ON THE HARDY SPACE H^{1} ON PRODUCTS OF HALF-SPACES

Nativi Viana Pereira Bertolo

Abstract

We show that the Hardy space $H_{\text {anal }}^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ can be identified with the class of functions f such that f and all its double and partial Hilbert transforms $H_{k} f$ belong to $L^{1}\left(\mathbf{R}^{2}\right)$. A basic tool used in the proof is the bisubharmonicity of $|F|^{q}$, where F is a vector field that satisfies a generalized conjugate system of Cauchy-Riemann type.

Introduction. The interest of a theory for the H^{p} spaces on products of half-spaces was first raised by C. Fefferman and E. M. Stein in the now classic paper " H^{p} spaces of several variables" [6]. Afterward several authors have contributed on this subject. It is worth mentioning the survey paper by C. Y. A. Chang and R. Fefferman [4], and the references quoted there. In particular, the H^{1} spaces on products of half-spaces was studied by H. Sato [8] giving definitions via maximal functions and via the multiple Hilbert transform. On the other hand Merryfield [7] proves the equivalence of the definitions given via the area integrals and via the multiple Hilbert transforms. More recently S. Sato [9] proved the equivalence between the Lusin area integral and the nontangential maximal function.

The purpose of this paper is to derive directly the equivalence of the definitions of the H^{1} space given via the multiple Hilbert transforms and via an L^{1} condition on a biharmonic vector field $F=$ ($u_{1}, u_{2}, u_{3}, u_{4}$) which is a solution of a generalized Cauchy-Riemann system introduced by Bordin-Fernandez [3]. The main tool we shall use is the bi-subharmonicity of $|F|^{q}, 0<q<1$. But the proof of this fact here is different from the classical one given by Stein-Weiss [10]. We rely on ideas of A. P. Calderón, R. Coiffman and G. Weiss (see [5]). We shall confine ourselves to the bidimensional case.

This paper is part of the author's doctoral thesis presented to UNICAMP in 1982, and the results are announced in [1] and [2].

Notation. We shall use the following notations throughout:

$$
\square=\left\{k=\left(k_{1}, k_{2}\right), k_{j}=0,1, j=1,2\right\}
$$

i.e.

$$
\square=\{(0,0),(1,0),(0,1),(1,1)\}
$$

and

$$
\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}=\{(x, s ; y, t) ; x, y \in \mathbf{R}, s, t>0\} .
$$

1. The Hardy spaces H_{anal}^{1} and $H_{H b}^{1}$.

1.1. Definition. A generalized conjugate vector field or simply a conjugate vector field is a vector field $F(x, s ; y, t)=\left(u_{k}(x, s ; y, t)\right.$; $k \in \square)$, in $\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}$, such that each u_{k} is biharmonic and satisfies the generalized Cauchy-Riemann system

$$
\begin{array}{ll}
& j u_{k} \\
\partial x_{j}
\end{array}+(-1)^{k_{1}+1} \frac{\partial u_{k^{\prime}}}{\partial t_{j}}=0, \begin{aligned}
& j=1,2, \tag{1}\\
& k=\left(k_{1}, k_{2}\right) \in \square, \\
& k^{\prime}=k+(-1)^{k_{1}}(1,0) \text { if } j=1, \\
& k^{\prime}=k+(-1)^{k_{2}}(0,1) \text { if } j=2,
\end{aligned}
$$

where $x_{1}=x, x_{2}=y, t_{1}=s, t_{2}=t$.
The generalized Cauchy-Riemann system was introduced by BordinFernandez [3].

Let $P_{r}(x)$ and $Q_{r}(x)$ denote the Poisson and conjugate Poisson kernels in \mathbf{R}_{+}^{2}, i.e.,

$$
P_{r}(x)=c r /\left(r^{2}+x^{2}\right) \quad \text { and } \quad Q_{r}(x)=c x /\left(r^{2}+x^{2}\right)
$$

the vector field $\left(P_{s} P_{t} * f, Q_{s} P_{t} * f, P_{s} Q_{t} * f, Q_{s} Q_{t} * f\right)$, where $f \in$ $L^{p}\left(\mathbf{R}^{2}\right), 1 \leq p<\infty$, is a generalized conjugate vector field.
1.2. Definition. Let $F=\left(u_{k} ; k \in \square\right)$ be a conjugate vector field. We say that F belongs to $H_{\text {anal }}^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ if

$$
\|F\|_{H_{\mathrm{anal}}^{1}}=\sup _{s, t>0} \iint|F(x, s ; y, t)| d x d y<\infty
$$

