ON THE HARDY SPACE H¹ ON PRODUCTS OF HALF-SPACES

NATIVI VIANA PEREIRA BERTOLO

We show that the Hardy space $H_{\text{anal}}^1(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ can be identified with the class of functions f such that f and all its double and partial Hilbert transforms $H_k f$ belong to $L^1(\mathbb{R}^2)$. A basic tool used in the proof is the bisubharmonicity of $|F|^q$, where F is a vector field that satisfies a generalized conjugate system of Cauchy-Riemann type.

Introduction. The interest of a theory for the H^p spaces on products of half-spaces was first raised by C. Fefferman and E. M. Stein in the now classic paper " H^p spaces of several variables" [6]. Afterward several authors have contributed on this subject. It is worth mentioning the survey paper by C. Y. A. Chang and R. Fefferman [4], and the references quoted there. In particular, the H^1 spaces on products of half-spaces was studied by H. Sato [8] giving definitions via maximal functions and via the multiple Hilbert transform. On the other hand Merryfield [7] proves the equivalence of the definitions given via the area integrals and via the multiple Hilbert transforms. More recently S. Sato [9] proved the equivalence between the Lusin area integral and the nontangential maximal function.

The purpose of this paper is to derive directly the equivalence of the definitions of the H^1 space given via the multiple Hilbert transforms and via an L^1 condition on a biharmonic vector field $F = (u_1, u_2, u_3, u_4)$ which is a solution of a generalized Cauchy-Riemann system introduced by Bordin-Fernandez [3]. The main tool we shall use is the bi-subharmonicity of $|F|^q$, 0 < q < 1. But the proof of this fact here is different from the classical one given by Stein-Weiss [10]. We rely on ideas of A. P. Calderón, R. Coiffman and G. Weiss (see [5]). We shall confine ourselves to the bidimensional case.

This paper is part of the author's doctoral thesis presented to UNI-CAMP in 1982, and the results are announced in [1] and [2].

NOTATION. We shall use the following notations throughout:

$$\Box = \{k = (k_1, k_2), k_j = 0, 1, j = 1, 2\}$$

i.e.

$$\Box = \{(0,0), (1,0), (0,1), (1,1)\}$$

and

$$\mathbf{R}_{+}^{2} \times \mathbf{R}_{+}^{2} = \{(x, s; y, t); x, y \in \mathbf{R}, s, t > 0\}.$$

1. The Hardy spaces H_{anal}^1 and H_{Hb}^1 .

1.1. DEFINITION. A generalized conjugate vector field or simply a conjugate vector field is a vector field $F(x,s;y,t) = (u_k(x,s;y,t);$ $k \in \Box)$, in $\mathbb{R}^2_+ \times \mathbb{R}^2_+$, such that each u_k is biharmonic and satisfies the generalized Cauchy-Riemann system

(1)
$$\frac{\partial u_k}{\partial x_j} + (-1)^{k_j+1} \frac{\partial u_{k'}}{\partial t_j} = 0, \quad \begin{array}{l} j = 1, 2, \\ k = (k_1, k_2) \in \Box, \\ k' = k + (-1)^{k_1} (1, 0) \text{ if } j = 1, \\ k' = k + (-1)^{k_2} (0, 1) \text{ if } j = 2, \end{array}$$

where $x_1 = x, x_2 = y, t_1 = s, t_2 = t$.

The generalized Cauchy-Riemann system was introduced by Bordin-Fernandez [3].

Let $P_r(x)$ and $Q_r(x)$ denote the Poisson and conjugate Poisson kernels in \mathbf{R}^2_+ , i.e.,

$$P_r(x) = cr/(r^2 + x^2)$$
 and $Q_r(x) = cx/(r^2 + x^2)$

the vector field $(P_sP_t * f, Q_sP_t * f, P_sQ_t * f, Q_sQ_t * f)$, where $f \in L^p(\mathbb{R}^2)$, $1 \le p < \infty$, is a generalized conjugate vector field.

