PACIFIC JOURNAL OF MATHEMATICS
Vol. 138, No. 1, 1989

GALOIS THEORY OF DIFFERENTIAL FIELDS
OF POSITIVE CHARACTERISTIC

KAYOKO SHIKISHIMA-TSUIJI

The strongly normal extensions of a differential field K of positive
characteristic are defined. On the set G of all differential isomor-
phisms of a strongly normal extension N of K, a structure of an
algebraic group is induced. Correspondences between subgroups of G
and intermediate differential fields of N and X are studied.

0. Introduction. E. R. Kolchin established a Galois theory for dif-
ferential fields of characteristic zero (Kolchin [1]).

Galois groups of Picard-Vessiot extensions are algebraic matrix
groups, and those of strongly normal extensions are algebraic groups.
As general algebraic groups are well studied for arbitrary characteris-
tic, it has been quite desirable to develop a Galois theory for differ-
ential fields of positive characteristic to the level of Kolchin’s work in
characteristic zero.

For differential fields of positive characteristic, however, such a the-
ory has been known only for Picard-Vessiot extensions, with the field
of constants of the ground differential field algebraically closed.

The purpose of the present work is to develop a theory of strongly
normal extensions, which are more general than Picard-Vessiot ex-
tensions. This permits us to construct the theory of Picard-Vessiot
extensions without restrictions and also to investigate more in detail
the properties of Picard-Vessiot extensions (Okugawa [2]).

To meet this purpose, we had to develop many basic properties of
differential fields of positive characteristic. The results of these works
have been already published elsewhere ([2], Shikishima [4] and Tsuji
(nee Shikishima) [5]).

As has been done by K. Okugawa [3], we adopt in this work the com-
mutative and iterative higher derivations of infinite rank, which are
more natural than the usual derivations. Under the usual derivations,
when the characteristic p is positive, the pth power of any element
in a differential field is a constant. This creates various irregularities.
For example in this case, there is no proper strongly normal extension
of a differential field.
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This paper has five sections. The conventions used throughout are
explained in §1. In §2, we state some preliminary results on differential
isomorphisms. In §3, strongly normal differential extensions and their
Galois groups are studied. §4 is devoted to the fundamental theorems
of Galois theory. Finally, we provide two examples in §5.

1. Conventions. Throughout this paper, we denote a differential
field of positive characteristic p by K, and also a differential extension
field of K by N. Let A be the set of commutative and iterative higher
derivation operators of infinite rank §; = (d;,;v = 0,1,...) (i € I),
where I is the set of indices. The set of derivative operators, namely,
the set of all products of finitely many distinct members of {J;,;i € I,
v > 0}, is denoted by ©. The algebraic closure of K in N is represented
by K9 and the field of constants of N by C.

For a given field M, we denote by M, an algebraic closure of M, by
M; the separable closure of M in M,, and by M, the purely inseparable
closure of M in M,. In the case where M is a differential extension of
K, the differential closure of M in M,, that is, the largest differential
extension of M in M,, is denoted by M, (see [4] or [5]). The field of
constants of M is denoted by M.

We fix once and for all a universal differential extension U of Ny
(whence, of K) (see [4] and [2]). Whenever differential isomorphisms
of a differential field M are considered, they are tacitly assumed to be
“into U™.

We mean the eth power of the characteristic p by p(e).

2. Differential isomorphisms. In this section, we give some results
which correspond to those of [1]-VI-1 and 2 in the case of positive
characteristic p. In general, these results can be proved similarly to
the proofs of the corresponding results of [1], although we have to
be careful about separability and need some of the basic results of
[2] together with the following three lemmas. Lemma 1 is due to
Okugawa.

LEMMA 1. Let L be a differential field with N > L D K. If N and L
are finitely generated differential extension fields of K (as differential
fields) and N is L-separable, then, for every differential isomorphism
@ of L over K, ¢ can be extended to a differential isomorphism of N
over K.

Proof. There exist elements 7;,...,7, of N such that N =
L{ny,...,nm). Let p be the defining ideal of () = (#y,..., ) in the
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differential polynomial ring L{Y,,...,Y,} and p? the prime differ-
ential ideal in (pL){Y},..., Y,,} which consists of all the differential
polynomials obtained from differential polynomials of p by applying
¢ to the coefficients. Since p is L-separable, p? is (¢L)-separable.
Let {;,...,{, be elements of L such that L = K({;,...,{,). Then,
oL = K(p¢,,..., 9, ) is a finitely generated differential extension field
of K in U. By Theorem 4 of [2]-IV-4, U is a universal differential ex-
tension field of ¢ L and hence, p? has a generic zero (') = (1},..., ny,)
with 7, € U (1 < k < m). Define the mapping ¥ of N = L(n)
onto (pL)(n') as ¥(A(n)/B(n)) = A?(n')/B?(n'), where A(Y), B(Y) €
L{Yy,..., Y} with B(n) # 0 and, A?(Y) and B?(Y) are differential
polynomials obtained by applying ¢ to the coefficients of 4(X) and
B(X), respectively. This mapping is well defined, and it is straight-
forward to show that ¥ is a differential isomorphism of N into U
extending ¢. m]

By Corollary 2 to Theorem 6 of [2]-11I-6, the following lemma can
be proved.

