CONFORMALLY FLAT IMMERSIONS AND FLATNESS OF THE NORMAL CONNECTION

Maria Helena Noronha

B. Y. Chen and T. Teng affirmed that almost umbilic isometric immersions of an *n*-dimensional manifold in \mathbb{R}^{n+2} have zero normal curvature $(\mathbb{R}^{\perp} = 0)$. In this paper we exhibit a counterexample to this statement and we prove that either $\mathbb{R}^{\perp} = 0$ or there exists (locally) an isometric immersion of this manifold in \mathbb{R}^{n+2} with $\mathbb{R}^{\perp} = 0$. These immersions are conformally flat and we study their local geometry.

1. Introduction. An *n*-dimensional Riemannian manifold M^n is conformally flat if, for each $x \in M$, there exists a conformal diffeomorphism of a neighborhood of x onto an open set of the Euclidean space \mathbb{R}^n . We will call conformally flat immersion (CFI for short) an immersion $f: M^n \to \mathbb{R}^{n+p}$ with M conformally flat in the metric induced by f.

A nice characterization of CFI in terms of the second fundamental form was given by Moore in [4] and Moore-Morvan in [5].

In this paper we want to consider CFI with codimension two. From [5], we can conclude that if $n \ge 5$, such an isometric immersion f is *almost umbilic*, i.e., for every $x \in M$ there exists an orthonormal frame of the normal space $T_x M^{\perp}$ such that for each ξ of this frame, the Weingarten operator A_{ξ} has an eigenvalue of multiplicity at least n-1.

In [2] there exists a false statement which says that "almost umbilic isometric immersions in Euclidean space with codimension two have zero normal curvature". This and [5] together would imply that CFI in codimension two has zero normal curvature ($R^{\perp} = 0$). In §2 we will discuss this false result and its counterexample. The aim of this paper is to show that if a conformally flat manifold can be isometrically immersed in \mathbf{R}^{n+2} then either $R^{\perp} = 0$ or there is a local isometric immersion in \mathbf{R}^{n+2} with $R^{\perp} = 0$.

Before stating our results, we will recall some definitions below:

DEFINITION. A submanifold $\Sigma \subset M$ is a geometric sphere of type ε , $\varepsilon = 0, 1$, if Σ is an umbilic submanifold with parallel mean curvature vector and such that the sectional curvature of M along planes tangent

to Σ are constant k, k = 0 if $\varepsilon = 0$, k > 0 if $\varepsilon = 1$. If a conformally flat manifold M^n is locally foliated by geometric spheres of type ε and codimension s, we will say that M^n is of type (s, ε) .

In the case of CFI with codimension two, it follows from [4] and [7] that the connected components of an open dense $V \subset M$ are either umbilic, of type $(1, \varepsilon)$ or of type $(2, \varepsilon)$. It will be easy to prove that a CFI of manifold of type $(1, \varepsilon)$ with $\varepsilon = 1$ has $R^{\perp} = 0$. Thus, our main result is:

THEOREM. Let $f: M^n \to \mathbb{R}^{n+2}$ be a CFI where M is of type $(2, \varepsilon)$ and $n \ge 5$. Then M is (locally) foliated by two orthogonal codimension one foliations whose leaves are, in the induced metric, conformally flat manifolds of type $(1, \varepsilon)$ and the intersection of the two foliations gives the codimension two foliation by geometric spheres. Conversely, if Madmits such foliations, M can be (locally) isometrically immersed in \mathbb{R}^{n+2} with $\mathbb{R}^{\perp} = 0$.

The author wants to thank Professor F. Mercuri for bringing our attention to the example (2.1) below.

2. Flat *n*-dimensional manifold in \mathbb{R}^{n+2} with $\mathbb{R}^{\perp} \neq 0$.

(2.1) EXAMPLE. Let $f: M^2 \to \mathbb{R}^4$ be an isometric immersion with $\mathbb{R}^{\perp} \neq 0$ and M^2 flat (this immersion can be the composition of a cylindrical immersion of \mathbb{R}^2 into \mathbb{R}^3 with another cylindrical immersion of \mathbb{R}^3 into \mathbb{R}^4 along a curve whose tangent direction is not perpendicular or equal to the principal direction of the first immersion). Consider the product immersion $\overline{f}: M^2 \times \mathbb{R}^{n-2} \to \mathbb{R}^{n+2}$. We see that \overline{f} satisfies $\mathbb{R}^{\perp} \neq 0$ and that $M^2 \times \mathbb{R}^{n-2}$ is flat, in particular, is conformally flat.

(2.2) ASSERTION. If $n \ge 5$, the example (2.1) is an almost umbilic immersion.

