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CONFORMALLY FLAT IMMERSIONS AND FLATNESS
OF THE NORMAL CONNECTION

MARIA HELENA NORONHA

B. Y. Chen and T. Teng affirmed that almost umbilic isometric
immersions of an //-dimensional manifold in R"+2 have zero normal
curvature (R± = 0). In this paper we exhibit a counterexample to this
statement and we prove that either R-1 = 0 or there exists (locally)
an isometric immersion of this manifold in Rn+2 with R^~ = 0. These
immersions are conformally flat and we study their local geometry.

1. Introduction. An n-dimensional Riemannian manifold Mn is
conformally flat if, for each x E M, there exists a conformal diffeo-
morphism of a neighborhood of x onto an open set of the Euclidean
space Rn. We will call conformally flat immersion (CFI for short)
an immersion / : Mn —> W+p with M conformally flat in the metric
induced by / .

A nice characterization of CFI in terms of the second fundamental
form was given by Moore in [4] and Moore-Morvan in [5].

In this paper we want to consider CFI with codimension two. From
[5], we can conclude that if n > 5, such an isometric immersion / is
almost umbilic, i.e., for every x e M there exists an orthonormal
frame of the normal space TXM

L such that for each ζ of this frame,
the Weingarten operator Aξ has an eigenvalue of multiplicity at least
n- 1.

In [2] there exists a false statement which says that "almost umbilic
isometric immersions in Euclidean space with codimension two have
zero normal curvature". This and [5] together would imply that CFI
in codimension two has zero normal curvature (R1 = 0). In §2 we will
discuss this false result and its counterexample. The aim of this paper
is to show that if a conformally flat manifold can be isometrically
immersed in R"+2 then either R1 = 0 or there is a local isometric
immersion in R"+ 2 with R1 - 0.

Before stating our results, we will recall some definitions below:

DEFINITION. A submanifold Σ c M is a geometric sphere of type ε,
ε = 0, 1, if Σ is an umbilic submanifold with parallel mean curvature
vector and such that the sectional curvature of M along planes tangent
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to Σ are constant k,k = 0ife = 09k>0ife=l. If a conformally
flat manifold Mn is locally foliated by geometric spheres of type ε and
codimension s, we will say that Mn is of type (s, ε).

In the case of CFI with codimension two, it follows from [4] and
[7] that the connected components of an open dense V c M are either
umbilic, of type (1, ε) or of type (2, e). It will be easy to prove that a
CFI of manifold of type (1, ε) with ε = 1 has R1 = 0. Thus, our main
result is:

THEOREM. Let f:Mn -> Rw + 2 be a CFI where M is of type (2,ε)
and n > 5. Then M is (locally) foliated by two orthogonal codimension
one foliations whose leaves are, in the induced metric, conformally flat
manifolds of type (1, ε) and the intersection of the two foliations gives
the codimension two foliation by geometric spheres. Conversely, if M
admits such foliations, M can be (locally) isometrically immersed in
R*+2 with R1 = 0.

The author wants to thank Professor F. Mercuri for bringing our
attention to the example (2.1) below.

2. Flat //-dimensional manifold in Rπ+2 with R1 φ 0.

(2.1) EXAMPLE. Let f:M2 —• R4 be an isometric immersion with
R1 Φ 0 and M2 flat (this immersion can be the composition of a cylin-
drical immersion of R2 into R3 with another cylindrical immersion of
R3 into R4 along a curve whose tangent direction is not perpendicular
or equal to the principal direction of the first immersion). Consider
the product immersion / : M2 x Rn~2 -+ Rw + 2. We see that / satisfies
R1 Φ 0 and that M2 x R"~2 is flat, in particular, is conformally flat.

(2.2) ASSERTION. If n > 5, the example (2.1) is an almost umbilic
immersion.

In fact, let (£1,^2) be an orthonormal frame of TXM
± and let

(X\,..., Xn) be an orthonormal frame in TXM which diagonalizes the
Weingarten operator Aζι. Setting ζθ = cos θξ\ + sin θξi, we claim that
there exists θ such that ξβ is almost umbilic. It is enough to take θ as
a solution of the following equation:

2 θ + (aλ2 + cλ\) cos(9 sin(9 + (ab - c2) sin2 θ

where

i 0] _ \a c
I λ2\ ' A^™2~ [c b
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We observe that the above equation has a solution because λ\λ2+
(ab - c2) = 0. The lemma below allows us to find the other almost
umbilic direction.

(2.3) LEMMA. Let f: Mn -> R"+ 2 be a CFΪy n > 5 and ξ an almost
umbilic direction. Then ζ1 is almost umbilic.

Proof. Let (X\,..., Xn) be an orthonormal basis as in [4] and X\, X2
such that this basis diagonalizes Aξ. Then we have

0

0

c
b

β

0

β\

Now we can use the characterizaiton of conformally flat manifolds in
terms of the sectional curvatures given by Kulkarni [3], namely,

(2.4) K(Xι,X2) + K(X3,X4) = K(Xι,Xi)+K(X2,X4)

for any orthonormal vectors X\, XiyX^^X^ € TXM (where K(Xiy Xj)
is the sectional curvature of the plane {Xi,Xj}), together with the
Gauss equation to get

μ2 - {a + b)μ + (ab -c2) = 0

which implies that μ is an eigenvalue of Aζ±.
In [2] the authors affirmed that the example (2.1) contradicts [5]

(which, at that time, was a conjecture). But, we have shown that (2.1)
contradicts their result.

3. Proof of the theorem. We will start with the necessary part of the
theorem. We will denote by V and ( , ) the Riemannian connection
and metric respectively, a will be the second fundamental form and
V1 the normal connection.

