
PACIFIC JOURNAL OF MATHEMATICS pac502/lbd

Vol. 138, No. 2, 1989

MEASURE-THEORETIC PROPERTIES OF
NON-MEASURABLE SETS

MAX SHIFFMAN

This article discusses the interior and exterior measures of two dis-
joint point sets S\, S2 and their union set S\ U& Besides well-known
inequalities on the six quantities m^S) and me(S) for S = S\,S2,
and Si U S 2 , further inequalities are obtained. Indeed, a complete
colleciton of inequalities on these six quantities is obtained, which
are both necessary and sufficient conditions. The complete collec-
tion of inequalities are expressible as: there are a certain six linear
combinations of the six quantities which are each > 0, and these six
linear combinations can be independently assigned any nonnegative
real value or 00, subject to their sum being < m(X)9 where X is the
entire space or a measurable set containing S\ and S2.

1. Introduction. Consider any point set S on the real number line
or in Euclidean n-dimensional space. (That the space is Euclidean is
unessential; general measure spaces, subject to a limitation, will be
taken up in a separate article.) The set S has an interior Lebesgue
measure nii(S) and an exterior Lebesgue measure me{S)y which are
non-negative real numbers or 00 satisfying

(1.1) 0<rΠi(S) <me(S)9

(1.2) rΠi(S) < wf (Γ), me(S) < me(T) for 5 c Γ ,

where S and T are two sets with S contained in T. A bounded set
is Lebesgue measurable if nii(S) = me(S), and the common value is
its measure m(S); an unbounded set S is Lebesgue measurable if the
intersection of S with every bounded interval is Lebesgue measurable
(then rrii(S) = me(S)). For two disjoint sets S\ and S2, i.e. S\ 1Ί-S2 = 0
where 0 is the symbol for the empty or null set, it is standard that if S\
and Si are measurable, then S\ US2 is also measurable and m(S\ U^) =
m{S\) + m(S2). The present article considers any two disjoint sets S\
and 62, whether measurable or not, and obtains a complete collection
of independent inequalities on the six quantities rrii(S) and me(S) for
S = SX,S2, and SΊ US 2

A set S is non-measurable if rrii(S) < me(S), or if mi(S) = me(S) =
00 and the intersection of S with some bounded interval is non-
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measurable. There are non-measurable sets, and indeed there are a
large number of them. This is well known [1] and shown in books on
measure theory, and also incidentally shown briefly in §7 here. For
two disjoint sets S\ and S2, where S\ Π S2 = 0, it is known that

f nti(Sι U S2) > m/OSi) +

I m(SΊ U S ) < me(Sι) + me{S2).

In words, interior measure is superadditive and exterior measure is
subadditive. Place

(1.4) di(Sι,S2) = mi(SιuS2) - m/(SΊ) - w/(52) > 0,

(1.5) de(SuS2) = me{Sx) + me{S2) - me(SιuS2) > 0,

for any pair of disjoint sets S\,S2,S\ Γ)S2 = 0, having finite exte-
rior (and therefore interior) measures. The definition of di(S\,S2)
and de(S\,S2) when me{S\) or me(S2) or both are infinite will be
given in §3, formulas (3.1), (3.2), and (3.3). The quantities di(SuS2)
and de(S\, S2) may be called the "differences" or "deficiencies" associ-
ated with the pair of disjoint sets S\, S2 and describe numerically how
far the interior and exterior measures differ from the exact additivity
property for measurable sets. In this article, the quantities d\ and de

will be studied and a simple relation between them found, namely

(1.6) di(SuS2)<de(SuS2).

Also, other inequalities for mz and me of Sχ,S2,S\ U S2 will be ob-
tained. Indeed, a complete collection of independent inequalities on
the six quantities m/(5) and me(S) for S = *SΊ ,^2, and S\ US2 will be
found. These are necessary conditions, and if six real numbers satisfy
this complete collection of inequalities, there are pairs of disjoint sets
S\, S2 with these values of the six quantities. Additional set functions
of pairs of disjoint sets *SΊ, S2 are introduced. These results are stated
in Theorems 5 and 10, or in the paragraph containing formulas (8.14)
and (8.15).

Define the average measure ma(S) of any set S by

(1.7) ma(S) = ±(rni(S) + me(S)).

The inequality (1.6) can be rephrased, by inserting equations (1.4),
(1.5) into (1.6), transposing some terms and dividing by 2, becoming

(1.8) ma(Sι US2) < ma{Sx) + ma(S2).
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This states that the average measure ma is subadditive (like exterior
measure and not interior measure). Indeed, it will be shown that if
one has a countable number of mutually disjoint sets SV9 v = 1,2,...
to N or to oo, then

(1.9)

and so average measure is countably subadditive. It is known that
me(S) is countably subadditive, and nii(S) is countably superadditive,
and m(S) for measurable sets S is countably additive.

There are non-measurable sets, and indeed a large number of them.
It should be said that a non-measurable set S is actually partially mea-
surable, having an interior measure m, (5') and an exterior measure
me(S) with 0 < rrii(S) < me(S). A measurable set S, of finite measure,
is just a set with nii(S) = me{S). One could say that a non-measurable
set S has as measure an undetermined value between rrii(S) and me(S)9

for instance ma(S), or that it has a range of values between rrii(S) and
me(S). A non-measurable set may be more appropriately called a
partially measurable set, having an interior measure and an exterior
measure satisfying (1.1), (1.2).

In a broad sense of measure, if one is thinking of applications, not
necessarily mathematical, an exact measurement might not be avail-
able for some process or subject. But a lower value and an upper
value might be available, like interior measure and exterior measure.
Finding properties of the lower and upper values would be of interest.
Or an estimate (such as average measure) could be considered.

2. Some lemmas. If S is any set, which may be non-measurable, it
is well known that if L is any measurable set c S then m(L) < m/(5)
and there is a measurable set B c S with m(B) = nii(S)\ and if L is
any measurable set D S then m(L) > me(S) and there is a measurable
set K D S with m{K) = me(S). Some lemmas concerning any sets S,
whether measurable or not, will first be found.

LEMMA 1. If a countable number of sets SVf v = 1,2,... to N or to
oo, are contained in mutually disjoint measurable sets Lv, Sv c Lv for
all v = 1,2,..., andL/lΠLI/ = 0 for all μ,v with μφv, then
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Proof. Select a measurable set B c {{Jv Sv) with m(B) = nii{[jv Sv).

Then (B ΠL μ) C ((U*. s»)nLμ) = \JΛS" n L μ ) = Sβ s i n c e (S» n L μ ) C
(LuΓ\Lμ) = 0 for all v ψ μ, and Sμ(~)Lμ = Sμ. Therefore, m(BnLμ) <
mj(Sμ) for every μ = 1,2,.... Now, 5 c flj,, Sv) c (U^ ̂ ) , so that

= Σ m(B

But interior measure is countably superadditive, mii\juSv) >

Σv mi(Sv)> and the equality m/flj,, *S1/) = Σi/ mi(Sv) is established.
Let Λ: be a measurable set D ({Ju S,,) with m(AT) = mei\]v Sv). Then

^ D (K n ( U ^ ) ) 3 ( U Sv), so that m(ΛΓ n ( U ^ ) ) = m , ( U Su)
also. Now, (AΓnL^) D Su, so that m(Kr\Lv) >me(Sv), and therefore

But exterior measure is countably subadditive, me(\JuSu) <
Σvme(Sv), and the equality me(y}uSy) = Σvme{Sv) is established.
Lemma 1 is proved.

A consequence of Lemma 1 is the following: if L and S are disjoint
sets, where L is a measurable set, then

{ mi(Lu S) = m(L) + mi(S),

LΠS = 0,

me{L U S) = m(L) + me(S).

This is by Lemma 1, since S is contained in the measurable set (entire
space -L) .

LEMMA 2. Suppose that S\ u £2 w measurable, where S\ and Si are
disjoint sets, S{nS2 = 0. Then

m(S{ U S2) = nti(Si) + me(S2) = /

Proof. Let 5 ! be a measurable set c S\ with m(B\) = m/(5Ί). Then
(J?i US2) C (5Ί U ^ ) , and ^ is disjoint from ^2, so that m(5Ί
me{B\ US2) = m(Bι) + me(S2) by (2.1). Thus,

(2.2) m(Sι US2) > mi{Sι) + me{S2).
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Let K2 be a measurable set D S2 with m(K2) = me(S2). Then K2 D
(K2n(Sι US2)) D S2 and m(K2) > m(K2Π(Sι uS2)) > me(S2), so that
m(K2 Π (Si U S2)) = me(S2) also. Now for finite me(S2), one obtains
from ((Si U S2) - (*2 Π (Si U S2)) C Sx that

"/(SO > /n[(5Ί U52) - (K2Π(Sι υS2))]

= m(Sι U S2) - m(K2 n (5Ί U S2)) = w(SΊ U S2) - m,(52).