LEMMA 2. N and U, are linearly disjoint over N,.

LeEMMA 3. If N is finitely K-separable (that is, finitely generated and
separable over K as a field), then the algebraic closure K® of K in N
is of finite degree over K, and N is finitely KO-regular (that is, finitely
generated and regular over K° as a field).

Proof. Since N is finitely K-separable, K° is separably algebraic over
K and a differential subfield of N (see [2]). o

Let (x;;j € J) and (x}; j € J) be two families of elements of U with
a common set of indices J. If there is a differential homomorphism
¢ over N of N{x;;j € J} onto N{x};j € J} such that ¢(x;) = x]
(j € J), then (x;.; Jj € J) is said to be a differential specialization of
(xj;] €J) over N.

Let (g;;j € J) and (a}; Jj € J) be two families of differential iso-
morphisms of N with a common set of indices J. It is easy to see that
the following three conditions are equivalent (cf. [1]-VI-1).

(a) (gjx;j € J, x € N) is a differential specialization over N of
(ogjx;j€J, x€N).

(b) (ojx;j € J, x € N) is a specialization over N of (g;x;j € J,
X EN).
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(c) The differential isomorphisms aj’.aj‘l of g;N onto g;N (j € J)
and idy are compatible, that is, there is a ring homomorphism 4 of
N[U,es 0jN] onto N[U;c; o;N] such that A is a common extension
of idy and all of o/a;' (j €J).

If these conditions are satisfied, then (aj’-; Jj € J) is said to be a
specialization of (g;;j € J) and, in this case, we use the notation
(0j;J € J) — (0};J € J). This specialization is called generic and de-
noted by (g;;j € J) « (0};j € J) if (g;;j € J) is also a specialization
of (g;j € J).

Let (x) = (xx;k € J') be a family of elements of N such that
N = K(x) = K(x);k € J'), where J' is a set of indices. Then, (o;;
J€J)— (g};j €J)if and only if (a}xy; j € J, k € J') is a differential
specialization of (g;x;;j € J, k € J') over N.

A differential isomorphism o of N over K is said to be isolated if
every differential isomorphism 7 such that 7 — ¢ is a generic special-
ization of .

In the rest of this section, we assume that N is finitely K-separable.

PROPOSITION 1. (a) If ¢ is a differential isomorphism of N over K,
then trdeg N - oN/N < trdeg N/K. The equality holds if and only if o
is isolated.

(b) If ' is a specialization of a differential isomorphism a of N over
K, then trdeg N - 6'N/N < trdeg N - oN/N. The equality holds if and
only ifo « 0.

(c) There exist finitely many isolated differential isomorphisms
01,...,0: of N over K such that every differential isomorphism of N
over K is a specialization of one and only one of them. If N is K-regular,
thent = 1.

Proof. Since N is finitely K-separable, there exist elements
Zi,...,2n of N such that N = K(zy,...,z,). Let p be the defining
differential ideal of (z,,..., z,) in K{Z,,...,Z,}. By Theorem 7 of
[2]-I1I-8 and its corollary, we see the following facts; (1) Np is a per-
fect differential ideal of N{Z,,..., Z,} with finitely many N-separable
components Py,..., B, (¢ is 1 if N is K-regular). (2) Every generic
zero of p is a zero of one and only one of Py,...,P;. (3) For each k
(1 < k <t), every generic zero of P, is a generic zero of p.

(4) dim*P,, that is, the transcendence degree of a generic zero of
Py over N, is equal to dimp. The rest of the proof is similar to that
of Proposition 1 of [1]-VI-1. O
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Let L and M be two extensions of K. We say that L and M are
algebraically disjoint over K if algebraically independent elements of
L over K are also algebraically independent over M.

By Proposition 1(a), the following proposition can be proved.

PROPOSITION 2. A differential isomorphism o of N over K is isolated
if and only if N and oN are algebraically disjoint over K.

Using Lemma 3, we can demonstrate the following proposition by
a proof that follows that of Proposition 2 of [1]-VI-1.

PRroPOSITION 3. Let o and o' be differential isomorphisms of N over
K such that o is isolated and N > o'K° (whence a'K° = K©). Then we
have:

(a) NneN = K9naKO.

(b) o' is a specialization of g if and only if o coincides with ¢' on
KO. When this is the case, N and oN are linearly disjoint over K°.

COROLLARY. (a) Let ay,...,d; be isolated differential isomorphisms
of N over K such that every differential isomorphism of N over K is a
specialization of one and only one of them. Then the field of invariants
ofoy,...,0: is K.

(b) Let o be an isolated differential isomorphism of N over K. If
g — idy, then the field of invariants of o is K°.

