measures g, € P(X, o)
such that (i) Cog((0x)nen) = P(X, o), and (ii) 6, = A, * 0, where
the A, are probability measures on G. % will be the random walk
defined by the 4,.

Choose (vy)nen dense in the L!'-norm in P(X,a). Choose &, > 0,
Y nen€n < oo. Since (X, 0,G) is approximately transitive, we can
choose inductively probability measures g, € P(X, g) such that

d(v,Cogoy) <en forv=oa,_ |, v,..., V.

Then Cog((0!)nen) = P(X,0), and there exist probability measures
An on G (see Remark 2.2 (ii) of [7]) such that

(2.22) llon = An * Gyl < €nt1.
For n < m let
(2.23) Onm =An % Apyy %% A %0y ).

For n < m; < m, we have, using (2.22),
m;

NOn.mi — Onm,| < Z Ek+1
k:m\
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which tends to 0 as m;,m; — oo. Since P(X, g) is complete in the
L!'-norm, we can define

(2.24) on = lim gy .
m-—o0

Since ||A * v|| < ||A|| ||¥]| and G4,m = An * Opy1.m it follows that
(2.25) an - }.n * Gn+1.
Since
oo
low—all< 3 & = 0
k=n+1

it follows that the g, also generate P(X, o).
Define ©,,: L®(X,a) — L*(G,dg) by

(2.26) ©n1)(g) = / £(gx™) dow(x).
Using (2.25) we have

(227)  (@.f)(g) = / / £(8xY) dan(k) dysy (k' x)
= [[ fteky) dnth o)

= [(©ni1f)ek™) din(k) = ©py1f +

Thus (0, f),cn 1s harmonic for the random walk .%Z. The map © is
now defined by ©: f — (6,.f)nen-
Using (2.1) and (Af)(x) = f(h~1x) we have

(228)  (@u(hf))(g) = / F(h™" gx) dan(x)
= (©.1)(h'8) = (h(©@n1))(g)

which proves the G-equivariance of ©.

It remains to prove that © is an isometry. Since the g, are probabil-
ity measures, it follows from (2.26) that ||©,]| < 1, and hence ||©] < 1.
We will prove that lim,_, ||, f |l = || f]leo for all f € L>(X, g). Let
f € L*(X,0), ¢ > 0. Then there exists ¢ with |c| = || f]l such that
the set

(2.29) A={xeX:|f(x)—c|<ie}

satisfies g(4) > 0. Let o4 denote the restriction of o to 4. By a
theorem of Varadarajan ([16], Theorem 2.1.19), we can assume that
the action of G on X is continuous. Since the g, generate P(X, o) it
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follows (compare [7], Remark 2.2 (ii), (v)) that there exist # < oo and
A€ LY(G,dg), |All = lloall = o(A), such that

(2.30) o4 - / dgA(8)80|| < 1ea(A)/1 llo-

Let

7= [ dgis) [ don(g™\x)5 ().
If follows from (2.30) that
(2.31) ‘J —/f(x)daA(x)‘ < }ea(A).
(2.29) implies that

(2.32)

co(A) —/f(x)daA(x)l < je.

Since |¢]| = || f]loos (2.31) and (2.32) give
(2.33) I = [ fllco (4)] <&
But
J = / dgh(g) / don(y)f(gy™")

_ / dgA(g)(©nf)(g)

and hence
(2.34) 1 < 118n S lloollAll = |Onf llooo (4).
(2.33) and (2.34) give

1On S lloo > 11 oo =

and hence limy—.o [|04f[loo = ||/ |loo-

For the last remark, recall that a factor of a G-space (B, ¥, u, G)
is just the restriction of (B, u,G) to a g-algebra % C ¥ which is
G-invariant. Here one takes %4, to be the o-algebra generated by
O(L>®(X, g)). O

3. Eigenvalue lists and random walks.
(i) Random walks on R.
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THEOREM 3.1. Let (A1, ..., Ank )nen be an eigenvalue list. There
is naturally associated to this eigenvalue list a group-invariant Markov
random walk on R whose Poisson boundary is canonically identified,
as an ergodic R-action, with the flow of weights for the ITPFI factor
defined by this eigenvalue list.

THEOREM 3.2. The Poisson boundaries of the group-invariant
Markov random walks on R are precisely the approximately transitive
R-actions.

Proof of Theorem 3.1. Let A, = {1,...,k,} and let u, be the prob-
ability measure on A4, defined by u,({j}) = 4,,. Define ¥,: 4, — R
by ¥,(j) = log4,j, and let o, = ¥,(u,). The measures o, define the
desired random walk.