Adding the finite quantity me(S2) to both sides of this inequality gives
m{S\ US2) < rrii(Sι) + me(S2). If me(S2) is infinite, this last inequality
is still true, and together with (2.2), the first equation of Lemma 2 for
m(S\ US2) is obtained. Interchanging the roles of Si and S2 establishes
the second equation of Lemma 2 for m(Sιl)S2). Lemma 2 is proved.

Another formulation of Lemma 2 is as follows. Suppose that S c L
where L is measurable. Then, if me(S) is finite,

mi(L-S) = m(L)-me(S),
[ ' } m(LS) rn(L)m(S) S c L.

This is from Lemma 2 for S\ = S, S2 = L-S. If me(S) = oo, replace
(2.3) by Lemma 2 for S\ = S, S2 = L - 5, which reduces to just
rae(£ - S) + nii(S) = m(L) = oo. Formula (2.3), or Lemma 2, states
a complementation property of interior and exterior measures.

Incidentally, above and subsequently, oo is a possible value of an
interior measure, exterior measure, or measure, and has the properties:
oo + finite = oo, finite + oo = oo, 00 + 00 = 00, oo> finite, finite < 00,
00-finite = 00; 00-00 is undetermined and has no meaning, and finite
-00 has no meaning as a measure, interior or exterior, since these have
non-negative values. The relations <, >, and = are mutually exclusive;
and the commutative and associative laws of addition hold.

LEMMA 3. Suppose that S c M, where M is measurable, and that
nti{M - S) = 0 (for finite m(M), mι(M - S) = 0 is equivalent to
me(S) = m(M)). IfL is a measurable set c M, then

me(S Γ\L) = m(L) and nti(L -(Sn L)) = 0.

Proof. L-(SΠL) = (MΓ)L)-(SnL) = ((M-S)ΠL) c (M-S).
Therefore w/(L-(5TlL)) < m^M-S) = 0 and so mi(L-(SnL)) = 0.
By Lemma 2, m(L) = me(S Π L) + mt(L - ( S n L)) = me(S Π L).
The statement in parentheses in Lemma 3 follows from Lemma 2:
m(M) = me(S) + mι(M - S). Lemma 3 is proved.

The next lemma refers to di(Sι,S2) and de(S\9S2) for two disjoint
sets Si and 52, when the pair (S\,S2) is expressible as a countable
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union of pairs (S" ,$%) which are contained in mutually disjoint mea-
surable sets Lv'.

LEMMA 4. Suppose that S\ and S2 are disjoint sets, S\ΠS2 = 0, and
S{ = \JVS\9S2 = [JVS% for a countable number of v = 1,2,... (to N
or to ex)). And suppose that (S\ U S%) c Lv where Lv is a measurable
set for every v = 1,2,..., am/ J/zatf the measurable sets Lv are mutually
disjoint, i.e. Lμ Γ\LV = 0 for all μ,u with μφv. Then

(2.4) di(S

(2.5)

Proof The equality of (2.5) is true by (1.7) and Lemma 1. Inciden-
tally, (2.5) holds for any single set S by taking S{ = 5, 5f = S" for all
1/, and S2 = 0, S» = 0 .

The equations for d\ and ^ in (2.4) are true when me(β\ US2) is
finite, by using the homogeneous linear formulas (1.4) and (1.5) for
di and de, and Lemma 1. For then all the quantities nti(S) and me(S)
when S = S{, S2, 5i U S2, 5f, 5^, S» U S^ are finite, and di{S\ ,S%) =
mi(S%uSZ)-mi(S%)-mi(S%)9 and likewise for de{S\,S%). Summing
over all 1/ = 1,2, (to TV or to 00) gives

since

5^ ^ and

by Lemma 1, which are finite amounts; and so

Likewise for de(S\9S2), and Lemma 4 is proved when me(S\ US2) is
finite, and in particular when S\ and S2 are bounded sets. The case
of Lemma 4 when me(S\ U £2) = 00 will be taken up in the §3.

The formulas (1.4) and (1.5) for di and for de cannot be used if
a subtractive term in the formula is 00. But di and de can still be
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defined, and the formulas (1.4) and (1.5) rewritten as

i(Sι US2) = m/(5Ί) + m/(52) + di(SΪ9S2),
1 me(Sι) + me(S2) = me(SιUS2) + de(Sι,S2),

(2.7) di(Sl9S2)>0, de(Sl9S2)>0.

The definitions of di(S\,S2) and de(S\,S2) are in the next section.

3. Definitions when an exterior measure is infinite. The entire Eu-
clidean n-dimensional space of all points (x\ ,x2,. .. 9xn)9 for all real
values of X\, x2,..., and xn, can be written as the union (J£ii Xv of
a countably infinite number of mutually disjoint bounded measurable
sets X\ v = 1,2,... to oo; for example, as \Jkι U f c \Jkm I^^^-M
where /(^»fe,...Λ) j s the half-open unit interval of measure 1 consisting
of all points (x\,x2,..., xn) for which

kγ < x\ < kι + 1, k2 < x2 < k2 + 1,..., kn < xn < kn + 1,

and the k\, k2,..., &„ are integers which range over all integer values
from -oo to +oo independently. All the intervals /(̂ »fe,...,fc) a r e count-
ably infinite in number, and can be arranged in some order as Xv with
v = 1,2,... to oo, so that

(3.1) entire space = \]X\ Xμ n Γ = 0 for all μ,i/ with // ^ ^ ?

where Z^ are mutually disjoint bounded measurable sets. Then, for
any two disjoint sets S\ and S2,

v=\

s2=\J(S2nxv).

The two sets S\ i l l " , S2 Π Xv for any v are disjoint bounded sets,
and di{Sx fλXv,S2fλXv) and ^ ( S i Π Γ , 5 2 n Γ ) can be defined as
in (1.4) and (1.5), and they satisfy (2.6) and (2.7) above. Then define

(3.2)
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(3.3) de(Sι,s2) =

These being sums of non-negative numbers, note that oo is a possi-
ble value of di(S\,S2) and de(S\,S2) when the corresponding infinite
series diverges to oo, as well as a non-negative real number.

The formulas (2.6) and (2.7) are satisfied for the pair of disjoint
sets S\ Π X", S2 Π Xv for each i/, and (2.6) is

/H/((SΊ n Xu) U (S2 n Xv)) = mi{Sχ n JΓ") + m^ n * " )

+ έ/I ( S 1 n Λ ^ S 2 n Λ ' 1 ' ) ,

and similarly for (2.7). Summing for v from 1 to k gives

* 2 n

u=\ v=\
k

and letting k —• oo, using Lemma 1 and the definition (3.2) gives

rrniSi US2) = ntiiSx) + rΠi(S2) + di(S

all the quantities being > 0 and only additions being involved. Simi-
larly for the second line of (2.6) and for (2.7). Thus, the formula (2.6)
and (2.7) are established.

If S\ and S2 are both bounded sets, then (2.6) and (2.7) imply (1.4)
and (1.5) since all the terms in (2.6) involving ra, and me are finite,
and so di(S\,S2) and de(S\,S2) are finite by (2.6), and transpositions
give (1.4) and (1.5). Thus, the definitions of di(S\,S2) and de{S\,S2)
given in (3.2) and (3.3) agree with their definitions in (1.4) and (1.5)
when S\ and S2 are bounded sets. A further statement concerning the
definitions of di(S\,S2) and de(S\,S2) will be made in the paragraph
following the next paragraph.

Returning to the proof of Lemma 4 in §2, it has already been proved
when S\ and S2 are bounded sets, in §2. Now let S\ and S2 be any
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pair of disjoint sets, and S\ = \Jμ S", S2 = \Jμ S%, and Lv as in the
hypotheses of Lemma 4. One has, by the definition (3.2), di{S\,S\) =
E^Li di{S\ nXμ,S%n Xμ) and likewise for de. Therefore,

this interchange of the order of summation being valid since all the
terms are non-negative. Likewise for de. Since S\ = {juS\ and S2 =
\Jy S%, one has ^ n P = \JΛ^ ΠX") and S2 ΠXμ = \JV(S% nX»),
and for each μ the pair 5Ί Π Xμ and ^ Π Xμ are two bounded disjoint
sets, so that Lemma 4 is applicable and therefore

(3.5) di(Sχ ΠXμ

9S2

from (2.4) w i t h 5 1 n ^ , 5 2 n X ^ replacingSx,S2 in (2.4). From (3.4),

by (3.5) and (3.2). This is the first equation in (2.4). Likewise for de

in place of d\ in this paragraph, which gives the second equation in
(2.4). Lemma 4 is proved.

If S\ and 5*2 are disjoint sets, and the entire space is expressed
a s U^=i Yv °f another countably infinite number of mutually dis-
joint bounded measurable sets, as in (3.1) with Yv replacing Xv,
then S\ = (Ji/OSΊ n γv) a n d ^2 = L U ^ Π Yv), and Lemma 4
shows that di(Sl9S2) = ΣZidtiSi n Γ , S 2 n Y"), de{SuS2) =
ΣΓ=i( 5 i nY"9S2n Yv). Therefore, using Y", v = 1,2,... to oo,
in place of Xv, v = 1,2,... to oo, for the definitions of rf/(5Ί, S2) and
de(S\9S2) in (3.2) and (3.3) gives the same values of di(S\9S2) and
de(S\9S2) respectively.