Proof. (a) Let a € N be an invariant of agy,...,d,. Then, « is in
K by Proposition 3(a) and every differential isomorphism of N over
K leaves « invariant. Suppose that « is not in K. By Proposition
3 of [2]-V-2, there exists a differential isomorphism 7 of K? over K
such that ta # o. By Lemma 1, 7 can be extended to a differential
isomorphism of N over K. This is a contradiction.

(b) This is clear. O

A differential isomorphism g of N is said to be strong if o leaves
invariant every element of the field C of constants of N and the in-
clusions oN € N - U, and N C oN - U, hold. The field of constants
of N -oN is represented by C(g). By Proposition 7 of [2]-III-7, it is
easy to see that a differential isomorphism ¢ of N over C is strong if
and only if N-C(g) =N -oN =aoN - C(0).
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PropoOSITION 4. If o is a strong differential isomorphism of N over K,
thentrdeg N-aN/N = trdeg C(0)/C and C(o) has finite transcendence
degree over C.

Proof. Since N is finitely generated over K as a field, trdeg N-oN/N
is finite. Since N-goN = N-C(0o), the proposition follows from Lemma
2.

PROPOSITION 5. Each strong differential isomorphism of N can be
extended to a unique differential automorphism of N - U, over U.,.
Conversely, the restriction to N of each differential automorphism of
N - U, over U, is strong.

Proof. Let o be a differential isomorphism of N over C. By Lemma
2, oN and U, are linearly disjoint over C. Hence, o can be extended
to a unique differential isomorphism ¢’ of N - U, onto aN - U, over
U.. When o is strong, we have oN - U, = N - U, and ¢’ is a differential
automorphism of N - U.. The converse is clear. O

By virtue of this proposition, every strong differential isomorphism
of N is identified with the unique differential automorphism of N - U,
over U,. This identification defines a canonical product of strong
differential isomorphisms of N.

PROPOSITION 6. Let o and t be two strong differential isomorphisms
of N. Then, C(a)C(ot) = C(0)C(1r) = C(07)C(7) and C(c7 ') =
C(o).

Proof. Using Proposition 7 of [2]-III-7, we can demonstrate this
proposition by a proof that follows that of Proposition 5 of [1]-VI-2.

ProrosITION 7. Every specialization of a strong differential isomor-
phism of N is strong.

Proof. Using Theorem 6 of [2]-11I-6, we can demonstrate this propo-
sition by a proof that follows that of Proposition 6 of [1]-VI-2.

REMARK. It follows from the way of the proof of Proposition 7 that,
if o is a differential isomorphism of N over C satisfying N C oN - U,
(respectively N C N - U,.), then every specialization 7 of o satisfies
N c 7N - U, (respectively TN C N - U,).
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For a generic specialization ¢’ of a strong differential isomorphism
o of N, there exists a unique differential isomorphism # of N - oN
onto N - ¢'N over N with A(6x) = a’x (x € N). The restriction of
h to C(o) is a field isomorphism of C(d) onto C(a’) over C. This
isomorphism is said to be induced by the generic specialization and
denoted by S, 5.

The following Proposition 8, Proposition 9 and its corollary can be
demonstrated by proofs that follow those of Proposition 7, Proposi-
tion 8 and its corollary of [1]-VI-2.

PROPOSITION 8. Let o be a strong differential isomorphism of N.

(a) If o' is a generic specialization of ¢ and ¢" is a generic special-
ization of @', then Sy 4:Sg: ¢ = Sg o-

(b) If S is a field-isomorphism over C of C(a) onto a subfield C' of
U,, then there exists a unique generic specialization o' of o such that
C'=C(d")and S =S, ;.

PROPOSITION 9. Let g, a’, ©, T be strong differential isomorphisms
of N.

(a) If (6,7) — (a', 1), then (67,07 '7) — (', 0/~ 17").

(b) Let 0 — ¢’ and © — 1'. Then, (0,1) — (0',7') if and only if the
induced isomorphisms S, ; and Sy ; are compatible.

(c) Let 0 « a' and © — t'. If a homomorphism h of a subring of U,
into another and the induced isomorphisms Sy &, Sy 1 are compatible,
then 0~' — a'~! and o't — o'~'1'; when the latter specialization
is generic, h and the induced isomorphisms Sgi-1 g-1, Sgi-17 -1, areé
compatible.

COROLLARY. Let g, d', t, T be differential isomorphisms of N and
let g, T be strong.

(@) If ¢ — o', then a=' — o'~1. When the former specialization is
generic, then so is the latter and Sg/ ; = Sgi-1 g-1.

(b) If ¢ — o', © — t' and if the induced isomorphisms Sy 5, Sy 1
are compatible, then ot — a't’. When ot < o't and h is a homomor-
phism of a subring of U, into another such that h, Sy ; and Sy ; are
compatible, h and S;+ 4; are compatible.