In fact, let (ξ_1, ξ_2) be an orthonormal frame of $T_x M^{\perp}$ and let (X_1, \ldots, X_n) be an orthonormal frame in $T_x M$ which diagonalizes the Weingarten operator A_{ξ_1} . Setting $\xi_{\theta} = \cos \theta \xi_1 + \sin \theta \xi_2$, we claim that there exists θ such that ξ_{θ} is almost umbilic. It is enough to take θ as a solution of the following equation:

$$\lambda_1\lambda_2\cos^2\theta + (a\lambda_2 + c\lambda_1)\cos\theta\sin\theta + (ab - c^2)\sin^2\theta$$

where

$$A_{\xi_1|TM^2} = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}, \quad A_{\xi_2|TM^2} = \begin{bmatrix} a & c \\ c & b \end{bmatrix}.$$

146

We observe that the above equation has a solution because $\lambda_1 \lambda_2 + (ab - c^2) = 0$. The lemma below allows us to find the other almost umbilic direction.

(2.3) LEMMA. Let $f: M^n \to \mathbb{R}^{n+2}$ be a CFI, $n \ge 5$ and ξ an almost umbilic direction. Then ξ^{\perp} is almost umbilic.

Proof. Let (X_1, \ldots, X_n) be an orthonormal basis as in [4] and X_1, X_2 such that this basis diagonalizes A_{ξ} . Then we have

$$A_{\xi} = \begin{bmatrix} \lambda_1 & 0 \\ \lambda & \\ 0 & \lambda \end{bmatrix}, \qquad A_{\xi} = \begin{bmatrix} a & c & 0 \\ c & b & \\ 0 & \mu \end{bmatrix}$$

Now we can use the characterization of conformally flat manifolds in terms of the sectional curvatures given by Kulkarni [3], namely,

$$(2.4) K(X_1, X_2) + K(X_3, X_4) = K(X_1, X_3) + K(X_2, X_4)$$

for any orthonormal vectors $X_1, X_2, X_3, X_4 \in T_x M$ (where $K(X_i, X_j)$ is the sectional curvature of the plane $\{X_i, X_j\}$), together with the Gauss equation to get

$$\mu^2 - (a+b)\mu + (ab - c^2) = 0$$

which implies that μ is an eigenvalue of $A_{\xi^{\perp}}$.

In [2] the authors affirmed that the example (2.1) contradicts [5] (which, at that time, was a conjecture). But, we have shown that (2.1) contradicts their result.

3. Proof of the theorem. We will start with the necessary part of the theorem. We will denote by ∇ and \langle , \rangle the Riemannian connection and metric respectively, α will be the second fundamental form and ∇^{\perp} the normal connection.

Let ξ_1 and ξ_2 be the differentiable almost umbilic directions of f. Let (X_1, \ldots, X_n) be an orthonormal frame which diagonalizes A_{ξ_1} . Then

$$A_{\xi_1} = \begin{bmatrix} \lambda_1 & 0 \\ \lambda & \\ 0 & \lambda \end{bmatrix}, \qquad A_{\xi_2} = \begin{bmatrix} a & c & 0 \\ c & b & \\ 0 & \mu \end{bmatrix}.$$

We have:

$$\begin{aligned} \alpha(X_i, X_j) &= \alpha(X_1, X_i) = \alpha(X_2, X_i) = 0, \quad i, j \ge 3, \ i \ne j, \\ \alpha(X_1, X_2) &= c\xi_2. \end{aligned}$$

If $\lambda_1 = \lambda$, ξ_1 is umbilic and then $R^{\perp} = 0$. Thus, we may assume $\lambda_1 \neq \lambda$. Writing the Codazzi equation for X_i , X_j and ξ_1 $(i, j \ge 3, i \ne j)$, we get

$$X_i(\lambda) + \mu \langle \nabla^{\perp}_{X_i} \xi_2, \xi_1 \rangle = (\lambda - \lambda) \langle X_i, \nabla_{X_i} X_j \rangle.$$

Hence, if $\mu \neq 0$ we have

$$\langle \nabla^{\perp}_{X_i} \xi_2, \xi_1 \rangle = -X_i(\lambda)/\mu, \qquad i \ge 3.$$

Similarly, we obtain

$$\langle \nabla_{X_i}^{\perp} \xi_2, \xi_1 \rangle = -X_i(\lambda)/b, \qquad i \geq 3.$$

If $b = \mu$, Gauss and Kulkarni ((2.4)) equations imply $k_1 = K(X_1, X_i) = K(X_1, X_2)$, $i \ge 3$, contradicting that M is of type $(2, \varepsilon)$. Then $b \ne \mu$, and this implies

$$X_i(\lambda) = 0 = \langle \nabla^{\perp}_{X_i} \xi_2, \xi_1 \rangle, \qquad i \ge 3.$$