Let ζ\ and ξι be the differentiable almost umbilic directions of / .
Let (X\,...,Xn) be an orthonormal frame which diagonalizes Aξr

Then

4ft =

We have:

a(Xi,Xj) =

Oi(X\, Xj) =

•A, 0"
A

A
. 0 A.

- a(X\, Xi) =

--cξ2.

> A* =

'a
c

.0

= 0,

c
b

i,

0"

y>3,
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If λ\ = λ, ξ\ is umbilic and then R1 = 0. Thus, we may assume λ\ φ λ.

Writing the Codazzi equation for X/,X/ and ξ\ {iyj > 3, / Φ y), we

get

Xi(λ) + μφjtfr, ξι) = (λ - λ)(Xi9 VXιXj).

Hence, if μ Φ 0 we have

Similarly, we obtain

i ί>3.

lΐ b = μ, Gauss and Kulkarni ((2.4)) equations imply k\ =
= JS:(XI , X2)9 i > 3, contradicting that M is of type (2, ε). Then 6 ̂  μ,
and this implies

^•(λ) = 0 = ( V ^ 2 , ί i ) , ι > 3 .

Now, the Codazzi equation for X^ Xι, Xι (i > 3) and ξ\ gives

(v J l x 2 ,x / μ + (v / lx / ,x 2 μ = (vX2xι,xi)λ + ιyX2Xi,xx)λx

and since λ Φ λ\ we have

(3.1) {Vχ2Xi,Xι) = (VXlX2,Xι) = 0.

Consider the following differentiable distributions:

A = span{X! ,X3,...,Xn}, D2 = span{X2, X 3 , . . . ,
Z) = span{X3,..., Xn}, DL = spanjXi, X2}.

D is obviously integrable because X$,...,Xn are tangent to the geo-
metric sphere. From (3.1), we conclude that D2 is integrable and, if
we prove that (V^X/,X2) = 0, we will have D\ and D1 integrable.
For this we apply the Codazzi equation to X2, X\, Xif (/ > 3), and ζ2

to get

(VχιX2,Xi)(μ-b)=c((VXιXx,Xi)-(VX2X2,Xi)).

Since μ Φ b, D\ and DL will be integrable if and only if c = 0 (R1- = 0)
or {VXιX\, Xi) — (Vχ2X2, X/). Let us suppose c Φ 0 in an open set U.
We are going to prove that {VXχXχ, Xz) = (Vχ2X2, X/).

First, we will consider the case a — 0. Then U is a flat manifold.
The Codazzi equation for X\,X2, X/ and ξ2 implies

(VXlXlfXt)c - (VXιXhX2)b = Xi{c) = {VX2X2,Xi)c.
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We claim that X/(c) = 0, which implies {Vχ2X2,Xi) = 0, for / > 3. In
fact, we can take in Σ2, the maximal leaf of the integrable distribution
D2, local coordinates (x2,-- ,Xn) such that d/dxi — /?/X/, since D is
integrable. Because Σ 2 is flat we can choose these coordinates such
that βi = β and dβ/dxi = 0 for each i = 2, , n. Σ 2 is immersed in
Rw + 2 and X\ is normal vector for Σ2. Now we compute Xi(c).

c = (Ai2X2fX{) = -\lβ{Vd/dXlζ2,Xx)

where V denotes the connection in Rw + 2. Then

(3.2) dc/dxi = -\lβ{{Vd/dXydldX2ξ2,Xx) +

But the last term is zero, because ε = 0. Since

0 = (A(d/dx2,d/dXi)ξ2,Xi)

and again because e = 0, Vd/dX[ξ2 = 0, implying in (3.2)

(3.3) dc/dxi = βXt(c) = 0.

Now, considering the orthonormal frame (Vι,V2,X3,...,Xn) diago-
nalizing Aξ2 we have

Similarly,

(3.4)

Aζι

we

=

x z
z y

.0

conclude

0

for

v2)

i

0

0.

t

> 3

:0 J

ΓO

0
0

0

0

= 0 and

Setting V\ = cos0Xi + sinθJSΓ2 and V2 — sin^X! - cosθZ 2 ? because
(yv{Xi} V2) = 0, a straightforward computation shows

(3.5) (VVιVι,Xi) = (VXιXι,Xi) and

Thus, (3.3), (3.4) and (3.5) imply

= (VXlXl9Xi).

(3.6) (VX2X2.Xi) = = 0, 1 > 3.

Now, if ε Φ 0, we can take a conformal diffeomorphism Φ from
U to an open set O of the Euclidean space. We will denote again by
(V\, V2, X3,..., Xn) the orthonormal basis which diagonalizes Aξ2. Let
γι and γ2 be the integral curves of dΦ(X\) and dΦ(V2) respectively.
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We can immerse O isometrically in R"+ 2 by composing a cylindrical
immersion of Rn to R"+ 2 whose principal direction is γ[(t), with an-
other cylindrical immersion of R"+1 to R"+ 2 with y'2{t) as principal
direction. Then by (3.6), we have

{Vdφ{X{)dΦ{Xx),dΦ(Xi)) = (VdΦ{Xl)dΦ{X2)fdΦ{Xι)).

Since Φ is conformal, writing the Riemannian connection in terms of
the Riemannian metric, we get

{VXiXι,Xi) = {VXlX2,Xi).

This proves that the distributions D\ and D1 are integrable. Now
Lemma (3.3) of [6] finishes the first part of the proof.

The second part of the proof follows from Theorem (1.12) of [6].

REMARK. If M is of type (l,ε) with ε = 1, taking ξ\,ξ2,Xi, •• ,Xn

as in the above theorem, we have
r λ.

0
λ

0

λ

Aζl =

a c
c b

0
β

0

β.

with b = μ, because M is of type (1, ε). Now, the Gauss and Kulkarni
equations imply R^ = 0.
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