3. Strongly normal differential extensions and Galois groups. We
denote the set of all differential isomorphisms of N over K by G(N/K).
For ¢ € G(N/K), the field of constants of N - gN is represented by
C(o).
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We say that N is strongly normal over K if N is finitely K-separable
and every differential isomorphism of N over K is strong. If N is
strongly normal over K, then the field of constants C of N coincides
with the field of constants K. of K by Corollary (a) to Proposition
3. Moreover, by Proposition 5, we see that G(N/K) has a canonical
group structure.

It is easy to see that Picard-Vessiot extensions are strongly normal
extensions. No examples of strongly normal extensions which are not
Picard-Vessiot extensions are so far known however.

In the rest of this section, we assume that N is finitely K-separable.

ProrosITION 10. Let gy, ..., d; be isolated differential isomorphisms
of N over K such that every element of G(N/K) is a specialization of
oneofay,...,0;. If C=K,andoyN C N-U, (1 <k <t), then N is
strongly normal over K.

Proof. Let o be one of g1, ...,0;. By Proposition 2, N and oN are
algebraically disjoint over K and hence, N-oN is finitely separable over
oN. Therefore, by Lemma 1, the differential isomorphism ¢~! of 6N
onto N can be extended to a differential isomorphism 4 of N - 6N
into U. Let 7 be the restriction of 2 to N. Then, it is a differential
isomorphism of N. We see that 4 is a differential isomorphism of
N -oN onto TN - N over K with AN = TN, h(oN) = N and h(C(0)) =
C(7). Since 7 is a specialization of some o, and o, N C N-U,, we have
the inclusion TN C N - C(7) by Remark to Proposition 7. Thus, N =
h~1(tN) c h"Y(N-C(1)) = 6N -C(o). Therefore, o,..., g, are strong
and, by Proposition 7, we see that every differential isomorphism of
N over K is strong. o

PROPOSITION 11. If g is a strong differential isomorphism of N over
K, then C(o) is finitely generated over C as a field. Moreover, if o is
isolated, then C (o) is separable over C.

Proof. By Proposition 4, C(a) has finite transcendence degree over
C. Let y;,...,7ys be a transcendence basis of C(g) over C. Since
N and C(o) are linearly disjoint over C, y,,..., ys are algebraically
independent over N. As N - 6N = N - C(0) is finitely generated over
N, N - C(o) is algebraic of finite degree, say r, over N(yi,...,¥s).
Every element of C(o) is algebraic of degree not greater than r over
N(y1,...,7s) and hence, over C(yy,...,»s) by Proposition 6 of [2]-
III-7. Therefore, C(o) is algebraic of finite degree over C(yy,..., 7).
Thus, C(0o) is finitely generated over C.
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Assume moreover that ¢ is isolated. Then, by Proposition 2, N and
oN are algebraically disjoint over K. Since oN is finitely K-separable,
N - oN is finitely N-separable (see Theorem 8 and Proposition 26 of
[6]-I). N and C(o) are linearly disjoint over C. Since the order of
inseparability i(C(a)/C) of C(o) over C (see [6]-I-8) coincides with
i(N -aN/N) =1, C(0o) is separable over C. O

In the case where N is strongly normal over K, we have already
described the group structure of G(N/K). For the sake of simplicity,
this group will be denoted by G.

THEOREM 1. If N is strongly normal over K, then G has a pre-C-set
structure (see [1]-V-2). This pre-C-set structure and the group structure
of G define a C-group (i.e. algebraic group defined over C) structure on
G relative to the universal field U, (see [1]-V-3). The dimension of the
C-group G equals the transcendence degree of N over K.

Proof. We must verify the axioms of [1]-V-2 and 3.

For any ¢ € G, C(0o) is finitely generated over C by Proposition
11. The relation ¢ — ¢’ (for g,¢’ € G) is reflexive and transitive
by definition. For each pair o, ¢’ € G with ¢ < d’, associate the
field-isomorphism S, ; over C. We can see that these data satisfy the
axioms AS1 and 2 by virtue of Proposition 1(b), (¢) and Proposition
8. Thus, C has a pre-C-set structure.

By Proposition 6, Proposition 9 and its corollary (a), (b), we can
verify the axioms AG1 and AG2(a), (c). In order to verify the axiom
AG3, let 0 € G be isolated with 0 — idy; in particular, o is generic
for the identity component of G over C. Since N is regular over K,
so is N over oK9. By Proposition 3, we see that 6K? = K° and that
N and oN are linearly disjoint over K°. Therefore, N-oN = N - C(o)
is N-regular (see Theorem 5 of [6]-I-7). Since N and C(o) are linearly
disjoint over C, we conclude that C(o) is C-regular by Proposition 11.
Thus, AG3 is satisfied.