Now, the Codazzi equation for X_1 , X_2 , X_i $(i \ge 3)$ and ξ_1 gives

$$\langle \nabla_{X_1} X_2, X_i \rangle \lambda + \langle \nabla_{X_1} X_i, X_2 \rangle \lambda = \langle \nabla_{X_2} X_1, X_i \rangle \lambda + \langle \nabla_{X_2} X_i, X_1 \rangle \lambda_1$$

= $\langle \nabla_{X_1} X_1, X_2 \rangle \lambda + \langle \nabla_{X_1} X_2, X_1 \rangle \lambda_1$

and since $\lambda \neq \lambda_1$ we have

(3.1)
$$\langle \nabla_{X_2} X_i, X_1 \rangle = \langle \nabla_{X_i} X_2, X_1 \rangle = 0.$$

Consider the following differentiable distributions:

$$D_1 = \text{span}\{X_1, X_3, \dots, X_n\},$$
 $D_2 = \text{span}\{X_2, X_3, \dots, X_n\},$
 $D = \text{span}\{X_3, \dots, X_n\},$ $D^{\perp} = \text{span}\{X_1, X_2\}.$

D is obviously integrable because X_3, \ldots, X_n are tangent to the geometric sphere. From (3.1), we conclude that D_2 is integrable and, if we prove that $\langle \nabla_{X_1} X_i, X_2 \rangle = 0$, we will have D_1 and D^{\perp} integrable. For this we apply the Codazzi equation to $X_2, X_1, X_i, (i \ge 3)$, and ξ_2 to get

$$\langle \nabla_{X_1} X_2, X_i \rangle (\mu - b) = c(\langle \nabla_{X_1} X_1, X_i \rangle - \langle \nabla_{X_2} X_2, X_i \rangle).$$

Since $\mu \neq b$, D_1 and D^{\perp} will be integrable if and only if c = 0 ($R^{\perp} = 0$) or $\langle \nabla_{X_1} X_1, X_i \rangle = \langle \nabla_{X_2} X_2, X_i \rangle$. Let us suppose $c \neq 0$ in an open set U. We are going to prove that $\langle \nabla_{X_1} X_1, X_i \rangle = \langle \nabla_{X_2} X_2, X_i \rangle$.

First, we will consider the case $\varepsilon = 0$. Then U is a flat manifold. The Codazzi equation for X_1, X_2, X_i and ξ_2 implies

$$\langle \nabla_{X_1} X_1, X_i \rangle c - \langle \nabla_{X_1} X_i, X_2 \rangle b = X_i(c) = \langle \nabla_{X_2} X_2, X_i \rangle c.$$

148

We claim that $X_i(c) = 0$, which implies $\langle \nabla_{X_2} X_2, X_i \rangle = 0$, for $i \ge 3$. In fact, we can take in Σ_2 , the maximal leaf of the integrable distribution D_2 , local coordinates (x_2, \dots, x_n) such that $\partial/\partial x_i = \beta_i X_i$, since D is integrable. Because Σ_2 is flat we can choose these coordinates such that $\beta_i = \beta$ and $\partial \beta / \partial x_i = 0$ for each $i = 2, \dots, n$. Σ_2 is immersed in \mathbb{R}^{n+2} and X_1 is normal vector for Σ_2 . Now we compute $X_i(c)$.

$$c = \langle A_{\xi_2} X_2, X_1 \rangle = -1/\beta \langle \tilde{\nabla}_{\partial/\partial x_2} \xi_2, X_1 \rangle$$

where $\tilde{\nabla}$ denotes the connection in \mathbf{R}^{n+2} . Then

(3.2)
$$\partial c/\partial x_i = -1/\beta \{ \langle \tilde{\nabla}_{\partial/\partial X_i} \nabla_{\partial/\partial x_2} \xi_2, X_1 \rangle + \langle \tilde{\nabla}_{\partial/\partial x_2} \xi_2, \tilde{\nabla}_{\partial/\partial X_i} X_1 \rangle \}.$$

But the last term is zero, because $\varepsilon = 0$. Since

$$0 = \langle R(\partial/\partial x_2, \partial/\partial x_i)\xi_2, X_1 \rangle$$

= $\langle \tilde{\nabla}_{\partial/\partial x_2} \tilde{\nabla}_{\partial/\partial x_i} \xi_2, X_1 \rangle - \langle \tilde{\nabla}_{\partial/\partial x_i} \tilde{\nabla}_{\partial/\partial x_2} \xi_2, X_1 \rangle$

and again because $\varepsilon = 0$, $\tilde{\nabla}_{\partial/\partial X} \xi_2 = 0$, implying in (3.2)