Incidentally, note that di(S\,S2) and de(S\9S2) depend on the pair
of disjoint sets S\9S2 and not on their order, so that di(S29S\) =
di(Sι, S2)9 de{S2, Si) = de(S\, S2). And, if one of the sets S{, S2 is the
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empty set 0, say S2 = 0, then

(3.6) di(S,0) = di(0,S) = 0, de(S,0) = de(0,S) = 0.

This is by (1.4) and (1.5) if S is a bounded set, and by (3.2) and (3.3)
for any S. Also,

(3.7) di(Sl,S2) = de(SuS2) = 0

if S\ and S2 are both measurable sets, by (1.4) and (1.5) when S\ and
S2 are bounded sets, and then by (3.2) and (3.3) for any measurable
sets S\, 52. ((3.7) holds if one of S\, S2 is measurable, by (2.1).)

This §3 will be completed by the following lemma.

LEMMA 5. For any set S there is a measurable set B c S for which
m(B) = rrii(S) and mj(S — B) = 0, and there is a measurable set LD S
for which m(L) = me{S) and mι(L - S) = 0.

Proof It is well known that there is a measurable set B c S for
which m(B) = m/(5), and a measurable set L D S for which m(L) =
me(S). If mi(S) is finite, then rm(S - B) = 0 follows from (2.1)
applied to the disjoint sets B and S - B. If me(S) is finite, then
w, (L - S) = 0 follows from (2.3). So Lemma 5 is proved for sets S
with finite nii(S) or me(S), and in particular for bounded sets S. For
mi{S) or mβ(5) infinite, write the entire space as \JVX

U as in (3.1).
For each v there are, by Lemma 5 for bounded sets, measurable sets
^ C ( 5 n Xv) and L ^ D ( 5 n X") for which m/((5' n X") -BV) = Q
and m/ίL* - {S n P)) = 0. Place 5 = | J ^ and L = ( J ^ Π Xv).
Then

and by Lemma 1,

v=\

m(B) = mz(5) follows from (2.1) applied to the disjoint sets B and
S-B. Also,

L-S= (\J(Lpnxv)\ - [{j
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and by Lemma 1,

nn(L -S) = Σ miW n χV) -

since
v)) and

By Lemma 2 applied to the disjoint sets L - S and S, m(L) =
m, (L - S) + m^(5) = me(S). Lemma 5 is proved.

Concerning Lemma 5, it suffices to state merely mt(S -B) = 0 and
rrii(L - S) = 0 as the properties of 5 c S and LD S. (Note that it is
mz that appears in both = 0 statements.) For, m{B) — nii(S) follows
from nii{S - B) = 0 by (2.1) applied to the disjoint sets B and S -B;
and m(L) = me(S) follows from m/(L - S) = 0 by Lemma 2 applied
to the disjoint sets L-S and S. Incidentally, in Lemma 5, the sets B
and L may be chosen as Borel sets.

4. An inequality for the differences. The first main theorem of this
article is

THEOREM 1. Suppose that S\ and Si are two disjoint sets, S\ΠS2 =
0. Then

0<di(SuS2)<de(SuS2).

Proof Select measurable sets B\ c S\ and B2 C S2 as in Lemma 5,
for which m/(5Ί - Bx) = 0 and m}(S2 - B2) = 0.

Now, S\ = Bx U (Si - 5 0 and 5 2 = B2 U (S2 - B2), and (SΊ - #i) c
(the entire space -B\), which is a measurable set disjoint from B\, and
(S2 - #2) C (the entire space -B2), which is a measurable set disjoint
from B2. By Lemma 4 for N = 2,

= di(Sι -BUS2- B2) and

de(SuS2) = de(BuB2) + de(Sι - BUS2 - B2)

= de(Sι-Bl9S2-B2)

since di(B{,B2) = de(BuB2) = 0, by (3.7). The sets SΊ - ^ and
S2-B2 both have interior measure 0, so to prove Theorem 1 it suffices
to prove Theorem 1 when both sets Si, S2 of the theorem have interior
measure 0.



368 MAX SHIFFMAN

Suppose that Z\ and Z 2 are disjoint sets, Z\ ΠZ2 = 0, and both have
interior measure 0, mi(Zχ) = 0 and mi(Z2) = 0. Select measurable
sets L\ D Z\ and L2 D Z2 as in Lemma 5, with nii(L\ - Z{) = 0 and
rΠi(L2 - Z2) = 0. Now,

L{UL2 = (Li Π L2) U (Li - (Li Π L2)) Π (L2 - {Lx n L2))9 and

Z, c (Li U L2) for7 = 1 and 2,

so that

(4.1) zj = (zjn(LlnL2))u[Zjn(Ll-(LlnL2))]

U [ Z y n ( L 2 - ( L 1 n L 2 ) ) ] for./=1,2.

The three measurable sets Li n L2, L\ - {L\ n L2), L2 - (Li Π L2)
are mutually disjoint, and the two disjoint sets Z ; , for j = 1 and
2, are each expressed in (4.1) as a union of three sets, one in each
of these three mutually disjoint measurable sets. By Lemma 4, (2.4)
expresses di(Z\,Z2) and de{Z\,Z2) as sums of three rf/'s and three
de% respectively, corresponding to the three terms of the right-hand
sides of (4.1). The last two terms in both these sums are zero. For,
Z 2 n ( L i - ( L i Π L 2 ) ) = 0 since Z 2 c L2 and L2Γ){Lι-(LιΠL2)) = 0.
The pair of sets in the second expression on the right-hand sides of
(4.1) for j = 1 a n d ; = 2 is Zx Π {L\ - {Lλ n L2)) and 0, and

= de(Zx n (Lx - (Lx ΠL 2 )) ,0) = 0 by (3.6).

Likewise, the pair of sets in the third expression on the right-hand
sides of (4.1), for j = 1 and j = 2, is 0 and Z 2 n (L2 - (L\ Π L2)), so
that

d/(0,z2 n (L2 - (L{ ni2))) = 4 ( 0 , z 2 n (L2 - (L{ΠL2))) = 0.

There remains the terms in the first expression on the right-hand sides
of (4.1), for j = 1 and j = 2. The result is

r di(Z\, z2) = di(Z\ n (L\ n L2) , z 2 n
^4 ) I d (z z) = d (z n in(LinL2),z2n(L!nL2)).

Now, m/(Zi Π (L\ ΠL2)) = 0 and ra;(Z2 Π (Li ΠL2)) = 0 since both
these sets are contained in Z\ and Z 2 respectively, and w/(Zi) = 0,
rrii(Z2) = 0. The first formula of (4.2) and of (2.6) give

(4.3) di(Zι, Z2) = mi((Zι U Z2) Π (L! Π L2)).
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The second formula of (4.2) and of (2.6) give

(4.4) de(Zι, Zi) + me{(Zι U Z2) n (Li n L2))

= me(Zx Π (Li Π L2)) + me(Z2 Π (Lx Π L2))

But nii{L\ - Z\) = 0 by the selection of Li D Z\, and (Li n L2)
 c ^i>

so that Lemma 3 with M = L1 ? and S = Z\, and L = Z^ Π L 2 gives
w^(Zi Π (Li Π L2)) = m[L\ Π L2). Likewise, me(Z2 Π (Li Π L2)) =
m(L\ Γ\L2). Also,

Zi n (Li n L2) c ((Zi u z 2 ) n (Li n L2)) c (Li n L2)

and me{Z\ n (Li Π L2)) = m(Li Π L2) shows that

mff ((Zi U Z2) n (Li Π L2)) = m(Li n L2).

Placing these three equal values m(L\ ΠL2) into (4.4) gives

(4.5) de{Zχ, Z2) + m{Lx n L2) = w(Li ΓΊ L2) + m{Lx n L2).

If Z\ and Z 2 are bounded sets, then m(L\ Π L2) is finite, and (4.5)
establishes that

(4.6) de(Z

This and (4.3) yield

(4.7) di(ZuZ2)<de(ZuZ2).

This inequality (4.7) is established when Z\ and Z 2 are bounded
sets. For any disjoint sets Z\, Z 2 for which W/(Zi) = AW/(Z2) = 0, use
the definitions of ύf/(Z1,Z2) and de{ZuZ2) in (3.2) and (3.3). For
each μ, the sets Z\ Π Λf̂  and Z 2 Π X^ are bounded disjoint sets for
which /n, (Zi Π l ^ ) = 0 and m/(Z2 n ^ ) = 0 so that by (4.7)

0<di{zιnxμ,z2nxμ)<de(zιnxμ,z2nxμ).

Summing over all positive integers μ from 1 to oo, and using (3.2) and
(3.3) for the pair Zx, Z 2 gives (4.7).