Now, we shall verify the axioms AG2(b) and (d). Letog,d', 7,7 € G
with ¢ — ¢’ and 7 — 7’. Since N is finitely K-separable, there exist el-

ements zy,...,z, of N such that N = K(zy,...,z,) = K(zy,..., zp).
Denote by p and q the defining ideals over N of (¢7'z,...,07!z,)
and (7zy,...,7z,) in the differential polynomial rings N{X},..., X,}

and N{Y,,...,Y,} respectively. Then, by Theorem 7 of [2]-III-8
and Theorem 3 of [5], Nap and N,q have finitely Nj-regular compo-
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nents py,...,pr and qp, ..., qs respectively. Each differential ideal t;, =
(r-q:) (1 <k <r, 1<t<s)of Na{Xy,...,Xn,Yy,..., Yy} is prime
and N,-regular (see Proposition 1 of [2]-IV-1), and it has a generic zero

e a0 yE0 Ly with %0,y 00 e U (1 < j < ).
Since (xlk D.x ,,k ’)) is a generic zero of v, N Na{ Xy, ..., Xp} = pg,
whence of py N N{X|,..., Xn} =p, (xfk’t), et ,xﬁ,k")) iS a generic spe-
cialization of (67!z,,...,07!z,) over N and over K. Therefore, there

exists a strong differential isomorphism a;,' of N over K with g,'z; =
xj(-k”) (1<j<n). Then,07! Uk_,l by Lemma 2. Similarly, there ex-
ists a strong differential isomorphism 74, of N over K such that 74,z; =
yj(.k”) (1 <j<n)and 1 < 14. By our assumption ¢ — ¢’ and Propo-
sition 9, we see that 6=! — ¢'~! and (¢/"!z,,...,0'"!z,) is a zero of
p and hence, of some p;. Similarly, (7'zy,...,7'z,) is a zero of some
q;. Then, (¢'7'zy,...,0' 'z,,7'21,...,7'2,) is a zero of some t, and
it is a differential specialization of (a;,'z1,..., 0., zn, Ty Z1, - .., Tkt Zn)
over N, and hence, over N. Therefore, we have (7, a,;‘) —(r,0')
and, by Proposmon 9, we see that (1!, 7. o) — (¢!, 7" le! 1) If
O, Ty < o't and 74, — 7', then the induced isomorphisms C (o, 7y,) —
C(a't") and C(14,) — C(7') are compatible. This shows that the ax-
ioms AG2(b) and (d) are satisfied, since 6~! — ¢'~! whenever ¢ — ¢'.

Finally, let o be an isolated differential isomorphism of N over K
with ¢ — idy. Since N and C(o) are linearly disjoint over C, and N
and oN are algebraically disjoint over K,

trdegC(o)/C =trdeg N - C(o)/N =trdeg N - cN/N
= trdeg N/K.

The C-group G stated in Theorem 1 is called the Galois group of N
over K.

THEOREM 2. Let N be strongly normal over K and let C' be an
extension of C in U, such that U is universal over (NC')s. Then,
NC' is a strongly normal differential extension of KC' with the field of
constants C', and the Galois group G(NC' /K ") is the induced (see [1]-
V-5) C'-group of the C-group G, both these groups being identified with
each other by means of their canonical identifications with the group of
automorphisms of NU, over KU.,.

Proof. By [2]-11I-6 and 7, it is easy to see that NC’ is finitely KC’-
separable and that (KC'), = C'.
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In order to prove that NC' is strongly normal over KC’, let ¢ be a
differential isomorphism of NC' over KC’. Since the restriction of o
to N is strong,

¢(NC'Y=6N -¢C' C N -U,-C' = NC'- U,.

Similarly, NC' C a(NC')-U,. Thus, NC' is strongly normal over KC’.
By Theorem 1, G(NC'/KC(C") is a C'-group.

It suffices then to prove that this C’-group G(NC'/KC') is the in-
duced C’-group of the C-group G(N/K). If we denote by C’'(o) the
field of constants of NC’- ¢(NC’), then

N-C'(g) = NC'-C'(c) = NC'-a(NC') = N -6N -aC' = N - C(a) - C,

and C'(o) = C(0) - C' by Proposition 7 of [2]-III-7. The remaining
part of the theorem can be proved similarly to Theorem 2 of [1]-VI-3.

4. Fundamental theorems.

PROPOSITION 12. Let M be a differential subfield of N and let L be
a differential extension field of M. If L is purely inseparably algebraic
over M, then every element of G(N/M) can be extended uniquely to an
element of G(NL/L).

Proof. Since NL C N,, we see that U is universal over (NL), by
Corollary to Lemma 1 of [2]-IV-2. Clearly G(L/M) = {id; }, and this
implies that G(NL/M) = G(NL/L). By Theorem 2 of [5], each differ-
ential isomorphism in G(N/M) can be extended to some differential
isomorphism in G(NL/M), and this extension is unique since NL is
purely inseparable over N. Thus, the proposition is established. o

The purely inseparably algebraic closure of a differential field M in
M, is denoted by M, (see §2 of [5]). The field M, is a differential
subfield of M,. The field of constants of M, coincides with the purely
inseparably algebraic closure C; of C in C,. Since the field of constants
of M is C, we have (My). = C, by Theorem 1 of [5] and (M), D C;.
Since M, is purely inseparably algebraic over M, so is (M), over
C. Therefore, we have (M), = C;.

PROPOSITION 13. Let M be a differential field with N D M > K. If
N is strongly normal over K, then NM,, is strongly normal over M.