(3.3)
$$\partial c/\partial x_i = \beta X_i(c) = 0.$$

Now, considering the orthonormal frame $(V_1, V_2, X_3, \ldots, X_n)$ diagonalizing A_{ξ_2} we have

$$A_{\xi_1} = \begin{bmatrix} x & z & 0 \\ z & y & \\ & 0 & \\ 0 & & 0 \end{bmatrix}, \qquad A_{\xi_2} = \begin{bmatrix} 0 & & 0 \\ \mu_1 & & \\ 0 & & 0 \\ 0 & & 0 \end{bmatrix}.$$

Similarly, we conclude for $i \ge 3$

(3.4)
$$\langle \nabla_{X_i} V_1, V_2 \rangle = 0, \quad \langle \nabla_{V_1} X_i, V_2 \rangle = 0$$
 and $X_i(z) = z \langle \nabla_{V_1} V_1, X_i \rangle = 0.$

Setting $V_1 = \cos \theta X_1 + \sin \theta X_2$ and $V_2 = \sin \theta X_1 - \cos \theta X_2$, because $\langle \nabla_{V_1} X_i, V_2 \rangle = 0$, a straightforward computation shows

(3.5)
$$\langle \nabla_{V_1} V_1, X_i \rangle = \langle \nabla_{X_1} X_1, X_i \rangle$$
 and $\langle \nabla_{V_2} V_2, X_i \rangle = \langle \nabla_{X_2} X_2, X_i \rangle$.

Thus, (3.3), (3.4) and (3.5) imply

(3.6)
$$\langle \nabla_{X_2} X_2, X_i \rangle = \langle \nabla_{X_1} X_1, X_i \rangle = 0, \quad i \ge 3.$$

Now, if $\varepsilon \neq 0$, we can take a conformal diffeomorphism Φ from U to an open set O of the Euclidean space. We will denote again by $(V_1, V_2, X_3, \ldots, X_n)$ the orthonormal basis which diagonalizes A_{ξ_2} . Let γ_1 and γ_2 be the integral curves of $d\Phi(X_1)$ and $d\Phi(V_2)$ respectively.

We can immerse O isometrically in \mathbf{R}^{n+2} by composing a cylindrical immersion of \mathbf{R}^n to \mathbf{R}^{n+2} whose principal direction is $\gamma'_1(t)$, with another cylindrical immersion of \mathbf{R}^{n+1} to \mathbf{R}^{n+2} with $\gamma'_2(t)$ as principal direction. Then by (3.6), we have

$$\langle \nabla_{d\Phi(X_1)} d\Phi(X_1), d\Phi(X_i) \rangle = \langle \nabla_{d\Phi(X_2)} d\Phi(X_2), d\Phi(X_i) \rangle$$

Since Φ is conformal, writing the Riemannian connection in terms of the Riemannian metric, we get

$$\langle \nabla_{X_1} X_1, X_i \rangle = \langle \nabla_{X_2} X_2, X_i \rangle.$$

This proves that the distributions D_1 and D^{\perp} are integrable. Now Lemma (3.3) of [6] finishes the first part of the proof.

The second part of the proof follows from Theorem (1.12) of [6].

REMARK. If *M* is of type $(1, \varepsilon)$ with $\varepsilon = 1$, taking $\xi_1, \xi_2, X_1, \ldots, X_n$ as in the above theorem, we have

with $b = \mu$, because M is of type $(1, \varepsilon)$. Now, the Gauss and Kulkarni equations imply $R^{\perp} = 0$.

References

- [1] R. L. Bishop and S. I. Goldberg, On conformally flat spaces with commuting curvature and Ricci transformations, Canad. J. Math., XXIV (1972), 799-804.
- B. Y. Chen and T. Teng, Flatness of normal connections of totally quasiumbilical submanifolds and its applications, Soochow, J. Math. and Mat. Sci., 1 (1975), 9-16.
- [3] R. S. Kulkarni, *Curvature structures and conformal transformations*, J. Differential Geom., 4 (1970), 425-451.
- J. D. Moore, Conformally flat submanifolds of Euclidean space, Math. Ann., 225 (1977), 89–97.
- [5] J. D. Moore and J. M. Morvan, Sous-variétés conformement plates de codimension quatre, C. R. Acad. Sc. Paris, 287 (1978), 655–657.
- [6] M. H. Noronha, Conformally flat immersions in codimension two, Geometriae Dedicata, 23 (1987), 115–130.
- [7] H. Reckziegel, Completeness of curvature surfaces of an isometric immersion, J. Differential Geom., 14 (1979), 7–20.

Received January 7, 1987. The author is partially supported by FAPESP-SP-BRASIL.

Universidade Estadual de Campinas—IMECC 13081-Campinas-SP-Brasil