Continuing with the proof of Theorem 1, it was shown above in the
first paragraph of the proof that it suffices to prove Theorem 1 for the
pair of sets S\ — Bχ9 S2 — B2, both of which have interior measure 0.
Theorem 1 is proved.
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A consequence of Theorem 1 is: if de{Sx, S2) = 0 then dι(Sx, S2) =
0. That is, if me{Sx U S2) = me{Sx) + me(S2), then mz (SΊ u 52) =
rrii(S\) + rrii{S2). But di{Sx,S2) — 0 does not necessarily imply that
de(Sι,S2) = 0.

5. Average measure. Another form of Theorem 1, and a general-
ization, is stated in Theorem 2 immediately below, using the average
measure ma(S) of a set S, defined in (1.7).

THEOREM 2. The average measure ma{S) of a set S, defined by
ma(S) = \(mi(S) + me(S)), is subadditive, i.e., ma(SxuS2) < ma(Sx) +
^a{S2)for any two disjoint sets SX,S2. More generally, suppose that Sv,
v = 1,2,... to N or to infinity, are a finite or countably infinite num-
ber of mutually disjoint sets, and consider the union \JV Sp of these sets.
Then

Proof. If S\ and S2 are disjoint bounded sets, insert the defini-
tions (1.4) and (1.5) of di{S\,S2) and de(S\,S2) into the inequality
di(S\,S2) < de(S\,S2) of Theorem 1, transpose suitable terms and
divide by 2. The result is the first inequality of Theorem 2. For any
disjoint sets S\ and S2, using (3.1),

ma((S{ us2) n X") = ma((S{ n xv) u (S2 nx v ))

and summing for all v from 1 to 00 gives ma(S\ U S2) < ma{S\) +
rr^a(S2) by (1.7) and Lemma 1, and the terms in the infinite series are
all > 0. For any two sets Sx and5 2 , one has Sx\JS2 = Sι\J(S2-(S2nSi))
so that

ma(Sι\JS2) < ma{Sx) + ma{S2 - (S2nSx)) < ma{Sλ) + ma{S2)

since (S2 — (S2nS\)) c S2. The first sentence of Theorem 2 is proved.
For the second sentence of Theorem 2, if the number of sets S^ is

finite, the theorem is proved by mathematical induction, as follows:
Supposing the theorem true for k sets, ma(\Jl=x Sv) < Σ * = 1 ma{Sy),
then for k + 1 sets

a(\JsΛ =ma(([JsA\JSk+λ <mflί U^J +m

ma(Sk+ι) =
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which is the theorem for k+1 sets. Since the theorem is true for 2 sets,
the theorem is true for any finite number N of sets, by the principle
of mathematical induction.

If the number of sets Si, is infinite, v = 1,2,... to infinity, note first
that Theorem 2 is true if Σ£Li ma{Su) is divergent, or if any ma{Su) =
oo, since then Σ£Li ma(Su) = oo. Suppose that Σ£Li ma(SJ/) is con-
vergent. Since 0 < W/(S) < me(S), one has from (1.7) that 0 <
\me(S) < ma{S) < me(S), and the convergence of Σ£Li ma{Sv) im-
plies (and is implied by) the convergence of Σ£Li me{Sv). Let Kv be a
measurable set D SV with m{Kv) = me(Su). Then Σ£Li m(Kv) is c o n ~
vergent, and given any positive number ε there is an integer k = k(ε)
such that Σ™=k+ι m(Ku) < ε. Now, for measurable sets it is known
that m((J£L*+i Kv) < Σ ^ + i m ( ^ ) < ε (indeed = holds if the Kv

are mutually disjoint), one has rne(\J^Lk+ι Sv) < m(\J™=k+ιKu) <

ε. Then (J~ i ^ = (Uί=i ^ ) U (U~=*+i Λ) , so that m α ( U ^ i S*) <

™a(\Jl=\Sp) + β But by the preceding paragraph, ma([Jl=xSv) <

Σ ί = i W β ^ ) , so that

The terms involving ma() on the two extreme sides of (5.1) are certain
amounts, and (5.1) being true for any positive ε, letting ε -> 0 gives
m<z(U£ti «Si/) ^ Σ)^=i ma{Sv)> Theorem 2 is proved. (Incidentally,
note that the inequality maiXJvSu) < Σvma{Sv) holds for any sets
Sv, not necessarily mutually disjoint.)

In words, Theorem 2 states that the average measure ma(S) is a
swfodditive set funciton and indeed is a countably subadditive set
function, just as the exterior measure me(S) is. It is interesting to note
that while the interior measure #!,•(£) is Mφer-additive for disjoint sets,
the average measure ma(S), which is \ the sum of m/(S) and me(S)9

is swύadditive like the exterior measure me(S). For the sum m/(S) +
me(S), the subadditivity of me(S) overcomes the superadditivity of

resulting in the subadditivity of ma(S).

THEOREM 3. IfS c L where L is measurable, then

ma(S) + ma{L -S) = m(L) = ma(L).

Proof This is a consequence of Lemma 2 with S\ = S and S2 =
L-S. Add the two resulting equalities of Lemma 2, and divide by 2,
obtaining the equation of Theorem 3.
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Theorem 3 is a complementation property of average measure, re-
ferring to the average measures of a set S and its complement L -S in
a containing measurable set L (such as an interval). Average measure
is also non-negative and monotone increasing, 0 < ma(S) < ma{T)
for S c T; and ma(S) = m(S) for measurable sets S, and ma(S) = 0
only for sets of measure 0. Note that exterior measure me(S) does not
have this complementation property.

Also, note that ma(S) > 0 and if S is measurable, then ma{S) =
m(S). And, if ma{S) = 0, then S is a measurable set of measure 0.
For, since nti(S) < ma(S), so m/(5) = 0 and then me{S) = 0 from
ma(S) = \mi{S) + \me{S).

6. More inequalities. Another main theorem concerning two dis-
joint sets S\, 52 is

THEOREM 4. IfS\ and Si are disjoint sets, S\ΠS2 = 0, then

rm(Sι US2) < nti(Sι) + me(S2) < me(S{ \JS2),

mi(Sι US2) < me{Sx) + mi(S2) < me(S{uS2).

Proof. Pick a measurable set LD (S\US2) with m(L) = me{S\US2),
and a measurable set Bx c S\ with m(Bx) = m/(5i). The set (L-B{) D
S2 since S2 is disjoint from S\9 so that ((L — B\)n (S\ US2)) D S2, and
me((L - B\) Π (Si US2)) > me(S2). Now,

5Ί U5'2 = (B{ n (5Ί U 52)) U((L-Bι)n (Si U 52))

By Lemma 1,

me(Sx U S2) = m(Bx) + m£((L - Bx) Π (5Ί U 5'2))

and this is one of the inequalities of Theorem 4 for me(S\ US2). Inter-
changing the roles of S\ and 5*2 gives the other inequality of Theorem
4 for me{Sx u5 r

2).
Now, if me(S\ U S2) is finite, placing (1.4) and (1.5) into the in-

equality of Theorem 1 gives

rm{Sχ US2) - mi(Sχ) - m/(52) < me(Sχ) + me(S2) - me(Sχ\JS2),

which can be written as

me(SχUS2) - mi(Sχ) - me(S2) < me(Sχ) + m/(52) - W|(5Ί US2).
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The left-hand side of this inequality is > 0 by the proved inequality
in Theorem 4 for me{S\ U Si), and therefore the right-hand side of
this inequality is > 0. This is one of the inequalities of Theorem 4
for nii{S\ \JSι). The other inequality of Theorem 4 for m/(*SΊ US2) is
obtained by interchanging the roles of S\ and Si. Theorem 4 is proved
when me{S\ US2) is finite.

Suppose that me{S\ U Si) = 00, and decompose the entire space as
in (3.1). By what has just been proved

u s2) n xv) = m/((SΊ n xv) u (S2 n xv))

Summing for all v = 1,2,... to 00, Lemma 1 gives

rrniSi US2) < /W/(SΊ) + me(S2).

This is one of the inequalities of Theorem 4 for m, (5Ί U S2), and
interchanging the roles of S\ and Si gives the other inequality for
nii(S\ US2). Theorem 4 is proved.

Besides the inequalities of Theorem 1 and Theorem 4, there are
the well-known inequalities (1.3), and (1.1) for S = S\ and S2 and
S\ U S2, and (1.2) for T = S{uS29S = Sλ and S2. It will be shown
that all these form a complete set of inequalities for nij(S) and me(S)
for 5 = 5Ί and *S2 and 5Ί U ̂ 2, for every pair of disjoint sets S\ and
Si. But first, the large number of these inequalities will be written in
fewer and more manageable form.

For two disjoint sets S\ and Si, introduce the quantities g\(S\,Sι)
and gι(S\, S2) defined by

g\(Sl9S2) = me(SιUS2) - ntiiSx) - me{S2) > 0,

(6.1) I g2(S{,S2) = me(S{uS2) - mi(S2) - me(S{) > 0?