Proof. By Theorem 4 of [5], NM, is finitely M.-separable. If ¢
is a constant in NM,, then since NM,, is purely inseparable over N,
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there is a positive integer e such that ¢?(€) € N. Thus, c?©) e N, = C,
whence ¢ € C;. Hence, we have (NMy ), = C; = (My).. Now let
0 € G(NMy/My). The restriction o|y of o to N is in G(N/M) C
G(N/K). Therefore, 6(NMy,) = N - Moo, C NU,; - My = (NM,) - U,
and NM,, C oN - U, - My, = 6(NM,) - U,.. Since (NMy), = (Moo)ec,
it follows that NM, is strongly normal over M. o

Now, G(N/M) is a subset of G, which is a C-group. The group struc-
ture on G is induced by that of Aut(NU./KU,). The C-set structure
was described above.

We now show that even though N is not necessarily strongly normal
over the intermediate differential field M, nonetheless, G(N/M) is a
C-subgroup of G. It is easy to see that the field of constants of K, is
also C;. Thus, G(NM,, /M) and G(NK /K ) are C;-groups. More-
over, the restriction homomorphism is an embedding of the C;-group
G(NM/My) into the C;-group G(NK /K ). This enables us, in-
deed, to identify G(NM,,/My) with a C;-subgroup of G(NK /K o).
The restriction homomorphism of G(NK /K ) onto G(N/K) is a C;-
isomorphism, mapping G(NM,, /M) onto G(N/M). Thus, the latter
is a Cj-subgroup of G. It follows that G(N/M) is a C-subgroup of G
([1]-V-6). So we have proved the following proposition.

PRrROPOSITION 14. Let N be strongly normal over K and let M be a
differential field with N > M > K. Then G(N/M) is a C-subgroup
of G.

If N is strongly normal over K, then we see by Theorem 2 that the
C-group G can be identified with the Cs-group G(N - C/K - C).

ProPOSITION 15. Let N be strongly normal over K, and H a C-
subgroup of G. Let L and L' be the fields of invariants of H in N and
in NC; respectively. Then:

(a) L' and N are linearly disjoint over L.

(b) L' = LC.

Proof. (a) Let yy,..., ¥s+1 be elements of L' which are linearly de-
pendent over N and any s elements of which are linearly independent
over N. Then, there exist nonzero elements x;,...,Xx; € N such that
Vsi1 = ijl x;yj. We prove that x;,...,xs are in L.

We set H' = {0 € H,o is rational over C;}. Suppose that there
exists an element ¢ € H' and r (1 < r < s5) such that ox, # x,; say
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ox, # x;. Since

N
Vs+1 = 0Ys41 = Zﬂxj Vi
J=1

we have S
0= Z(O’Xj - xj)yj
j=1
and
s
(1) 0=> u;y),
j=1

where u; = (ox; —x;)/(ox; —x;) EN-6N =N-C(0) (1 < j<5s). As
N - C(o) is finitely N-separable, there exists an element v of N - C(0)
such that Try.c(,)/n(v) # 0. Multiplying (1) by v, we obtain

S
0= Zvujyj.
j=1

Let oy,..., g, be all the C-conjugates of . Then

N
0= or(vu;)-y; (1<k<t)
j=1

and . t \
0= Z (Z "k("’“j)) Y= ZTrN~C(6)/N(vuj)yj°
j=1 \k=1 j=1

Since

Try.ceoyn(vuj)) €N (1<) <y)
and

Try.coyn(vumr) = Try.co)n(v) # 0,
we see that yy,..., y; are linearly dependent over N, which yields a
contradiction.

Thus, we conclude that ox; = x; (1 < j < s5) for every 0 € H'.
Set H' = {t € G;tx; = x; (1 < j < s5)}. Then, H' Cc H" and, by
Proposition 14, we see that H” is a C-closed subgroup of G (see [1]-
V). Since H' is dense in H (see Corollary to Proposition 3 of [1]-V-7),
HcCH"and x; € L (1 <j<ys).

(b) Let {c;; j € J} be a linear basis of Cs over C. Then, each y € L’
is written in the form y = 3", ; n;c; with n; € N and a finite subset
J' of J. Thus, y and {cj;j € J'} are linearly dependent over N. By
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part (a), they are linearly dependent over L and hence, there exist w,
w; (j € J') in L such that wy = } ., wjc;. Since {c;;j € J} is
linearly independent over C, w cannot be zero and

y=> (w;j/w);.
jer
This implies that L' ¢ LC and hence, L' = LC;. O

THEOREM 3. Let N be strongly normal over K. Then:

(a) If M is a differential field with N > M > K, then G(N/M) is
a C-closed subgroup of G. Moreover, the field L of invariants in N
of G(N/M) is the purely inseparably algebraic closure in N of M and
G(N/M) = G(N/L).

(b) If H is a C-closed subgroup of G, then the field L of invariants
in N of H is purely inseparably algebraically closed in N and H =
G(N/L).