The flow of weights for M can be constructed as follows ([6], Corol-
lary 6.3). Let (A4, u) =II5° ,(An, un). Let R act on A x R by (a,t)s =
(a,s + t). Define an equivalence relation S on A x R by (a,t) ~
(b, u)(S) if there exists m < oo such that a, = b, for all n > m
and u —t = X" | 1og(4,p,/Ana,). The flow of weights for M is then
the ergodic action of R on the algebra &/ of S-invariant elements of
L>®(A x R, u x dt) where dt is Lebesgue measure.

The Poisson boundary of the random walk was defined in §2 in
terms of the asymptotic algebra .24, which is the Sq-invariant subset
of L®(R x RN, dt x u) where Sq is tail-equivalence for the Markov
chain Y, = Yo+ > ;_, Xix. Since Y, — Y,_; = X, it follows that
in R x RN we have ¢ ~ d(Sq) if and only if there exists m < oo
such that ¢, = d, for all n > m and ). ¢, = Y _yds. Define
¥: AxR — Rx RN by ¥((an),t) = (¢, (¥n(ay))). Rewriting the above
equation as dy — ¢o = »>_,(cx — dn), We see that the measure-space
isomorphism ¥ maps &/ to %,. Finally, we note that ¥ commutes
with the R-actions when restricted to these o-algebras. O

Proof of Theorem 3.2. This follows immediately from Theorems 2.2
and 3.1, and the fact that the flows corresponding to the ITPFI factors
are precisely the approximately transitive flows ([7], Theorem 8.3). O

(ii) Random walks on Z. Let 0 < T < co. Let M = @7 | (M, ¢n)
be an ITPFI factor with 7" € T (M). Using either ([1], Lemma 11.2) or
([3], Theorem 1.3.2) one can choose the states ¢, so that a?" =1 for
all n. The eigenvalue list (4,,,..., Ank,) defined by the states ¢, then
satisfies (A,;/A)T =1 for all n, j, k (i.e. the ratios 4,;/A,; are all
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some integer power of A = e=2*/T). Hence we can write 4,; = 1% D,
dnj € Z where D, = Ef":l A, Conversely any such eigenvalue list
defines an ITPFI factor M with T € T(M). Since T (M) is the point
spectrum of the flow of weights F ,M , the flow can be built under the
ceiling function of constant height 2/ T with the base transformation
B=F {‘,{ /T The conjugacy class of B determines the conjugacy class
of the flow, and hence M (up to isomorphism). We shall call B the
modular transformation.

THEOREM 3.3. Let 0 < T < oo. Let (Any, ..., An, )nen be an eigen-
value list satisfying (Anj/An)'T =1 for all n, j, k. This eigenvalue list
defines an ITPFI factor M with T € T(M), and all such factors are
obtained in this way. There is naturally associated to this eigenvalue
list a group-invariant Markov random walk on Z whose Poisson bound-
ary is canonically identified, as an ergodic Z-action, with the modular
transformation F} e

THEOREM 3.4. The Poisson boundaries of the group-invariant
Markov random walks on Z are precisely the approximately-transitive
Z-actions.

Proof of Theorem 3.3. B = Fi",{ /7 can be constructed as follows. Let
(A, u) =TI, (An, un) where A, = {1,...,kn} and u,({j}) = Ay;. Let
Z act on A x Z by ay((a, p)) = (a, p + n). Define an equivalence
relation S on A x Z by (a, p) ~ (b, n)(S) if there exists m < oo such
that a, = b, forall n > mand r — p = 3" (4np, — 9na,), Where
we have written 4,; = A9 D,, A = e~2"T (see above). The modular
transformation B is then the restriction of a; to the algebra & of S-
invariant elements of L*°(A4 x Z, u x v) where v is any measure whose
support is Z.

Define ¥,: 4, — Z by ¥,(j) = 4qnj, and let o, = ¥,(us). The
measures o, define the group-invariant Markov random walk on Z
associated to the given eigenvalue list. As above, the map ¥: AxZ —
Z x ZV given by ¥((a,), p) = (p, (wn(ay))) identifies the algebra &7
with the asymptotic algebra .24 of the random walk, and commutes
with the restriction of the Z-action to these algebras. O

Proof of Theorem 3.4. This follows immediately from Theorems 2.2
and 3.3, and the fact that all approximately transitive transformations
occur as the modular transformation F. 21‘,{ r for some ITPFI factor M
with T € T(M) ([7], Theorem 8.3 and Lemma 2.5). O
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(iii) Matrix-valued random walks on R and Z. Let M be an ap-
proximately type I (not necessarily ITPFI) factor. Let ¢ be a faithful
normal state on M. By [4] and [5] there exists an increasing sequence
of conditional expectations £, on M such that

(i) E,M is finite-dimensional,

(ii) E,Ey, =EnE,=E,if n<m,

(iil) p o E,, = ¢, and

(iv) strong lim, . E,x = x forall x e M.