1.2. DEFINITION. Let $F = (u_k; k \in \Box)$ be a conjugate vector field. We say that F belongs to $H^1_{\text{anal}}(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$ if

$$\|F\|_{H^1_{\text{anal}}} = \sup_{s,t>0} \int \int |F(x,s;y,t)| \, dx \, dy < \infty.$$

1.3. DEFINITION. The partial and double Hilbert transforms of $f \in L^1(\mathbb{R}^2)$ are the tempered distributions, $H_k f$, defined by

(1)
$$\mathscr{F}(H_{10}F)(x,y) = i(\operatorname{sign} x)f(x,y),$$
$$\mathscr{F}(H_{01}f)(x,y) = i(\operatorname{sign} y)\hat{f}(x,y),$$
$$\mathscr{F}(H_{11}f)(x,y) = i(\operatorname{sign} x)i(\operatorname{sign} y)\hat{f}(x,y),$$

and

$$(H_{00}f)(x,y) = f(x,y)$$

348

or shortly by

(2)
$$\mathscr{F}(H_k f)(x, y)$$

= $(i \operatorname{sign} x)^{k_1} (i \operatorname{sign} y)^{k_2} \widehat{f}(x, y), \qquad k = (k_1, k_2) \in \Box,$

where \mathscr{F} denotes the Fourier transformation and \hat{f} the Fourier transform of f.

1.4. DEFINITION. By $H_{Hb}^1(\mathbf{R} \times \mathbf{R})$ we mean all $f \in L^1(\mathbf{R}^2)$ such that $H_k f \in L^1(\mathbf{R}^2)$, for each $k \in \Box$. The norm of $f \in H_{Hb}^1$ is defined by

$$||f||_{Hb} = \sum_{k \in \Box} ||H_k f||_1.$$

2. The subharmonicity of $|F|^q$. The basic fact which enables us to develop the theory of H^p -spaces on the product of half spaces is the existence of a positive q < 1 such that $|F|^q$ is bisubharmonic. We shall show that every conjugate vector field has this property.

2.1. DEFINITION. Let (A_j) , j = 1, ..., n, be a family of matrices $d \times m$. We say that (A_j) is an elliptic family provided that for an *m*-dimensional vector v and an *n*-tuple $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$ we have

$$\sum_{j=1}^n \lambda_j A_j v = 0$$

only if either v or λ is zero.

2.2. LEMMA (Calderón). Let (A_j) , j = 1, ..., n, be an elliptic family; v and $u^1, ..., u^n$ vectors of \mathbb{R}^m and $\lambda = (\lambda_1, \lambda_2, ..., \lambda_n)$. Suppose that

$$\sum_{j=1}^n A_j u^j = 0 \quad and \quad \sum_{j=1}^n \lambda_j A_j v = 0.$$

Then, there exists a positive $\alpha < 1$, depending only on A_1, \ldots, A_n , such that

(1)
$$\max \sum_{j=1}^{n} (u^{j} \cdot v)^{2} \leq \alpha \sum_{j=1}^{n} |u^{j}|^{2}.$$

Proof. See [5].

2.3. PROPOSITION. The generalized Cauchy-Riemann system 1.1(1) can be put in the form

(1)
$$A_1 \frac{\partial F}{\partial s} + A_2 \frac{\partial F}{\partial x} + A_3 \frac{\partial F}{\partial t} + A_4 \frac{\partial F}{\partial y} = 0,$$

where

$$\frac{\partial F}{\partial z} = \left(\frac{\partial u_k}{\partial z}; k \in \Box\right), \quad z = s, x, t, y$$

and A_j , $1 \le j \le 4$, are the 8×4 matrices given by

$$A_1 = \begin{pmatrix} B_1 \\ N \end{pmatrix}, \quad A_2 = \begin{pmatrix} B_2 \\ N \end{pmatrix}, \quad A_3 = \begin{pmatrix} N \\ B_3 \end{pmatrix}, \quad A_4 = \begin{pmatrix} N \\ B_4 \end{pmatrix}$$

where

$$B_{1} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}, \quad B_{2} = \begin{pmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$
$$B_{3} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -1 & 0 \end{pmatrix}, \quad B_{4} = \begin{pmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \end{pmatrix},$$

and N is the 4×4 null matrix. Moreover the families (B_1, B_2) and (B_3, B_4) are elliptic.

Proof. We will first show that (B_3, B_4) is an elliptic family. The proof that (B_1, B_2) is an elliptic family is exactly the same.