1.3. Definition. The partial and double Hilbert transforms of $f \in L^{1}\left(\mathbf{R}^{2}\right)$ are the tempered distributions, $H_{k} f$, defined by

$$
\begin{align*}
\mathscr{F}\left(H_{10} F\right)(x, y) & =i(\operatorname{sign} x) \hat{f}(x, y), \tag{1}\\
\mathscr{F}\left(H_{01} f\right)(x, y) & =i(\operatorname{sign} y) \hat{f}(x, y) \\
\mathscr{F}\left(H_{11} f\right)(x, y) & =i(\operatorname{sign} x) i(\operatorname{sign} y) \hat{f}(x, y),
\end{align*}
$$

and

$$
\left(H_{00} f\right)(x, y)=f(x, y)
$$

or shortly by

$$
\begin{align*}
& \mathscr{F}\left(H_{k} f\right)(x, y) \tag{2}\\
& \quad=(i \operatorname{sign} x)^{k_{1}}(i \operatorname{sign} y)^{k_{2}} \hat{f}(x, y), \quad k=\left(k_{1}, k_{2}\right) \in \square
\end{align*}
$$

where \mathscr{F} denotes the Fourier transformation and \hat{f} the Fourier transform of f.
1.4. Definition. By $H_{H b}^{1}(\mathbf{R} \times \mathbf{R})$ we mean all $f \in L^{1}\left(\mathbf{R}^{2}\right)$ such that $H_{k} f \in L^{1}\left(\mathbf{R}^{2}\right)$, for each $k \in \square$. The norm of $f \in H_{H b}^{1}$ is defined by

$$
\|f\|_{H b}=\sum_{k \in \square}\left\|H_{k} f\right\|_{1} .
$$

2. The subharmonicity of $|F|^{q}$. The basic fact which enables us to develop the theory of H^{p}-spaces on the product of half spaces is the existence of a positive $q<1$ such that $|F|^{q}$ is bisubharmonic. We shall show that every conjugate vector field has this property.
2.1. Definition. Let $\left(A_{j}\right), j=1, \ldots, n$, be a family of matrices $d \times m$. We say that $\left(A_{j}\right)$ is an elliptic family provided that for an m-dimensional vector v and an n-tuple $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ we have

$$
\sum_{j=1}^{n} \lambda_{j} A_{j} v=0
$$

only if either v or λ is zero.
2.2. Lemma (Calderón). Let $\left(A_{j}\right), j=1, \ldots, n$, be an elliptic family; v and u^{1}, \ldots, u^{n} vectors of \mathbf{R}^{m} and $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$. Suppose that

$$
\sum_{j=1}^{n} A_{j} u^{j}=0 \quad \text { and } \quad \sum_{j=1}^{n} \lambda_{j} A_{j} v=0
$$

Then, there exists a positive $\alpha<1$, depending only on A_{1}, \ldots, A_{n}, such that

$$
\begin{equation*}
\max \sum_{j=1}^{n}\left(u^{j} \cdot v\right)^{2} \leq \alpha \sum_{j=1}^{n}\left|u^{j}\right|^{2} . \tag{1}
\end{equation*}
$$

Proof. See [5].
2.3. Proposition. The generalized Cauchy-Riemann system 1.1(1) can be put in the form

$$
\begin{equation*}
A_{1} \frac{\partial F}{\partial s}+A_{2} \frac{\partial F}{\partial x}+A_{3} \frac{\partial F}{\partial t}+A_{4} \frac{\partial F}{\partial y}=0, \tag{1}
\end{equation*}
$$

where

$$
\frac{\partial F}{\partial z}=\left(\frac{\partial u_{k}}{\partial z} ; k \in \square\right), \quad z=s, x, t, y
$$