We will associate a “matrix-valued” random walk on R to the triple
(M, 9, (En)).

Let E,M = EBif':l M, ; be the central decomposition of E,M into
finite type I factors M,,;. (The random walk at the nth step will take
place in /, copies of R.) Consider the embedding of E,M in E, M
relative to the state ¢. Each M,; will appear g,,;; times in M, ;. Let
en; be the identity in M,,;, and let e, ;, be the pth copy of e, in M), 4,
D= 1»---:qnjl- Then €nj = le €njlp- Let 'Injlp = ¢(enjlp)/¢(enj)-
Then }_, Anji, = 1 forall m, j.

Foreachne N,leto,;, j=1,....,0,,1=1,...,[,,; be the matrix
of measures on R obtained by assigning the weight 4,;, to the point
log Ay, for each p = 1,...,4,j. Then ), 0,;(R) = 1 for all n, j.
The random walk is now defined by giving the transition probability
from the point x in the jth copy of R at the nth step, to the point y
in the /th copy of R at the (n + 1)th step, to be

Pa((x, ), (. 1)) = 05 ({y — x}).

It is again possible to identify the flow of weights for A/ with the
Poisson boundary of the random walk. Recall that all ergodic flows
occur as the flow of weights for some approximately type I factor [12].
Thus we get

THEOREM 3.5. Let M be an approximately type 1 factor, ¢ a faithful
normal state on M, and E,, an increasing sequence of conditional expec-
tations as above. There is associated to this situation a “matrix-valued”
group-invariant Markov random walk on R whose Poisson boundary is
identified, as an R-action, with the flow of weights for M. All ergodic
flows occur as the Poisson boundaries of such random walks.

It would be more natural to phrase Theorem 3.5 in terms of the
numbers 4, and ¢|g, ». They determine a state ¢ on the AF algebra
A which is the C*-inductive limit of the E, M. In general, such a state
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will not be a factor state. If this “generalized eigenvalue list” satisfies
the factor condition, then m,(A4)" is an approximately type I factor.
However, this is a somewhat more involved situation to describe.

As in section (ii) above, the corresponding “matrix-valued” random
walks on Z are obtained by considering a faithful normal state ¢ on
an approximately type I factor M, satisfying a# =1 for some 7> 0.
We omit the details.

4. Application to the T set. We will derive the T-set condition
for eigenvalue lists ([3], Corollaire 1.3.9) by an extremely simple ar-
gument. We consider the problem in the more general setting of a
group-invariant Markov random walk % on a locally compact abelian
group G.

DEFINITION 4.1. The T-set T(%) is the set of all y € G for which
there exist f* € L°(B, u) (where (B, u) is the Poisson boundary of #
such that (gf¥)(b) = x(g)f*(b) for all g € G, and a.e. b € B.

THEOREM 4.2. Let % be a group-invariant Markov random walk on
the locally compact abelian group G, given by the measures o,. Then
x € T(Z) if and only if

(4.1) 11 [ [ &) don(z)| >0

ReMARK. For an ITPFI factor M with the eigenvalue list (4, ...,
Ank,), let Z be the associated random walk on G = R (see Theo-
rem 3.1). Then T € T(M) if and only if the character yr(x) = e!T*
is in T(Z). (4.1) then becomes

zkn:ll—{-iT
nj

j=1

o0

(4.2) 11

n=1

>0,

which is the desired condition.

Proof. Recall that the Poisson formula maps f € L*(B,u) to
bounded harmonic functions, and commutes with the G-action. Thus
x € T(Z) if and only if there exists a bounded harmonic function A%
satisfying (ghf)(x) = x(g)h¥(x) forall g, x € G,and alln € N. In
particular this gives 47, ,(g) = x(8)h}, (e). Since b, = hypyy * Gpyy,
we get

W) = [ h (@) donii(8) = By (@) [ 2(8) o (o).
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Clearly such a bounded A* will exist if and only if (4.1) is satis-
fied. ]

If G is not abelian, the question becomes which irreducible unitary
representations IT of G occur. That is, when there is a subspace V'
of the space of harmonic functions, so that for 7 € V' we have gh =
I1(g)h for some I1. The answer to this question is more involved.