Let $\lambda = (\lambda_3, \lambda_4)$, $v = (v_1, v_2, v_3, v_4)$ denote elements of \mathbb{R}^2 and \mathbb{R}^4 , respectively, such that

(2)
$$\sum_{j=3}^{4} \lambda_j B_j v = 0;$$

we will show that $\lambda = 0$ or v = 0. Suppose $v \neq 0$ with $v_1 \neq 0$, for example; then we will show that $\lambda = 0$. Indeed, from (2) we have

$$\lambda_3 v_1 + \lambda_4 v_3 = 0 \quad and \quad -\lambda_3 v_3 + \lambda_4 v_1 = 0.$$

Since $v_1 \neq 0$, then $\lambda_3 = \lambda_4 = 0$; therefore $\lambda = 0$. In the same way, if $v_i \neq 0, j \neq 1$, we have that $\lambda = 0$. This proves the proposition.

2.4. THEOREM. Let $F = (u_k, k \in \Box)$ be a generalized conjugate vector field. Then, there exists a positive q < 1 such that $|F|^q$ is bisubharmonic.

Proof. We shall use the following notation:

$$F \cdot G = \sum_{k \in \Box} u_k \cdot v_k$$
, where $F = (u_k; k \in \Box)$
and $G = (v_k; k \in \Box)$.

350

We shall prove that there exists $0 < q_1 < 1$ such that

(1)
$$\Delta_{01}|F|^{q_1} = \frac{\partial^2 F}{\partial y^2} + \frac{\partial^2 F}{\partial t^2} \ge 0.$$

Since $F = (u_k; k \in \Box)$ is a conjugate vector field, then

(2)
$$B_3 \frac{\partial F}{\partial t} + B_4 \frac{\partial F}{\partial y} = 0,$$

where B_2 and B_4 are defined in Proposition 2.3.

The system (2) is elliptic, by Proposition 2.3. Therefore, by Lemma 2.2, there exists $0 < \alpha_1 < 1$ such that

(3)
$$\left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial t}\right)^2 + \left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial y}\right)^2 \le \alpha_1 \left(\left|\frac{\partial F}{\partial t}\right|^2 + \left|\frac{\partial F}{\partial y}\right|^2\right).$$

Hence, since

$$\Delta_{01}|F|^{q_1} = q_1|F|^{q_1-2} \left\{ \left| \frac{\partial F}{\partial t} \right|^2 + \left| \frac{\partial F}{\partial y} \right|^2 + \left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial t} \right)^2 + \left(\frac{F}{|F|} \cdot \frac{\partial F}{\partial y} \right)^2 \right] \right\}$$

we have, by (3),

 $(4) \qquad \qquad \Delta_{01}|F|^{q_1} \ge 0$

with $q_1 \ge 2 - 1/\alpha_1$. In this way, for $q_2 \ge 2 - 1/\alpha_2$, with α_2 given as in Lemma 2.2 we have

$$\Delta_{10}|F|^{q_2} \ge 0.$$

Hence, by (4) and (5) we have that there exists 0 < q < 1 such that $|F|^q$ is bisubharmonic and therefore subharmonic.

3. The equivalence of $H^1_{Hb}(\mathbf{R} \times \mathbf{R})$ and $H^1_{anal}(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$.

3.1. THEOREM. (i) If $F = (u_k; k \in \Box)$ belongs to $H^1_{anal}(R^2_+ \times \mathbb{R}^2_+)$, there exists an $f \in L^1(\mathbb{R}^2)$ such that $H_k f \in L^1(\mathbb{R}^2)$ and $u_k = (P_s P_t) * H_k f$ for each $k \in \Box$. Moreover, there is a positive constant C, independent of F, such that

(1)
$$\sum_{k \in \Box} \|H_k f\|_1 \le C \|F\|_{H^1_{\text{anal}}}.$$

(ii) Let $f \in L^1(\mathbb{R}^2)$. If $H_k f \in L^1(\mathbb{R}^2)$, for each $k \in \Box$, then the conjugate vector field

$$F = ((P_s P_t) * H_k f; k \in \Box)$$

belongs to $H^1_{\text{anal}}(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$ and there exists a positive constant C, independent of f, such that

(2)
$$||F||_{H^1_{\text{anal}}} \leq C \sum_{k \in \Box} ||H_k f||_1.$$

Thus, $H_{\text{anal}}^1(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$ can be identified with $H_{Hb}^1(\mathbf{R} \times \mathbf{R})$ with equivalence of norms. In the proof of this theorem we will use the result stated in the next lemma.