(

which are non-negative by Theorem 4. And introduce the quantity
h(SΪ9S2) defined by

(6.2) h(SuS2) = de(Sl9S2) - di(Sl9S2) > 0, S{ Γ)S2 = 0 ,

which is non-negative by Theorem 1. These are the definitions when
S\ and S2 are bounded sets (and when me(S\ US2) is finite). Their
definitions for any disjoint sets S\ and S2 are given the same way as
for di(S\9S2) and de(SuS2) in §3, by (3.1) and (3.2), (3.3), with the
quantity g\( , ) replacing */,-( , ) or de( , ) in (3.2), (3.3), and likewise
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for g2( > ) a n d Λ( , ). Replace the formula (6.1) and (6.2) by the
transposed equations

(6.3)

( gι(SuS2)+mi(Sι)+me(S2) = g2(SuS2)+mi(S2) + me(S{)

=me(SιUS2),

> 0 , g2(SuS2)>09 h(SΪ9S2)>0,

as (1.4) and (1.5) were replaced by (2.6) and (2.7) in §2. The defini-
tions of g\(S\,S2), g2(S\,S2), and h(S\,S2), by (3.1) and analogously
to (3.2) or (3.3), are shown to be consistent with (6.1) and (6.2), just
as was done in §3 for di(S\,S2) and de(S\,S2). This is by using (6.3)
for bounded sets and Lemma 1, thereby establishing (6.3) for any
pair of disjoint sets S\ ,S2, and when S\ and £2 a r e bounded sets (or
when me(S\ US2) is finite), transpositions in (6.3) give (6.1) and (6.2).
Also, Lemma 4 with gx( , ) or g2( , ) or h( , ) replacing *//(,) or
de{ , ) in (2.4) is proved just as in §§2 and 3. And the definitions of
g\ (S\ ,S2), g2(S\,S2), and h(S\, S2) are independent of which decom-
position (3.1) is used, as in §3.

Incidentally, the expression for h(S\, S2) i n (6.2) can also be written
as

h(SΪ9S2) = m/(5Ί) + me(Sι) + rΠi(S2) + me(S2)

- m/ίSΊ U S2) - me(Sλ U S2) > 0,

and also as

\h{SuS2) = ma{Sx) + ma(S2) - ma(Sι US2) = da(SϊfS2) > 0,

where da(S\, S2) is the average "difference" for the disjoint sets S\, S2.
Suppose S\ and S2 are any disjoint sets,

(6.4) S{nS2 = 0,

and consider their union S[ U S2. Place

a = m K ^ i(6 5) l
\b m(S) b m{S) b = me{SιUS2).

Concerning the six real numbers a\,b\,a2,b2,a,b, the superadditivity
of interior measure and subadditivity of exterior measure is, as in
(1.3),

(6.6) di: = a - a\ - a2 > 0, de = bι+b2-b>0
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where dj and de are defined in (6.6), as in (1.4) and (1.5). The relations
(6.6) may be written

(6.6)' di + U\ + a2 = α, de + b = b\ + b2, dx > 0, de > 0.

The non-negativeness and connection between interior and exterior
measures (1.1), and the monotone increasing property (1.2), give

<aι<bu 0<a2<b2, 0<a<b,

i CL\ < a, b\ < b, a2 < a, b2 < b.

In addition to these, Theorems 1 and 4 state

(6.8) di<de, and

(6.9) a < a{ + b2 < b, a<a2 + bx<b.

The above large number of inqualities for a\9 b\9 a2, b2, a, b in
(6.6), (6.7), (6.8) and (6.9), 17 in all, will first be reduced in number
and form. Introduce di and de as in (6.6) and g\, g2, and h as in (6.1)
and (6.2):

(6.10) gx =b-aι-b2>0, g2 = b-a2-bl > 0, h = de-di>0.

The relations in (6.10) can also be written as

(6.11) g\ +a\ +b2 = b, g2 + a2 + b\=b, gι>0, g2>0, and

(6.12) h + di = de, h>0.

From (6.6), b\ = (b - b2) + de = g\ + aγ + de by (6.11), and (6.12)
gives (and likewise for b2)

(6.13) bi^ai+di + h + gi, b2 = a2 + dj +fι +g2.

From (6.6) one has

(6.14) a = a\ + a2 + dj and b = a\ + a2 + d,• + h + g\ + g2.

The second equation in (6.14) comes from (6.6), (6.13) and (6.12):

b — b\ + b2 — de

= (aι+dj + h + gι) + (a2 + dt + h + g2) - (d, + h)

= ax+a2 + di + h + gχ+ g2.

Also, if the disjoint sets S\, S2 are both contained in a measurable set
X, which might be an interval or the entire space, then

(6.15) b<m{X).
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The relations (6.11), (6.12), (6.13), and (6.14) have been obtained
above when all the quantities involved are finite, or me(S\ U S2) is
finite. In particular, they hold when S\ and S2 are bounded sets. If
this is not the case, they still hold. Write the entire space as in (3.1),
and they hold for the pair of sets S\ f\Xv, S2 fΊ Xv. Then summing
these relations over all z/ = 1,2,... to 00, and using Lemmas 1 and 4,
and Lemma 4 with g{ ( , ) or g2( , ), or h{ , ) replacing </,-( , )oτde{, )
in (2.4), these relations are established just as in the establishment of
(6.3) as in §3. Thus, (6.11), (6.12), (6.13) and (6.14) are proved in
general, so that the quantities a\9 b\, a2, b2, #> b can be expressed in
terms of a\ a2, du h, gu g2 by (6.13) and (6.14), leading to the next
main theorem.

THEOREM 5. For two disjoint sets S\ and S2 which are both con-
tained in a measurable set X, all the relations (6.6), (6.6)', (6.7), (6.8),
(6.9),... through (6.15), for the quantities in (6.5), can be written as

(6.16) aua2,di,h,gug2 are each > 0, and

(6.17) ax+a2 + di + h + gx+g2< m(X),

and the quantities b\, b2, a, b expressed in terms of the non-negative
quantities aϊt a2, dit h, g{, g2 by (6.13) and (6Λ4), andde from (6.12).

Proof The inequalities (6.16) and (6.17), and the relations (6.12),
(6.13), and (6.14) have already been obtained. Conversely, given six
quantities (real numbers or 00) a\, a2, d\, /z, g\, g2 satisfying (6.16)
and (6.17), and obtaining b\, b2, α, b from (6.13) and (6.14), and
de from (6.12), all the relations (6.6), (6.6)', (6.7), (6.8), (6.9),...
through (6.15) are satisfied. For, a\ > 0 and a2 > 0 are stated in
(6.16), and a > 0 comes from (6.14); and b\ >a\,b2> a2 are evident
from (6.13), and b > a from (6.14); these are the first line of (6.7).
The second line of (6.7) is evident from (6.14) and (6.13). And (6.6)'
comes from (6.14) and (6.12), (6.13), the second equation of (6.6)'
from a calculation of de + b and b\ + b2; and (6.6) from (6.6)' when
a\,a2, and b are finite. And (6.8) comes from (6.12). Concerning
(6.9), a\ +b2 = a\ +a2 + di + h + g2 from (6.13), which is evidently > a
and < b from (6.14); and likewise for a2 + b\ = a2 + a\ + dι + h + g\
so that (6.9) is satisfied. And also (6.11) is satisfied by (6.13) and
(6.14); and (6.10) from (6.11) and (6.12) when #1,62 a n d #2>^i and
di are finite. The formulas (6.12), (6.13), and (6.14) hold as stated in
the theorem. And (6.15) comes from (6.14) and (6.17). Theorem 5 is
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proved. Incidentally, in Theorem 5, de in (6.12) gives de + b = b\ +bι
and de > 0 in (6.6)', so that (6.12) can be considered as the definition
of de.

It will be shown in §8 that given any six non-negative numbers a\,
2̂> di, h, g\, g2, finite or oo, satisfying (6.17), and obtaining b\, bι, a,

b from (6.13) and (6.14), there are disjoint sets S\, S2 both c X such
that (6.5) holds. Thus, the inequalities (6.16) and (6.17) are sufficient
as well as necessary conditions.

7. Some interesting non-measurable sets. To prove the statements
made in the preceding paragraph, some non-measurable sets will be
needed. These will be obtained in this section, and are interesting in
themselves. Consider first the real number line, and more particularly,
the half-open unit interval / of real numbers x9 where 0 < x < 1, in
which addition is taken modulo 1. Or, consider the circumference /
of a circle of radius l/2π in the plane, whose length is 1; addition of
points on the circumference is defined by rotation of the cirumference.
In either description of /, Lebesgue interior and exterior measure, and
measurability, are defined, and are invariant under rotation of the
circumference, or translation modulo 1 of the unit interval.