APPENDIX A. Cocycles, the Mackey range, and the Poisson boundary
of a group-invariant Markov random walk. Let S be a standard Borel
space, let u be a probability measure on S, and let K, G be groups.
We suppose there is a right Borel action of K on S such that u is
quasi-invariant and ergodic under K. A Borel function a: S x K — G
is called a cocycle if for all ki, k; € K, a(s, kiky) = a(s, ky)a(sky, k).
That is, a is a homomorphism from S x K (considered as a groupoid)
to G

Given a cocycle a, there is a natural action of K on S x G defined
by (s, g)k = (sk, ga(s, k)). We denote the space S x G, together with
this K action, by S x, G. There is also a natural action of Gon S x, G
defined by (s, £1)82 = (5, &5 lg), which commutes with the K-action.
Let v be a measure equivalent to Haar measure on G, and let &/ be
the fixed points of L>®(S X, G, u x v) under the K-action. Then &
is an abelian von Neumann algebra, and G acts by x-automorphisms
on /. It follows that we can write &/ = L*(S, g) where (X, ¢) is an
essentially unique ergodic G-space.

DEerFINITION A.1. The G-space (X, g) is called the Mackey range of
the cocycle a.

Now let % be a right group-invariant Markov random walk on the
group G, defined by the probability measures g,. Let S = GV and let
u =1TI;2, 0,. For the measure v on G, we take the initial distribution
oy (see §2). Let K be the group of sequences (g,)ncny Where g, € G
and g, = e for all but a finite number of indices »n. We define a right
action of K on S by (s,)(g:) = (sngn). Note that the equivalence
relation on S defined by this K-action is just tail-equivalence. Given
(gn) € K, there exists m < oo such that g, = e for all n > m. The
equation

(A.1) a((Sn). (&) = 5152 Sm(Sm&m) ™ -+ (5282) " (s181) "
defines a cocycle a, which can be thought of as the formal product

(H;z..;l Sn)(l_[(,);l Sngn)_l.
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If (s,2), (s',8') € S x, G belong to the same K-orbit, then there
exists some k € K such that s’ = sk and g’ = ga(s, k). Choose m < oo
so that k, = e for all n > m. Then we have s), = s, for all n > m and

(A.2) g =515 Sm(Sm&m) " - (5181) 7.

We now proceed to show that the fixed-point algebra ./ coincides
with the asymptotic algebra .+, defined in §2. It follows from this
definition that o4, is the Sg-invariant subset of L>®°(S x, G, u X 0p)
where Sg is tail-equivalence for the Markov chain (Y,) where Y, =
YoX X5 Xp. Since Y,, = T,,_; Xy, it follows that in G x GV we have
(8.5) ~ (g',5")(Sq) if and only if there exists m < oo such that s, = s,
for all » > m and

(A.3) 85152 Sm = &S|y Sy

which agrees with (A.2), where one makes the obvious identification
s, = Sp8n. Thus Sg-equivalence coincides with the equivalence re-
lation defined by the K-action on S x, G. It follows that the Pois-
son boundary for the random walk .%# is the Mackey range of the
cocycle a.

APPENDIX B. The Choquet boundary. Let X be the convex proper
cone of all (not necessarily bounded) positive harmonic functions for
the group-invariant Markov random walk defined by the measures a,,.
The representing measure in Choquet’s integral representation theory
is unique if and only if X is a lattice in its own order ([2], vol. II,
p. 201).

LEMMA Bl. X is a lattice in its own order.

Proof. Let f, g € X. Consider
hfl = (fntk N 8nak) * Onake * Ol * - % Oy
where f; A g5 denotes the usual point-wise infimum. Since
Ss N8 < (fsr1 A &sy1) * Gsp
the A% are monotone decreasing in k. Since 4 > 0, we can define
(f A g)n = Jim hy.

Since hk*! = hk | % 8,,,, it follows from the monotone convergence
theorem that (f A g)n = (f A &)ns1 * Guyi, 1.€. f A g is harmonic.
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Similarly, f Vv g is defined by

(fVghn= klin;lo(fn+k V &nik) * Opik * Opyk—1 * -+ % Opyl-

Since the series is monotone increasing and bounded above by f + g,
it follows that f V g exists and is harmonic. O
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