3.2. LEMMA. If $F = (u_k; k \in \Box)$ belongs to $H_{\text{anal}}^1(\mathbf{R}^2_+ \times \mathbf{R}^2_+)$, there exists a positive constant C, independent of F, such that

(1)
$$\int \int \sup_{s,t>0} |F(x,s;y,t)| \, dx \, dy \leq C \sup_{s,t>0} \int \int |F(x,s;y,t)| \, dx \, dy.$$

Moreover,

$$\lim_{s,t\to 0} F(x,s;y,t) = F(x,y)$$

exists almost everywhere and in $L^1(\mathbf{R}^2)$ norm.

Proof. Suppose that each u_k takes values in a fixed finite-dimensional Hilbert space, V_1 . We take a conjugate vector field $\varphi = (v_k; k \in \Box)$, where each v_k takes its values in V_2 (V_2 is another finite-dimensional Hilbert space and we consider $V = V_1 \oplus V_2$), satisfying:

(2)
$$|\varphi(x,s;y,t)|^2 = 2/[x^2 + (1+s)^2]^2[y^2 + (1+t)^2]^2,$$

(3)
$$\lim_{|(x,s)|\to\infty, (x,s)\in\overline{\mathbf{R}}_+^2} |v_k(x,s;y,t)| = 0, \quad \text{for each pair } (y,t)\in R_+^2,$$

and

(4)
$$\lim_{|(y,t)|\to\infty, (y,t)\in \overline{\mathbf{R}}_+^2} |v_k(x,s;y,t)| = 0, \quad \text{for each pair } (x,s)\in \mathbf{R}_+^2.$$

We define

$$\begin{split} v_{00} &= \left(\frac{\partial^2 H}{\partial s^2} \frac{\partial^2 H}{\partial t^2}, \frac{\partial^2 H}{\partial s \partial x} \frac{\partial^2 H}{\partial t \partial y}\right), \\ v_{10} &= \left(\frac{\partial^2 H}{\partial s \partial x} \frac{\partial^2 H}{\partial t^2}, \frac{\partial^2 H}{\partial x^2} \frac{\partial^2 H}{\partial t \partial y}\right), \\ v_{01} &= \left(\frac{\partial^2 H}{\partial s^2} \frac{\partial^2 H}{\partial t \partial y}, \frac{\partial^2 H}{\partial s \partial x} \frac{\partial^2 H}{\partial y^2}\right), \\ v_{11} &= \left(\frac{\partial^2 H}{\partial s \partial x} \frac{\partial^2 H}{\partial t \partial y}, \frac{\partial^2 H}{\partial x^2} \frac{\partial^2 H}{\partial y^2}\right), \end{split}$$

where $H: \overline{\mathbf{R}}_2^2 \times \overline{\mathbf{R}}_+^2 \to \mathbf{R}$ for

$$H(x,s;y,t) = \frac{1}{2}\log[(x^2 + (1+s)^2)^{-1}(y^2 + (1+t)^2)^{-1}].$$

(2), (3) and (4) follow easily.

Now, we define for every $\varepsilon > 0$

$$F_{\varepsilon}(x,s;y,t) = F(x,s+\varepsilon;y,t+\varepsilon) + \varepsilon \varphi(x,s;y,t).$$

We can verify that F_{ε} is continuous in $(x,s) \in \overline{\mathbf{R}}_{+}^{2}$ $((y,t) \in \overline{\mathbf{R}}_{+}^{2})$ for each pair (y,t)((x,s)); F_{ε} tends to zero as |(x,s)| or |(y,t)| tends to ∞ , and $|F_{\varepsilon}| > 0$. Then by Theorem 2.4, there exists a q, 0 < q < 1, such that $|F_{\varepsilon}|^{q}$ is bisubharmonic.