and $A_{j}, 1 \leq j \leq 4$, are the 8×4 matrices given by

$$
A_{1}=\binom{B_{1}}{N}, \quad A_{2}=\binom{B_{2}}{N}, \quad A_{3}=\binom{N}{B_{3}}, \quad A_{4}=\binom{N}{B_{4}}
$$

where

$$
\begin{array}{ll}
B_{1}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad B_{2}=\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right), \\
B_{3}=\left(\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad B_{4}=\left(\begin{array}{llll}
0 & 0 & 1 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right),
\end{array}
$$

and N is the 4×4 null matrix. Moreover the families $\left(B_{1}, B_{2}\right)$ and $\left(B_{3}, B_{4}\right)$ are elliptic.

Proof. We will first show that $\left(B_{3}, B_{4}\right)$ is an elliptic family. The proof that $\left(B_{1}, B_{2}\right)$ is an elliptic family is exactly the same.

Let $\lambda=\left(\lambda_{3}, \lambda_{4}\right), v=\left(v_{1}, v_{2}, v_{3}, v_{4}\right)$ denote elements of \mathbf{R}^{2} and \mathbf{R}^{4}, respectively, such that

$$
\begin{equation*}
\sum_{j=3}^{4} \lambda_{j} B_{j} v=0 \tag{2}
\end{equation*}
$$

we will show that $\lambda=0$ or $v=0$. Suppose $v \neq 0$ with $v_{1} \neq 0$, for example; then we will show that $\lambda=0$. Indeed, from (2) we have

$$
\lambda_{3} v_{1}+\lambda_{4} v_{3}=0 \quad \text { and } \quad-\lambda_{3} v_{3}+\lambda_{4} v_{1}=0
$$

Since $v_{1} \neq 0$, then $\lambda_{3}=\lambda_{4}=0$; therefore $\lambda=0$. In the same way, if $v_{j} \neq 0, j \neq 1$, we have that $\lambda=0$. This proves the proposition.
2.4. Theorem. Let $F=\left(u_{k}, k \in \square\right)$ be a generalized conjugate vector field. Then, there exists a positive $q<1$ such that $|F|^{q}$ is bisubharmonic.

Proof. We shall use the following notation:

$$
\begin{aligned}
F \cdot G=\sum_{k \in \square} u_{k} \cdot v_{k}, & \text { where } F=\left(u_{k} ; k \in \square\right) \\
& \text { and } G=\left(v_{k} ; k \in \square\right)
\end{aligned}
$$

We shall prove that there exists $0<q_{1}<1$ such that

$$
\begin{equation*}
\Delta_{01}|F|^{q_{1}}=\frac{\partial^{2} F}{\partial y^{2}}+\frac{\partial^{2} F}{\partial t^{2}} \geq 0 . \tag{1}
\end{equation*}
$$

Since $F=\left(u_{k} ; k \in \square\right)$ is a conjugate vector field, then

$$
\begin{equation*}
B_{3} \frac{\partial F}{\partial t}+B_{4} \frac{\partial F}{\partial y}=0 \tag{2}
\end{equation*}
$$

where B_{2} and B_{4} are defined in Proposition 2.3.
The system (2) is elliptic, by Proposition 2.3. Therefore, by Lemma 2.2, there exists $0<\alpha_{1}<1$ such that

$$
\begin{equation*}
\left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial t}\right)^{2}+\left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial y}\right)^{2} \leq \alpha_{1}\left(\left|\frac{\partial F}{\partial t}\right|^{2}+\left|\frac{\partial F}{\partial y}\right|^{2}\right) \tag{3}
\end{equation*}
$$

Hence, since

$$
\begin{aligned}
\Delta_{01}|F|^{q_{1}}=q_{1}|F|^{q_{1}-2}\{ & \left\{\left|\frac{\partial F}{\partial t}\right|^{2}+\left|\frac{\partial F}{\partial y}\right|^{2}\right. \\
& \left.+\left(q_{1}-2\right)\left[\left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial t}\right)^{2}+\left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial y}\right)^{2}\right]\right\}
\end{aligned}
$$

we have, by (3),

$$
\begin{equation*}
\Delta_{01}|F|^{q_{1}} \geq 0 \tag{4}
\end{equation*}
$$

with $q_{1} \geq 2-1 / \alpha_{1}$. In this way, for $q_{2} \geq 2-1 / \alpha_{2}$, with α_{2} given as in Lemma 2.2 we have

$$
\begin{equation*}
\Delta_{10}|F|^{q_{2}} \geq 0 . \tag{5}
\end{equation*}
$$

Hence, by (4) and (5) we have that there exists $0<q<1$ such that $|F|^{q}$ is bisubharmonic and therefore subharmonic.