Proof. (a) By Propositions 12 and 13, NM,, is strongly normal
over My and G(NMy, /M) is C-isomorphic to the C-closed subgroup
G(N/M) of G. By Corollary (a) of Proposition 3, M, is the field of
invariants in NM,, of G(NM, /M), hence every element of L is
purely inseparably algebraic over M. Since G(N/M) leaves invariant
every element of M and L is purely inseparably algebraic over M, we
see that L is the purely inseparably algebraic closure in N of M and
G(N/M) = G(N/L).

(b) Applying part (a) to the field L of invariants in N of H instead of
M, we see that G(N/L) is a C-closed subgroup of G and G(N/L) D H.

We now prove that H = G(N/L).

We can see that H can be regarded as a C,-subset (see [1]-V-3,
p. 227) of the C,-group G(NC,/KC,) = G(N/K), by the assumption
and Theorem 2. Let L' be the set of invariants in NC, of H. Since
Cq = (Cy)s, the equality H = G(NC,/L') can be established by the
same argument used in the proof of Theorem 3 of [1]-VI-4.

We prove that NC, is separable over L'. Let y,...,y,, be ele-
ments of L’ which are linearly dependent over (NC,)? and any s of
which are linearly independent over (NC,)?. Then, there exist s el-
ements ay,...,as of NC, such that y,,.; = Y} 3_ afy,. Set H" =
{0 € H; 0o is rational over C,}. Each element t of H” is a differential
automorphism of NC, over KC,; hence we see that

) )

Vsr1 =D _(tag)? v, D _(tag — )Py =0
k=1 k=1
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and 1oy = o (1 <k <s). Since the set {6 € G(NC,/KC,); ooy = ay
(1 < k < 5)} is Cs-closed and H” is dense in H (see Corollary to
Proposition 3 of [1]-V-7), we have ga; = a; for every ¢ € H and
hence, o € L' (1 <k <3s).

Let H be regarded as a C;-subgroup (see [1]-V-3) of the C;-group
G(NC;/KC;) = G(N/K) and let L* be the set of invariants in NC; of
H. As (C;)s = C,, Proposition 15 implies that L’ and NC; are linearly
disjoint over L* and L' = L*C,. Since NC, is finitely L’-separable
over L', we see that NC; is finitely L*-separable and hence, strongly
normal over L*. Therefore, by Theorem 2, we have

(2) G(NCi/L*) = G((NC;)Ca/L*Cy) = G(NCo/L') = H.

By Proposition 13, NL is strongly normal over L, and G(NL, /L)
= G(N/L) is a C-closed subgroup of G(N/K). When we regard H as
a C;-subgroup of G(NL /L), the field M of invariants in NL,, of
H contains L.,. Since NL, is purely inseparably algebraic over N,
for each x € M, there is an integer e with x?(¢) € N. Thus, we have
a(xP©) = (gx)P(€) = xP©) for every ¢ € H and we have x?(©) ¢ L i.e.
X € L. Therefore, we conclude that M = L, Lo, D L* and L* is
purely inseparably algebraic over LC;. Then, by Proposition 12, part
(a) of the present theorem and (2), we have

G(N/L) = G(NC;/LC;) = G(NCi/L*) = H. O

By the proof of part (b) of Theorem 3, the following corollary is
obvious.

COROLLARY. Let N be strongly normal over K. If the field of con-
stants of the ground field K is perfect, then:

(a) If L is a differential field with N > L D> K and L is purely
inseparably algebraically closed in N, then N is strongly normal over
L, G(N/L) is a C-subgroup of G (see [1]-V-3) and the field of invariants
in N of G(N/L) is L.

(b) If H is a C-subgroup of G and L is the field of invariants in N of
H, then L is purely inseparably algebraically closed in N, N is strongly
normal over L and H = G(N/L).

REMARK. In order that Theorem 3 has the usual formulation of
the fundamental theorem of Galois theory, some extra condition is
necessary (see Example 2 of §5 below). The condition C = C; is such
an example.
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THEOREM 4. Let N be strongly normal over K. If L is a differential
field with N > L D K and N is separable over L, then the following
Sfour conditions are equivalent.

(a) L is strongly normal over K.

(b) For every a € L—K, there exists a strong differential isomorphism
T of L over K such that ta # a.

(c) G(N/L) is a normal subgroup of G.

(d) For every g € G, the inclusion oL C LU, holds.

When these conditions are satisfied, the sequence

(3) G(N/L) - G5 G(L/K) — {id}

is exact where 1 denotes the canonical embedding and ¢ is a homo-
morphism defined by p(a) = o|. (6 € G). Moreover, ¢ becomes a
C-homomorphism.

Proof. First, assume that (a) is satisfied. Then, the field of invariants
of G(L/K) in L is K (see Theorem 3) and (b) is satisfied.