There is a standard construction of a non-measurable set Z in the
unit interval /, with rrii(Z) = 0 and me(Z) > 0. This is obtained by
considering two real numbers x and y, modulo 1, as equivalent if x-y
is a rational number, x ~ y if x -y = r where r is a rational number,
and forming the equivalence classes of real numbers. An equivalence
class is a set K of real numbers in / of the form K = {x + r, for
all r}, where x is a real number in 0 < x < 1 and r is a rational
number, and addition + is taken modulo 1. Two equivalence classes
Kj = {XJ + r, for all r}, j = 1,2, are different, and are also disjoint,
if X2 - X\ / a rational number, and are identical if X2 - X\ = a
rational number. Form a set Z by selecting one real number from
each equivalence class, for all the different equivalence classes, using
the axiom of choice. Define the set Z + r in the unit interval / as the
set of all real numbers z + r, modulo 1, for all z e Z (or, on the unit
circumference /, by rotating Z through the angle 2πr). Then,

(7.1) (Z + ri) Π (Z + r2) = 0 for rx Φ r2 modulo 1

(i.e., r\-ϊ2φ integer), and

(7.2) mi[Z + r) = m^Z), me(Z + r) = me(Z).
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Take all the rational numbers rv, v = 1,2,..., in the unit interval /,
and form the set \}V{Z + rv). One has

= m ((J(Z + rv)j >
\ V J

•„) = £ m , (Z),
V

rv) > me ί\J(Z + /•„) j = me(I) =
\ Jυ

These show that

(7.3) m/(Z) = 0, m

and indeed Z is a non-measurable set.
Now, select a set Z more carefully. Consider the totality of all

closed sets of positive measure in the unit interval /. The number
of these has the cardinal number of the continuum (since their com-
plements in I are all open sets of measure < 1, and all these have
the cardinal number of the continuum). Let Ca designate a closed set
of positive measure in /, where a is an ordinal number; and for two
different ordinal numbers a\ ,a2 the closed sets Caι, Cai are different
closed sets; and a ranges over all ordinal numbers < ω where ω is the
smallest ordinal number with the cardinal number of the continuum;
and the collection of Ca for all a < ω consists of all closed sets of
positive measure contained in the unit interval /. (One could also use
perfect sets.) Let Kβ c I designate an equivalence class of real num-
bers modulo 1, where β is an ordinal number < ω, and Kβx ΠKβ2 = 0
for two different ordinal numbers β\,βι\ and Kβ for all β < ω covers
all equivalence classes, so that \Jβ<ω Kβ = I.

Select X\ G C I , and the ordinal number β\ < ω such that X\ e Kβr

The closed set C2 of positive measure has a continuum number of
points, and Kβx is countable, so that C2 — (C2 ΓΊ Kβt) Φ 0, and select
x2 e (C2 - [C2 n Kβx)) and β2 so that x2 e Kβl. Note that x2 & Kβϊ

so that β2 Φ β\. Proceed by transfinite induction. Suppose, for an
ordinal number γ < ω, that real numbers xa, 0 < xa < 1, and ordinal
numbers βa < ω, have been selected for all ordinal numbers a < γ,
with the properties

{ *α, Φ *a2 and βaι φ βa2 for all ax < γ,

a2 < γ with OL\ Φ OL2, and

xa e (Ca Π KβJ for all a < γ.

The set \Ja<γ Kβn has a cardinal number < N, where N is the cardinal
number of the continuum, since Kβa is countable and γ < ω. The
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closed set Cγ is of positive measure and so has the cardinal number

N, so that Cγ - (Cγ n (Uα<y^jϋ) Φ 0> a n d s e l e c t χy e (cy " (cr n

(\Ja<γ κβJ))> a n d βy s u c h t h a t χy e κβy-
 N o w > χy & κβa f o r a 1 1 a < V>

so that xy Φ xQ for all a < γ since xa G Λ^α. And βγ Φ βa for all
a < γ since x7 G Λ^ and jcy ^ Kβa for all α < γ. And jcy G Cy, so
that xγ G (C7 Π Kβγ). Thus, the real numbers xα, 0 < xQ < 1, and
ordinal numbers βa < co, have been obtained for all a < γ, having the
properties (7.4) for all a < γ and all a\ < γ, 0*2 < y with a\ Φ aι.
By the principle of transfinite induction, therefore, real numbers xa,
0 < xa < 15 and ordinal numbers βa < co, can be selected for all
ordinal numbers a < ω, having the properties stated in (7.4) with γ
in (7.4) replaced by ω.

Consider the set Z = {xα, for all a < ω}. Enlarge the set Z by
selecting for every ordinal β & {βa, for all a < ω} and β < ω, a real
number Xβ e Kβ, and uniting the set of all such xβ together with Z,
forming the set Z:

(7.5) Z = {xa\ a < ω) U {xβ\ β & {βa\ a < ω} and β < ω}.

The set Z has exactly one point in common with Kγ for every γ < ω,
so that the set Z (and also Z) has a continuum number of points.

The set Z (and also Z) has interior measure 0, as shown in (7.1),
(7.2) and (7.3). And me(Z) = 1 (also, me(Z) = 1). For, let B be an
open set in the unit interval / for which B D Z. Then the complement
B1 = / — B of B is a closed set in /. Now, for each ordinal number
α < ω, xα G Z so that x α e f i and xa & B'. Also, xa G Cα, so that
the closed set 5 ' is rcctf Cα. But the totality of Cα, for all a < ω, is <z//
closed sets of positive measure, so that the closed set Bf has measure
0. Therefore m(B) = 1, and so

(7.6) me(Z) = 1, as well as m^Z) = 0.

(Likewise /w/(Z) = 0 since Z c Z, and me(Z) = 1 since the above
proof holds for Z as well as Z.) Thus, equations (7.1), (7.2), (7.3)
hold for Z, with (7.3) stating me(Z) = 1. (And (7.1), (7.2), (7.3) hold
forZ, with me(Z) = 1.)

Now, enumerate all the rational numbers r, modulo 1, as ru, v =
1,2,..., and designate Z + rv by Zu. The following interesting result
has been obtained.

THEOREM 6. The half open unit interval I = {0 < x < 1}, of measure
1, cα« fte written as the union of a countably infinite number of mutually
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disjoint sets Zv, v — 1,2,...,

oo

/ = [ J Zv, ZVχ Π ZVl = 0 ybr ί/i 7̂  ^2 5 ^ which

z / = l

m l (Z I / ) = 0, me(Zi/) = I for all v= 1 , 2 , . . . .

Note that mi(I- Zv) = 0 (and me{I - Zv) = 1) Zψ (2.3), ι/ = 1 , 2 , . . . .

The above is on the real number line. For π-dimensional Euclidean
space, n > 2, take the Cartesian product of / and of each Zu, v —
1,2,..., by a half open unit cube in (n - 1)-dimensional Euclidean
space. Specifically, using coordinates (x\,x2,... ,xn), take the set of
all points (x\, Xι,..., xn) with 0 < x2 < 1,.. ., 0 < xn < 1 and X\ e I
or X\ ξiZv for each v = 1,2, Calling the resulting sets again / and
Zj,, v — 1,2,..., their interior and exterior measures are multiplied
by 1, and Theorem 6 holds for the half open unit interval (or cube)

/ = {(xi,x2,. ••,*«), where 0 < x, < 1 for; = l ,2, . . . ,n}

in ft-dimensional Euclidean space.
By translating / and Zv c /, v = 1,2,..., to the half open unit

interval

where k\,... ,kn are integers, one obtains

Zy{ku...,kn)cI^>-**\ i / = 1 , 2 , . . . ,

and Theorem 6 holds in /(^» »Λ)β Enumerate all the n-tuplets
(k\9... ,kn)9 for all integer values from -oo to +oo of k\,...,kn, and
designate the rc-tuplets (k\,... ,kn) as κμ for μ— 1,2,... to oo. Place
Z,, = \J™=ιZΪ\ which is an abbreviated form for Ufc=-oo ' •

U5£=-oo Zlku'"'kn). Then U^Li /κ^ = E where £ is the entire Euclidean
^-dimensional space, and by Lemma 1,

i(ZΪη = Σ,0 = 0, and E - Zv = \J(I*»
μ=l μ=\ μ=l

so that
oo oo

rm(E -ZV) = Σ mi(Iκ" - Z*") = Σ ° = °

The first sentence of the following theorem is established.
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THEOREM 7. The entire n-dimensional Euclidean space E can be
written as E = \J£L\ Zv, where ZV{ n ZVl = 0 for all pairs v\, v2 with
v\ Φ V2, and ra/(Z^) = 0, rrii(E - Zp) = Ofor every v — 1,2,... to oo.

measurable set X c E of positive measure.

(7.6) mi(XnZι/) = O,me(XnZι/) = m(X) and

for every v = 1,2,

/ The first sentence of Theorem 7 has been established above.
For the second sentence, XπZu is a subset of Z^ and so mi(XπZu) =
0, and the second and third equalities of (7.6) follow from Lemma 3,
for M = £ , S = Zv, and L = X.