3. The equivalence of $H_{H b}^{1}(\mathbf{R} \times \mathbf{R})$ and $H_{\mathrm{anal}}^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$.

3.1. Theorem. (i) If $F=\left(u_{k} ; k \in \square\right)$ belongs to $H_{\text {anal }}^{1}\left(R_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$, there exists an $f \in L^{1}\left(\mathbf{R}^{2}\right)$ such that $H_{k} f \in L^{1}\left(\mathbf{R}^{2}\right)$ and $u_{k}=\left(P_{s} P_{t}\right) *$ $H_{k} f$ for each $k \in \square$. Moreover, there is a positive constant C, independent of F, such that

$$
\begin{equation*}
\sum_{k \in \square}\left\|H_{k} f\right\|_{1} \leq C\|F\|_{H_{\mathrm{ana}}^{\prime}} . \tag{1}
\end{equation*}
$$

(ii) Let $f \in L^{1}\left(\mathbf{R}^{2}\right)$. If $H_{k} f \in L^{1}\left(\mathbf{R}^{2}\right)$, for each $k \in \square$, then the conjugate vector field

$$
F=\left(\left(P_{s} P_{t}\right) * H_{k} f ; k \in \square\right)
$$

belongs to $H_{\mathrm{anal}}^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ and there exists a positive constant C, independent of f, such that

$$
\begin{equation*}
\|F\|_{H_{\text {anal }}^{\prime}} \leq C \sum_{k \in \square}\left\|H_{k} f\right\|_{1} \tag{2}
\end{equation*}
$$

Thus, $H_{\text {anal }}^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ can be identified with $H_{H b}^{1}(\mathbf{R} \times \mathbf{R})$ with equivalence of norms. In the proof of this theorem we will use the result stated in the next lemma.
3.2. Lemma. If $F=\left(u_{k} ; k \in \square\right)$ belongs to $H_{\mathrm{anal}}^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$, there exists a positive constant C, independent of F, such that
(1) $\iint \sup _{s, t>0}|F(x, s ; y, t)| d x d y \leq C \sup _{s, t>0} \iint|F(x, s ; y, t)| d x d y$.

Moreover,

$$
\lim _{s, t \rightarrow 0} F(x, s ; y, t)=F(x, y)
$$

exists almost everywhere and in $L^{1}\left(\mathbf{R}^{2}\right)$ norm.

Proof. Suppose that each u_{k} takes values in a fixed finite-dimensional Hilbert space, V_{1}. We take a conjugate vector field $\varphi=$ ($v_{k} ; k \in \square$), where each v_{k} takes its values in $V_{2}\left(V_{2}\right.$ is another finitedimensional Hilbert space and we consider $\left.V=V_{1} \oplus V_{2}\right)$, satisfying:

$$
\begin{gather*}
|\varphi(x, s ; y, t)|^{2}=2 /\left[x^{2}+(1+s)^{2}\right]^{2}\left[y^{2}+(1+t)^{2}\right]^{2} \tag{2}\\
\lim _{|(x, s)| \rightarrow \infty,(x, s) \in \overline{\mathbf{R}}_{+}^{2}}\left|v_{k}(x, s ; y, t)\right|=0, \quad \text { for each pair }(y, t) \in R_{+}^{2} \tag{3}
\end{gather*}
$$

and
(4) $\lim _{|(y, t)| \rightarrow \infty,(y, t) \in \overline{\mathbf{R}}_{+}^{2}}\left|v_{k}(x, s ; y, t)\right|=0, \quad$ for each pair $(x, s) \in \mathbf{R}_{+}^{2}$.