Next, we define $g_{\varepsilon}(x, y) = |F_{\varepsilon}(x, 0; y, 0)|^q$. By (2) and from our assumptions on F, for p = 1/q, we have

$$\|g_{\varepsilon}\|_p^p \leq \|F\|_{H^1_{\text{anal}}} + \varepsilon \|\varphi\|_1.$$

Now let $G_{\varepsilon}(x, s; y, t)$ be the iterated Poisson integral of g_{ε} . By the properties of F_{ε} , the properties of the iterated Poisson integral and the maximum principle, we get

$$|F_{\varepsilon}(x,s;y,t)|^q \leq G_{\varepsilon}(x,s;y,t).$$

Hence, we can select a subsequence g_{ε} which converges weakly to a function $g \in L^{p}(\mathbb{R}^{2})$ and such that

$$\|g\|_p^p \le \|F\|_{H^1_{anal}}.$$

Hence, this yields

$$|F(x,s;y,t)|^q \le G(x,s;y,t),$$

where G(x, s; y, t) is the iterated Poisson integral of g. By the properties of the partial Hardy-Littlewood maximal functions M^{01} and M^{10} [10], and of the maximal functions $u^*(G)(x, y) = \sup_{s,t>0} G(x, s; y, t)$, we have

$$\int \int \sup_{s,t>0} |F(x,s;y,t)| \, dx \, dy$$

$$\leq C \int \int M^{01}(M^{10}(u^*(G))(x,y) \, dx \, dy)$$

$$\leq C ||u^*(G)||_p^p \leq C ||g||_p^p \leq C ||F||_{H^1_{and}}.$$

Hence, we have

$$\int \int \sup_{s,t>0} |F(x,s;y,t)| \, dx \, dy \le C \|F\|_{H^1_{\text{anal}}}$$

This proves (1).

Next, we shall prove that $\lim_{s,t\to 0} F(x,s;y,t)$ exists almost everywhere and in the $L^1(\mathbb{R}^2)$ norm. We have that

$$|u_k(x,s;y,t)| \le G(x,s;y,t)^p, \qquad k \in \Box.$$

Since G is nontangentially bounded, each u_k is nontangentially bounded, ed, $\lim_{s,t\to 0} u_k(x,s;y,t)$ exists almost everywhere. On the other hand, the dominated convergence theorem implies the convergence in the $L^1(\mathbf{R}^2)$ norm.

PROOF OF THEOREM 3.1. Step 1. Let $F = (u_k; k \in \Box)$ in H^1_{anal} . Then, there exists finite Borel measures μ_k such that

$$u_k(x,s;y,t) = (P_sP_t) * \mu_k(x,y).$$

Now, by the Lemma 3.2, the limits

(1)
$$\lim_{s,t\to 0} u_k(x,s;y,t) = f_k(x,y), \qquad k\in \Box,$$

exists in the $L^1(\mathbf{R}^2)$ norm, and by the Fourier transform we have

(2)
$$u_k(x,s;y,t) = \int \int ((P_s P_t)_* f)^{(x',y')} e^{-2\pi i (xx'+yy')} dx' dy'.$$

Then, as $F = (u_k; k \in \Box)$ is a conjugate vector field, we have from (1) and (2) that

(3)
$$f_k(x, y) = (H_k f_{00})(x, y), \quad k \in \Box.$$

Since $f_k \in L^1(\mathbb{R}^2)$, from (3) we have $f_{00} \in H^1_{Hb}$ and

$$\|f_{00}\|_{H^{1}_{Hb}} = \sum_{k \in \Box} \|H_{k}f_{00}\|_{1}$$

$$\leq 4 \sup_{s,t>0} \int \int |F(x,s;y,t)| \, dx \, dy.$$

Therefore $f = f_{00} \in H^1_{Hb}$ and $||f||_{H^1_{Hb}} \leq C ||F||_{H^1_{anal}}$. This proves (i).

Step 2. Let f be a function in $L^1(\mathbb{R}^2)$ such that $H_k f \in L^1(\mathbb{R}^2)$, $k \in \Box$. We will show that the vector field given by

(4)
$$F = ((P_s P_t)_* H_k f; k \in \Box)$$

belongs to H_{anal}^1 .