Important consequences of Theorem 7 are:

THEOREM 8. . For any measurable set X of positive measure there
is a countably infinite number of mutually disjoint sets

(XDZ^cX, i/ = 2,3,.. .,

dropping v = 1 (or any particular v\ with

mi(X Π Zv) = 0, me(X n Zv) = m{X) and

nii{X - (X ΓΊ Zv)) = 0 forallv = 2,3,..., and

(7.7)

mei \J(XnZ1/)\=m(X)andmilX- \J(XnZv)\=O.
\is=2 J V , i/=2 /

U ^ ^ ΓiZv) = X — (XnZ\), and the first and third equal-
ities in (7.7) follow from (7.6), and the second equality in (7.7) from
Lemma 2.

THEOREM 9. Let X be a measurable set of positive measure. For
any positive integer N there are N mutually disjoint sets Zj, j =
1,2,..., N, contained in X such that mi(Zj) = 0, me(Zj) = m(X) and
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rriiiX-Zj) = 0, for j= 1,2,.. ,N, rmdJ^Zj) = 0, me(UjLιZj)

= m(X) and mt{X - [jf=x Zj) = 0.

Proof. Using Theorem 8, pick Zj = X nZμj,j = 1,2,..., N, where
•̂i ^ ^ f o r a 1 17i ^ Λ, 1 < J\ < N, 1 < 72 < N. The first line of the

equations in Theorem 9 are stated in Theorem 8. For the second line
of the equations in Theorem 9, which involve Ijjli Zj> o n e has

N oo

(inzjcU^nz^c \J(xnzu).
7=1 v=\

By Theorem 8, both sides of these inclusions have the same interior
measure and the same exterior measure, namely 0 and m{X) respec-
tively, and likewise for X- the sets, so the second line of the equation
in Theorem 9 is established. Theorem 9 is proved. Note that when X
is the entire space E, the sets ZVj are sets Zj,j = 1,2,..., N; and for
any measurable set X of positive measure, the sets XΓ\ZVj are sets Z7,
j=l,2,...9N.

In the remainder of this article, Theorem 9 will be used for N = 2,
so that there are two disjoint sets Zi,Z2 contained in X with the
properties stated in Theorem 9 for N = 2. It can be stated also that,
in obtaining Theorem 9 for N = 2, the sets Z\ and Z2 were chosen
as X Π ZVχ and X Π ZVl for J/I ^ z^ Picking another pair X Π ZVι and
XC\ZVA9 with 1/3 ̂  j / 4 and vτ>φvu v2 and v$φv\, v2, gives another pair
Zi and Z2 satisfying Theorem 9 for iV = 2, which are both disjoint
from the first pair. Continuing, there are a countably infinite number
of pairs Z\, Z2 C X satisfying Theorem 9 for N = 2 (also for any N),
and the various sets Zx U Z 2 are mutually disjoint.

Note that the above proofs do not make use of the continuum hy-
pothesis of set theory.

Incidentally, the sets Z\ and Z2 of Theorem 9 for Λf = 2 were ob-
tained by first selecting a set Z in the unit interval / as in (7.5) and
(7.6). Sets Z\ and Z 2 satisfying Theorem 9 for N = 2 can also be
obtained from any particular set Z such as described in the paragraph
containing formulas (7.1), (7.2), (7.3), by a different kind of construc-
tion.

8. A complete collection of inequalities. The following main theorem
will now be proved.

THEOREM 10. Let X be a measurable set of positive measure. Given
any six non-negative real numbers or 00, namely a\, a2, d^ h, g\, g2,
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satisfying

(8.1) ax+a2 + dχ+h + gx+g2< m(X),

there are two disjoint sets S\, S2 obtained in X,

S\ c X', S2 c X, S\ π 6*2 = 0 ,

such that

= αi , me{S\) = a\+di + h + g\=bx,

= a2, me(S2) = a2 + dι + /z + g2 = /?2 ?
1 1 O \ 1 1 ^J

U ^2J = ^1 + #2 + w/ — Λ>

k me(S\ U6*2) = a\ -{- a2 + di + h + g\ + g2 = b.

(8.2)

Proof. Given the six non-negative real numbers or oo, namely a\9

#2> di, h9 g\, g2, satisfying (8.1), six mutually disjoint measurable sets
A\9 A2, Di, H, G\, G2 will first be constructed for which

(8.3) Aι9A29Di9H,Gi9G2areaΆ c X, such that

[ ' } \m(H) = h9 m(Gx) = gl9 m(G2) = g2.

This is a consequence of the following Lemmas 7 and 8.

LEMMA 7. Let L be a measurable set and c any non-negative real
number or 00 which is < m(L). There is a measurable set K c L for
which m(K) = c. Ifm(L) = 00 and c = 00, there is a measurable set
K c L with m(K) = 00 and m(L - K) = 00.

Proof Consider first the case that c < m(L). For the real num-
ber line, or Euclidean rc-dimensional space (x\9... ,xn), form the sets
Kr\ Kr = L Π {x\ + h x2 < r2}, where r > 0. One has, for rλ < r2,
that Krι c Kr2 and Kri - Krχ = L Π {r2 < x\ + + x2 < r%}9 so that

m{Kr2) = m(Krχ) + m{Ln{r\ < x\ + •••+ xl <r2}) and

0 < m{Kr2) - m(Krι) < m({r2 < x\ + + x2 < r2}).

The right-hand side is a fixed multiple of (r% - r^), which —> 0 as
r2 —• r\ or r\ —• r2. Thus, m(^Cr) is a continuous function of r, and
monotone increasing, and m(Ko) = 0, and m{Kr) —>• m(L) as r -> 00.
The last is true if L is an unbounded set, as is well known, and if L
is a bounded set m{Kr) = m(L) for all sufficiently large r. Therefore,
for any value c < m(L) there is at least one value of r for which
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m(Kr) = c, and K is such a Kr. (If c = 0, take K = 0 or a single point
or several points in L; and if c = m(L), take K = L.)

If c = oo, and so m(L) = oo, write the entire space as \JV X
v as in

(3.1). Then oo = m(L) = m(\Ju(LnX")) = £ „ m ( I n Γ ) , and there
is a measurable set Kv c ( L n Γ ) with mίAΓ") = \m{L n X") and
m((L n I " ) - tf") - \m{L n X17). Then A" = U,, •£" has

] 5 ^ (L ΓΊ X") = oo,
V V

and

L - K = \J(L nXv)-\JKu = (j((L Π X") - Kv), and
V V V

m(L -K)=J2 m((L n χv) ~ κ") = Ί Σ m ^ L n χλ/) = °°
V V

Lemma 7 is proved.

LEMMA 8. Let L be a measurable set, and C\,c2, ..,c^ be k non-
negative real numbers or oo with ΣΪί = 1

 c^ ^ w(L). Then there are k
mutually disjoint measurable sets K\, K2,..., AΓ̂ , /̂/ c L, with m[Kv)
= cυforv = l , 2 ? . . . , / c .

Since Ci <m(L), from Σ ^ = 1 c^ <m(L), there is by Lemma
7 a measurable set K\ c L with m(ϋΓi) = Ci, and if Ci = oo = m(L),
with m(Kχ) = oo = C\ and m(L - AΊ) = oo. Since c2 < J2^=2

C^ -
m(L) - Ci = m(L - K\), and if C\ = oo it is still true that c2 <
Σv=ι cv < m(L - K\) since m(L - K{) = oo, there is by Lemma 7
a measurable set K2 c (L - AΓi) with m(K2) = c2, and if c2 = oo,
with m(K2) = oo = c2 and m(L — AΓj — J£2) = oo. The set K2 is
disjoint from the set K\. Continuing in this fashion, successively, one
obtains k (true for k = oo also) mutually disjoint measurable sets Kv,
v = 1,2,..., k, all c L, with m(Ku) = cv for v = 1,2,..., k. The
lemma is proved.

Returning to the proof of Theorem 10, an application of this lemma
gives (8.3) and (8.4), by (8.1). Now, consider the case of Theorem 9
for N = 2, so that Z\ and Z 2 are sets such as in Theorem 9 for TV = 2.
Define the sets S\ and S2 contained in X by

(8.5) Sι=A{U (Zx Π Di) U (Zi ΠH)\J{ZxfλGx),

(8.6) s2 = A2 u (A - (Zi n Di)) u (Z2 n H) u (z2 n G2).
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Then

(8.7) SχUS2 = AxUA2UDi\J((ZxUZ2)nH)U(ZxnGx)u(Z2nG2),

and S\ Γ)S2 = 0 since Z\ Π Z2 Φ 0 and A\9 A2, Dj, H, Gx, G2 are
mutually disjoint. Concerning the set A - (Zx Π A ) in (8.6), one
has that m/(X - Zx) = 0 from Theorem 9, and by Lemma 3, with
M = X and S = Zx and L = A , that w^(Zi Π A ) = w(A) and

m/(Z)/-(ZiΠAO) = ° By Lemma 2, me(A-(ZinAO)+w, (ZinZ)/) =
ra(A), so that me{Di - (Zx nD/)) = m(A), since m^ZO = 0. Thus,

(8.8) mi(Di - (Zj n A)) = 0, me{Di - (Zi n A)) = m{p ).