We define

$$
\begin{aligned}
& v_{00}=\left(\frac{\partial^{2} H}{\partial s^{2}} \frac{\partial^{2} H}{\partial t^{2}}, \frac{\partial^{2} H}{\partial s \partial x} \frac{\partial^{2} H}{\partial t \partial y}\right), \\
& v_{10}=\left(\frac{\partial^{2} H}{\partial s \partial x} \frac{\partial^{2} H}{\partial t^{2}}, \frac{\partial^{2} H}{\partial x^{2}} \frac{\partial^{2} H}{\partial t \partial y}\right), \\
& v_{01}=\left(\frac{\partial^{2} H}{\partial s^{2}} \frac{\partial^{2} H}{\partial t \partial y}, \frac{\partial^{2} H}{\partial s \partial x} \frac{\partial^{2} H}{\partial y^{2}}\right), \\
& v_{11}=\left(\frac{\partial^{2} H}{\partial s \partial x} \frac{\partial^{2} H}{\partial t \partial y}, \frac{\partial^{2} H}{\partial x^{2}} \frac{\partial^{2} H}{\partial y^{2}}\right),
\end{aligned}
$$

where $H: \overline{\mathbf{R}}_{2}^{2} \times \overline{\mathbf{R}}_{+}^{2} \rightarrow \mathbf{R}$ for

$$
H(x, s ; y, t)=\frac{1}{2} \log \left[\left(x^{2}+(1+s)^{2}\right)^{-1}\left(y^{2}+(1+t)^{2}\right)^{-1}\right]
$$

(2), (3) and (4) follow easily.

Now, we define for every $\varepsilon>0$

$$
F_{\varepsilon}(x, s ; y, t)=F(x, s+\varepsilon ; y, t+\varepsilon)+\varepsilon \varphi(x, s ; y, t)
$$

We can verify that F_{ε} is continuous in $(x, s) \in \overline{\mathbf{R}}_{+}^{2}\left((y, t) \in \overline{\mathbf{R}}_{+}^{2}\right)$ for each pair $(y, t)((x, s)) ; F_{\varepsilon}$ tends to zero as $|(x, s)|$ or $|(y, t)|$ tends to ∞, and $\left|F_{\varepsilon}\right|>0$. Then by Theorem 2.4, there exists a $q, 0<q<1$, such that $\left|F_{\varepsilon}\right|^{q}$ is bisubharmonic.

Next, we define $g_{\varepsilon}(x, y)=\left|F_{\varepsilon}(x, 0 ; y, 0)\right|^{q}$. By (2) and from our assumptions on F, for $p=1 / q$, we have

$$
\left\|g_{\varepsilon}\right\|_{p}^{p} \leq\|F\|_{H_{\text {anal }}^{1}}+\varepsilon\|\varphi\|_{1}
$$

Now let $G_{\varepsilon}(x, s ; y, t)$ be the iterated Poisson integral of g_{ε}. By the properties of F_{ε}, the properties of the iterated Poisson integral and the maximum principle, we get

$$
\left|F_{\varepsilon}(x, s ; y, t)\right|^{q} \leq G_{\varepsilon}(x, s ; y, t)
$$

Hence, we can select a subsequence g_{ε} which converges weakly to a function $g \in L^{p}\left(\mathbf{R}^{2}\right)$ and such that

$$
\|g\|_{p}^{p} \leq\|F\|_{H_{\text {anal }}^{1}}
$$

Hence, this yields

$$
|F(x, s ; y, t)|^{q} \leq G(x, s ; y, t)
$$

where $G(x, s ; y, t)$ is the iterated Poisson integral of g. By the properties of the partial Hardy-Littlewood maximal functions M^{01} and M^{10}
[10], and of the maximal functions $u^{*}(G)(x, y)=\sup _{s, t>0} G(x, s ; y, t)$, we have

$$
\begin{aligned}
& \iint \sup _{s, t>0}|F(x, s ; y, t)| d x d y \\
& \quad \leq C \iint M^{01}\left(M^{10}\left(u^{*}(G)\right)(x, y) d x d y\right. \\
& \quad \leq C\left\|u^{*}(G)\right\|_{p}^{p} \leq C\|g\|_{p}^{p} \leq C\|F\|_{H_{\text {anal }}^{\prime}}
\end{aligned}
$$