Next, assume that (b) is satisfied. If we denote by Z the normalizer
of G(N/L) in G(N/K), then Z is a C-closed subgroup of G(N/K) con-
taining G(N/L) (see [1]-V-10). Let M be the field of invariants in N of
Z. Suppose that M # K. We can take an elementa e M —K C L—K.
By (b), there exists a strong differential isomorphism 7 of L over K
with T # a. By Proposition 5, we see that 7 can be extended to a
differential isomorphism 7’ of LC; over KC;. Since NC; is finitely
LC;-separable (see Theorem 2), it follows from Lemma 1 that 7/ can
be extended to a differential isomorphism o of NC; over KC;. For ev-
ery p € G(N/L) and every g € L, we have off =t € LU,, paf} = aff
and o~ pap = B. Therefore, 6~ po € G(N/L) and ¢ € Z = G(N/M)
(see Theorem 3). This contradicts the inequality ga # a, and we con-
clude that M = K. Then, Z = G and G(N/L) is a normal subgroup of
G. Thus, (c) is satisfied.

Now, assume that (c) is satisfied. Let ¢ € G and let 8 € L. Since
= lpa € G(N/L) for every p € G(N/L), we have ¢~ paf = f and
pof = af. On the other hand, G(N/L) = G(N - C(o)/L - C(0)) by
Theorem 2 and 6 € N -0 N = N - C(o). Thus, we conclude that
af is an invariant of G(N - C(g)/L - C(a)) in N - C(a). Therefore,
ofeL-C(c)and oL C L -C(o) C LU,. Hence, (d) is satisfied.

Finally, assume that (d) is satisfied. Let v be any differential iso-
morphism of L over K. The fact that N is finitely L-separable and
Lemma 1 imply that 7 can be extended to an element o € G. Thus,
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we have 1L = gL C LU,. By Proposition 10, we conclude that L is
strongly normal over K, i.e. (a) is satisfied.

We have proved that the four conditions are mutually equivalent.
Now, assume that these conditions are satisfied. It is clear that, in the
sequence (3), ¢ is a group-homomorphism and ker ¢ = im:. The fact
that N is finitely L-separable and Lemma 1 imply that ¢ is surjective.
It remains to prove that ¢ is a C-homomorphism.

Let 0, T € G. We must verify the following three properties.

1°. C(6)=N-oNNU, DL -¢p(c)LNU, =C(p(a)).

2°. Assume g — 7. Since (Ta;a € N) is a differential specialization
of (6a;a € N) over N, (¢(7)B; B € L) is a differential specialization
of (p(a)B;B € L) over L, i.e. p(a) — ¢(1).

3°. Assume g <« 7. By 2°, we have ¢(d) <« ¢(7). The induced
isomorphism S;,: C(o) — C(1) is the restriction of the differen-
tial isomorphism N - 6N — N - 7N over N which is determined by
ga — Ta (a € N). Considering every element « of L, we see that
Sy(1).0(0): C(p(a)) = C(p(7)) is a restriction of S ;. O

5. Examples. At first, we provide a well-known example of strongly
normal extension.

ExAMPLE 1. (See [2]-III-5, IV-5 and VI-1.) Let X be a differential
indeterminate over K, let A be a set of linear differential forms in X
over K of finite order n and let (x4, ..., x,) be a fundamental system of
zeros of A in a differential extension field of K. Set N = K(x, ..., Xx,).
If N. = K. and N is separable over K, then we call N a Picard-Vessiot
extension of K. Then, we can see that N is a strongly normal extension
of K and the Galois group G(N/K) is identified with a subgroup of
the general linear group GL(n) relative to the universal field U.. Thus,
G(N/K) is a linear C-group in the sense of [1]-V.

The following example demonstrates the necessity of the remark to
Theorem 3.

ExAMPLE 2. Let K be a differential field with a single derivation
0 = (d,;v = 0,1,2,...). Assume that J is trivial in K. Choose
elements a, (v =1,2,...) in K satisfying the following conditions:

(a) a, =0 if v # p(e) for every natural number e.

(b) The number of v such that a, # 0 is finite and nonzero.

Let p be the differential prime ideal generated by J, X —a, (v =
1,2,...) in K{X}. There exists a generic zero x of p over K. We
can see that N = K(x) = K(x) is strongly normal over K; moreover,
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N is a Picard-Vessiot extension of K. Now, assume that N, is not
perfect. There is an element ¢ € N, such that ¢'/? ¢ N,. Set M =
K(xPB®) — ¢PxP2)) and L = K(x??) — cx?). Then, L is the purely
inseparably algebraic closure in N of M. The element x of N is
not separable over L, since the minimal polynomial of x over L is
XPB3) — cpxP2) — g, where a = x?? — cx? € L. Hence, N is not
L-separable and N is not strongly normal over L. Since ¢ is constant,
6 can be extended to c¢!/?. The minimal polynomial of x over Lo
is XP) —cXP — b, where b = x? —c!/Px € L, and x is separable
over L. Hence NL, is strongly normal over L., and the field of
constants of NL, is the perfect field C;.

Some more examples of the Picard-Vessiot extension by Okugawa
can be found in [2] together with several computations of differential
Galois groups.
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