By Fourier transform we see that F is a conjugate vector field. Indeed,

$$\hat{u}_k(x,s;y,t) = (P_s P_t)^{(x,y)}(H_k f)^{(x,y)}.$$

Since $H_k f \in L^1$, we have $(H_k f)^{-1}$ in L^{∞} and

$$\int \int |\hat{u}_k(x,s;y,t)| \, dx \, dy$$

$$\leq \|(H_k f)^{\gamma}\|_{\infty} \int \int (P_s P_t)^{\gamma}(x,y) \, dx \, dy$$

Then, for each $k \in \Box$, we have,

$$u_k(x,s;y,t) = \int \int \hat{u}_k(x',s;y',t) e^{-2\pi i (xx'+yy')} \, dx' \, dy'$$

and consequently

$$\begin{aligned} u_{00}(x,s;y,t) &= \int \int e^{-2\pi |x'|s} e^{-2\pi |y'|t} \hat{f}(x',y') e^{-2\pi i(xx'+yy')} dx' dy', \\ u_{10}(x,s;y,t) &= \int \int e^{-2\pi |x'|s} e^{-2\pi |y'|t} (i \operatorname{sign} x') \hat{f}(x',y') \\ &\cdot e^{-2\pi i(xx'+yy')} dx' dy', \\ u_{01}(x,s;y,t) &= \int \int e^{-2\pi |x'|s} e^{-2\pi |y'|t} (i \operatorname{sign} y') \hat{f}(x',y') \\ &\cdot e^{-2\pi i(xx'+yy')} dx' dy', \end{aligned}$$

$$u_{11}(x,s;y,t) = \int \int e^{-2\pi |x'|s} e^{-2\pi |y'|t} (i \operatorname{sign} x') (i \operatorname{sign} y') \hat{f}(x',y') \cdot e^{-2\pi i (xx'+yy')} dx' dy'.$$

Henceforth $(u_k; k \in \Box)$ is a conjugate vector field. Moreover, from (4) and Young's inequality we get

$$\int \int |F(x,s;y,t)| \, dx \, dy \leq \sum_{k \in \Box} \|(P_s P_t)_* H_k f\|_1$$
$$\leq \sum_{k \in \Box} \|H_k f\|_1 = \|f\|_{H^2_{Hb}}.$$

This proves that $F \in H^1_{\text{anal}}(\mathbb{R}^2_+ \times \mathbb{R}^2_+)$ and (2).

Acknowledgment. I would like to thank Dicesar Lass Fernandez for his guidance, encouragement and patience.

References

- [1] N. V. P. Bertolo, Sobre desigualdades de subsharmonicidade e bisubharmonicidade de sistemas conjugados de Cauchy-Riemann generalizados, Anais Acad. Bras. Ci., 55 (1983), 320–321.
- [2] _____, On the Hardy space H^1 in product of halfspaces, 20° Seminário Brasileiro de Análise, (1984), 283–296.
- [3] B. Bordin and D. L. Fernandez, Sobre os espaços H^p em productos de semiespaços, Anais Acad. Bras. Ci., 55 (1983), 319-320.
- [4] S. Y. A. Chang and R. Fefferman, Some recent developments in Fourier Analysis and H^p theory on product domains, Bull. Amer. Math. Soc., 12 (1985), 1-43.
- [5] R. R. Coifman and G. Weiss, On sub-harmonicity inequalities involving solutions of generalized Cauchy-Riemann equations, Studia Mathematica, 36 (1970), 77-83.
- [6] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math., **129** (1972), 137–193.
- [7] K. G. Merryfield, *H^p* Spaces in poly-half Spaces, Ph. D. dissertation, University of Chicago, (1980).
- [8] H. Sato, La classe de Hardy H^1 de fonctions biharmoniques sur $\mathbb{R}^{m+1} \times \mathbb{R}^{n+1}$ sa caracterisation por les transformations de Riesz, C.R. Acad. Sc. Paris, t 291 (15 septembre 1980).
- [9] S. Sato, Lusin functions and nontangential maximal functions in the H^p theory on the product of upper half-spaces, Tôhoku Math. J., 37 (1985), 1–13.
- [10] E. M. Stein and G. Weiss, *Introduction to Fourier analysis on Euclidean spaces*, Princeton (1971).
- [11] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1971.

Received December 30, 1987.

Instituto de Geociências e Ciências Exatas Universidade Estadual Paulista Caixa Postal, 178 13.500 - Rio Claro - São Paulo - Brasil