Hence, we have

$$
\iint \sup _{s, t>0}|F(x, s ; y, t)| d x d y \leq C\|F\|_{H_{\mathrm{anal}}^{1}}
$$

This proves (1).
Next, we shall prove that $\lim _{s, t \rightarrow 0} F(x, s ; y, t)$ exists almost everywhere and in the $L^{1}\left(\mathbf{R}^{2}\right)$ norm. We have that

$$
\left|u_{k}(x, s ; y, t)\right| \leq G(x, s ; y, t)^{p}, \quad k \in \square
$$

Since G is nontangentially bounded, each u_{k} is nontangentially bounded, $\lim _{s, t \rightarrow 0} u_{k}(x, s ; y, t)$ exists almost everywhere. On the other hand, the dominated convergence theorem implies the convergence in the $L^{1}\left(\mathbf{R}^{2}\right)$ norm.

Proof of Theorem 3.1. Step 1. Let $F=\left(u_{k} ; k \in \square\right)$ in H_{anal}^{1}. Then, there exists finite Borel measures μ_{k} such that

$$
u_{k}(x, s ; y, t)=\left(P_{s} P_{t}\right) * \mu_{k}(x, y)
$$

Now, by the Lemma 3.2, the limits

$$
\begin{equation*}
\lim _{s, t \rightarrow 0} u_{k}(x, s ; y, t)=f_{k}(x, y), \quad k \in \square \tag{1}
\end{equation*}
$$

exists in the $L^{1}\left(\mathbf{R}^{2}\right)$ norm, and by the Fourier transform we have

$$
\begin{equation*}
u_{k}(x, s ; y, t)=\iint\left(\left(P_{s} P_{t}\right)_{*} f\right)^{\wedge}\left(x^{\prime}, y^{\prime}\right) e^{-2 \pi i\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime} \tag{2}
\end{equation*}
$$

Then, as $F=\left(u_{k} ; k \in \square\right)$ is a conjugate vector field, we have from (1) and (2) that

$$
\begin{equation*}
f_{k}(x, y)=\left(H_{k} f_{00}\right)(x, y), \quad k \in \square \tag{3}
\end{equation*}
$$

Since $f_{k} \in L^{1}\left(\mathbf{R}^{2}\right)$, from (3) we have $f_{00} \in H_{H b}^{1}$ and

$$
\begin{aligned}
\left\|f_{00}\right\|_{H_{H b}^{\prime}} & =\sum_{k \in \square}\left\|H_{k} f_{00}\right\|_{1} \\
& \leq 4 \sup _{s, t>0} \iint|F(x, s ; y, t)| d x d y
\end{aligned}
$$

Therefore $f=f_{00} \in H_{H b}^{1}$ and $\|f\|_{H_{H b}^{1}} \leq C\|F\|_{H_{\text {anal }}^{\prime}}$. This proves (i).
Step 2. Let f be a function in $L^{1}\left(\mathbf{R}^{2}\right)$ such that $H_{k} f \in L^{1}\left(\mathbf{R}^{2}\right)$, $k \in \square$. We will show that the vector field given by

$$
\begin{equation*}
F=\left(\left(P_{s} P_{t}\right)_{*} H_{k} f ; k \in \square\right) \tag{4}
\end{equation*}
$$

belongs to H_{ana}^{1} -
By Fourier transform we see that F is a conjugate vector field. Indeed,

$$
\hat{u}_{k}(x, s ; y, t)=\left(P_{s} P_{t}\right)^{\wedge}(x, y)\left(H_{k} f\right)^{\wedge}(x, y) .
$$

Since $H_{k} f \in L^{1}$, we have $\left(H_{k} f\right)^{\wedge}$ in L^{∞} and

$$
\begin{aligned}
& \iint\left|\hat{u}_{k}(x, s ; y, t)\right| d x d y \\
& \quad \leq\left\|\left(H_{k} f\right)^{\wedge}\right\|_{\infty} \iint\left(P_{s} P_{t}\right)^{\wedge}(x, y) d x d y .
\end{aligned}
$$