If 75Γ is any measurable set c X, then

(8.9) me(Z{nK) = me(Z2nK) = me((Zι UZ2) nK) = m(K),

KcX,

by Theorem 9 for N = 2 and Lemma 3.
The four sets on the right-hand side of (8.5) are contained in mu-

tually disjoint measurable sets; likewise for the four sets on the right-
hand side of (8.6), and for the six sets on the right-hand side of (8.7).
In forming their respective unions, as in (8.5), (8.6) and (8.7), their
interior and exterior measures are additive, by Lemma 1. Therefore,
from (8.5), since nii{Zλ nK) = mi(Z2 Π K) = mi({Zx UZ2)Γ\K) = 0
by Theorem 9 for N = 2,

(8.10) mi{Sx) = ax + 0 + 0 + 0 = au me(Sx) = ax+di + h +gx = bx

by (8.9), and these are the first line of (8.2). From (8.6), using (8.8)
and (8.9),

(8.11) mi(S2) = a2 + 0 + 0 + 0 = a2, me(S2) = a2 + di + h + g2 = b2,

(8.12) nii(S

(8.13) me(Sx US2) = ax+a2 + di + h + gx+g2 = b,

which give the second to fourth lines of (8.2). Theorem 10 is proved.
Theorems 5 and 10 are the main theorems concerning the six quan-

tities rrii(S) and me(S) for S = SX,S2, and Sx uS 2 , where Si and S2

are disjoint sets contained in a measurable set X. They state that the
quantities ax, bx, a2, b2, a, b, defined in (6.4) and (6.5), are subject
to six independent inequalities, that a\> a2, d^ A, gx, g2 are each > 0
and the inequality ax + a2 + dx• + h + gx + g2 < m(X). These are valid
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for every pair of disjoint sets c X, and any other numerical relation
involving a\9 b\, d2, b2, α, b, which is valid for every pair of disjoint
sets c X, is a consequence of these.

Without the use of the quantities d\9 h, g\9 g2, the six inequalities
are, besides b < m(X)9

(
a>\ > 0, d2 > 0, d > d\ + d2

d + b<d\+bx+d2 + b2

b > d\ + b2, b>d2 + b\.

Theorem 7 states further that the six non-negative quantities a\9 d2,
di, h, g\9g2, which are the transposed forms of the six inequalities
in the finite case b < oo, can have any values independently subject
merely to their sum being < m(X). In the infinite case when b = oo,
which is d\ + d2 + di• + h + g\ + g2 = oo = m(X)9 the inequalities can
be written as

dud2,di,h,gug22iΐtt2ic\ϊ >0, and

( 8 ' 1 5 ) ' aι+bι+

2d2 + b2 = d + b + h,

b = d\ +b2 + gι, b = d2 + b\ + g2.

These are also the inequalities (8.14) in the finite case b < oo.
In words, the non-negativeness of interior and exterior measures,

and the relation mj(S) < me(S)9 and the monotone increasing prop-
erty (1.2), and the superadditivity of interior measure and subadditiv-
ity of exterior measure (1.3), and Theorems 1 and 4, form a complete
set of conditions on the quantities rrii(S) and me(S) for S = S\9S2,
and S\ U S2, valid for every pair of disjoint sets 5Ί and S2.

9. Linear combinations of mj(S) and me(S). As an immediate ap-
plication of this article, consider set functions f(S) which are homo-
geneous linear combinations of m, (»S) and me(S)9 i.e.

(9.1) f(S) = C\mi(S) + c2me(S),

where C\ and c2 are constants. Various properties will be considered,
such as subadditivity, superadditivity, etc. The quantity f(S) is sub-
additive if

(9.2)
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for any two disjoint sets S\ , 5 2 . There is the following:

THEOREM 11. The quantity f(S) = C\mί{S)Jtc2me{S) is subadditive
for all pairs of disjoint sets, 5iΠ52 = 0, if and only if c2 > 0andc2 > C\.

Proof Suppose f(X) to be subadditive, place (9.1) into (9.2), trans-

pose when me{S\ U52) is finite, and use (1.4) and (1.5). There results

C\di(Si9S2) < c2de(Sι9S2), or using (6.2),

(9.3) (d - c2)έ/|(5Ί,S2) < c2h(S{,52).

The quantities di and h can be assigned non-negative values indepen-
dently, by Theorem 10. Selecting 5 i , 5 2 so that di = 0, h > 0 gives
c2 > 0; selecting S\, 5 2 so that h = 0, di > 0 gives c\ - c2 < 0. Con-
versely, if C\ —c2 < 0 and c2 > 0, then (9.3) holds since 0 is between the
two sides of (9.3); and (9.3) gives C\di(S\,S2) < c2de(S\,S2)9 which
on transposing is (9.2). The theorem is proved.

Note that if /(5) is subadditive for two particular pairs of sets
S\,S2, such as selected in the proof above, then it is subadditive for
all pairs of sets 5i, 5 2 .

For other properties of set functions, /(5) is monotone increasing
if

(9.4) f(S) < f{T) whenever 5 c T.

Placing (9.1) for 5 and T into (9.4), and picking S = 0 and T such that
rrii(T) = 0, me(T) > 0, (9.4) gives c2 > 0; picking 5 such that m,(5) =
0, me(S) > 0, and T D S to be a measurable set with m(T) = me(S),
(9.4) gives C\ > 0. Conversely, C\ > 0 and c2 > 0 gives (9.4), since
rnι(S) and me(S) are monotone increasing. Thus, f(S) is monotone
increasing if and only if C\ > 0, c2 > 0.

A combination of this last result and Theorem 11 yields:

THEOREM 12. The set function f(S) = c\πii{S) + c2me(S) is sub-
additive for disjoint sets, and monotone increasing, if and only if c2 >
C\ > 0. The set function f(S) may also be written in the form f(S) =
C\ma{S) + c2me(S), where d\ and c2 are constants, and is subadditive
for disjoint sets and monotone incrasing if and only ifc\ >0,c2> 0.

Proof The first sentence of Theorem 12 has already been obtained.
The quantity /(5) can be written as

= 2c{ ί 2

 κ-±\ + (c2 - cι)me(S)
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so that c\ — 2c\,£2 = c2-C\. Then c2 > C\ > 0 is equivalent to c\ > 0,
c2 > 0. Theorem 12 is proved.

The set function f(S) is superadditive if

(9.5) ASlUS2)>f(Sl) + f(S2), SxnS2 = 0.

Then -f(S) is subadditive, and Theorem 11 shows that f(S) is su-
peradditive if and only if c2 < 0 and c2 < C\. (Then f(S) can be put
in the form C\mi{S) + c2ma(S) with ^ > 0 > c2.)

THEOREM 13. 77*e set function f(S) = c\mi{S) + c2m€(S) is super-
additive for disjoint sets, and non-negativey if and only ifc2 = 0 and
c\ >0.

The non-negativity of / (£ ) is

0 for all S.

Picking a set S with m/(5) = 0 and me(S) > 0 gives c2 > 0, and
picking S to be a measurable set with m(S) > 0 gives Ci + C2 > 0.
Conversely, c2 > 0 and Ci + c2 > 0 gives

f(S) = (d + c2)mi{S) + c2(me(S) - mi(S)) > 0,

so that c2 > 0 and Ci +c2 > 0 is the condition for nonnegativity of f(S).
Combined with the condition c2 < 0 and c2 < C\ for superadditivity
gives c2 = 0 and Q > 0. The theorem is proved.

Note that a monotone increasing property of f(S) implies its non-
negativity, since f(S) > / ( 0 ) = 0.

The Theorems 12 and 13 show a difference between interior and
exterior measure in an interesting form. Considering set functions
f(S) as in (9.1) which are monotone increasing, then only a non-
negative multiple of mi(S) is superadditive, while C\rΠi(S) + c2me(S)
is subadditive for c2 > C\ > 0. The latter can be put in the form
Cχma{S) + c2me(S) with cx > 0, c2 > 0.

Concerning a complementation property, f(S) is complementary if

(9.6) f(S) + f(L-S) = f(L)

where S c L and L is a mesurable set of finite positive mesure. In-
serting (9.1) into (9.6) gives (c2 -c{)(me(S) - m^S)) = 0, using (2.3).
For any single non-measurable set S c L, so c2 — c\ = 0. Reversing
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this, c2 - C\ — 0 implies (9.6). Thus,

THEOREM 14. The quantity f(S) = Cιmi(S)+c2me(S) {orcxma{S) +
c2me(S)) is complementary if and only ifc\ = c2 (or c2 = 0).

Also, if one desires that f(S) = m(S) when S is measurable, the
condition is that C\ + c2 = 1, or C\ + c2 = 1. This condition can be
added to the theorems above.
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