Then, for each $k \in \square$, we have,

$$
u_{k}(x, s ; y, t)=\iint \hat{u}_{k}\left(x^{\prime}, s ; y^{\prime}, t\right) e^{-2 \pi i\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}
$$

and consequently

$$
\begin{array}{r}
u_{00}(x, s ; y, t)=\iint e^{-2 \pi\left|x^{\prime}\right| s} e^{-2 \pi\left|y^{\prime}\right| t} \hat{f}\left(x^{\prime}, y^{\prime}\right) e^{-2 \pi i\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}, \\
u_{10}(x, s ; y, t)=\iint e^{-2 \pi\left|x^{\prime}\right| s} e^{-2 \pi\left|y^{\prime}\right| t}\left(i \operatorname{sign} x^{\prime}\right) \hat{f}\left(x^{\prime}, y^{\prime}\right) \\
\cdot e^{-2 \pi i\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}, \\
u_{01}(x, s ; y, t)=\iint e^{-2 \pi\left|x^{\prime}\right| s} e^{-2 \pi\left|y^{\prime}\right| t}\left(i \operatorname{sign} y^{\prime}\right) \hat{f}\left(x^{\prime}, y^{\prime}\right) \\
\cdot e^{-2 \pi i\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime}, \\
u_{11}(x, s ; y, t)=\iint e^{-2 \pi\left|x^{\prime}\right| s} e^{-2 \pi\left|y^{\prime}\right| t}\left(i \operatorname{sign} x^{\prime}\right)\left(i \operatorname{sign} y^{\prime}\right) \hat{f}\left(x^{\prime}, y^{\prime}\right) \\
\cdot e^{-2 \pi i\left(x x^{\prime}+y y^{\prime}\right)} d x^{\prime} d y^{\prime} .
\end{array}
$$

Henceforth ($u_{k} ; k \in \square$) is a conjugate vector field. Moreover, from (4) and Young's inequality we get

$$
\begin{aligned}
& \iint|F(x, s ; y, t)| d x d y \leq \sum_{k \in \square}\left\|\left(P_{s} P_{t}\right)_{*} H_{k} f\right\|_{1} \\
& \quad \leq \sum_{k \in \square}\left\|H_{k} f\right\|_{1}=\|f\|_{H_{H b}^{2}} .
\end{aligned}
$$

This proves that $F \in H_{\text {anal }}^{1}\left(\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2}\right)$ and (2).

Acknowledgment. I would like to thank Dicesar Lass Fernandez for his guidance, encouragement and patience.

References

[1] N. V. P. Bertolo, Sobre desigualdades de subsharmonicidade e bisubharmonicidade de sistemas conjugados de Cauchy-Riemann generalizados, Anais Acad. Bras. Ci., 55 (1983), 320-321.
[2] , On the Hardy space H^{1} in product of halfspaces, 20° Seminário Brasileiro de Análise, (1984), 283-296.
[3] B. Bordin and D. L. Fernandez, Sobre os espaços H^{p} em productos de semiespaços, Anais Acad. Bras. Ci., 55 (1983), 319-320.
[4] S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier Analysis and H^{p} theory on product domains, Bull. Amer. Math. Soc., 12 (1985), 1-43.
[5] R. R. Coifman and G. Weiss, On sub-harmonicity inequalities involving solutions of generalized Cauchy-Riemann equations, Studia Mathematica, 36 (1970), 77-83.
[6] C. Fefferman and E. M. Stein, H^{p} spaces of several variables, Acta Math., 129 (1972), 137-193.
[7] K. G. Merryfield, H^{p} Spaces in poly-half Spaces, Ph. D. dissertation, University of Chicago, (1980).
[8] H. Sato, La classe de Hardy H^{1} de fonctions biharmoniques sur $\mathbf{R}^{m+1} \times \mathbf{R}^{n+1}$ sa caracterisation por les transformations de Riesz, C.R. Acad. Sc. Paris, t 291 (15 septembre 1980).
[9] S. Sato, Lusin functions and nontangential maximal functions in the H^{p} theory on the product of upper half-spaces, Tôhoku Math. J., 37 (1985), 1-13.
[10] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton (1971).
[11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1971.

Received December 30, 1987.
Instituto de Geociências e Ciências Exatas
Universidade Estadual Paulista
Caixa Postal, 178
13.500 - Rio Claro - São Paulo - Brasil

