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QUASISIMILARITY OF NESTS

KENNETH R. DAVIDSON AND DOMINGO A. HERRERO

The purpose of this article is to provide a complete classification of
nests modulo quasisimilarity. Sample result: if every initial segment
of the nest */# is uncountable, then «/# is quasisimilar to a continuous
nest.

1. Introduction. A chain Jt of subspaces is a family of subspaces
of a complex, separable, infinite dimensional Hubert space ^ , totally
ordered by inclusion, and containing {0} and %?. A nest is a chain Jt
of subspaces which is closed under intersection and closed span.

Two chains of subspaces, Jt and JV are similar (unitarily equiva-
lent, resp.) if there exists an invertible (unitary, resp.) W in 3B{%?)
(:= the algebra of all bounded linear operators acting on βf) such that
jt = {WN: N eyr} (and therefore Jt = {W~ιM: M e Jt}). It is
completely apparent that similarity and unitary equivalence are equiv-
alence relations for chains of subspaces. Furthermore, a chain similar
to a nest is also a nest; that is, it is complete. We shall write Jt ~ JV
{Jt ~ JV, resp.) to indicate that Jt and Jf are similar (unitarily equiv-
alent, resp.).

The classification of nests up to similarity is simply stated. It is
necessary and sufficient that there be an order isomorphism of JV onto
Jt which preserves the dimension of intervals N\ θ N2 for JV2 < N\
in Jf [1] (see also [6]). For the finer relation of unitary equivalence,
more invariants are required. Given any nest JV, one can choose an
order isomorphism γ onto a compact subset Γ of the real interval [0,1]
with γ{{0}) = 0 and y{&) = 1. Moreover, there is a spectral measure
E{ ) supported on Γ such that E{[0,t]) = γ~ι{t) for all t in Γ. (Here
we identify a projection with its range.) As in the case of Hermitian
operators, the spectral measure is determined by a scalar measure and
a multiplicity function which are unitary invariants for JV [4].

If an element N in JV has an immediate predecessor JV_ in JV, then
N θ N- is an atom oϊJf. In this case y{N-) = so < ίo = V(N)i a n d Γ
is disjoint from {SQJQ). Furthermore, E{{to}) = P{Nθ JV-). It is not
difficult to see that an order isomorphism between two nests preserves
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dimension if and only if it preserves the dimension of atoms. The
reader is referred to [2] for additional information about nests.

Recall that X e 3B{%?) is a quasiaffinίty if X is injective and has
dense range. Given a chain of subspaces JV and X e 3B(%?\ we define

1.1. DEFINITION. TWO chains of subspaces Jt and Jf are quasisim-
ilar if there exist quasiaffinities X, Y in 38(%?) such that

and Jf =

(in symbols, Jΐ ~ q s J^).
It is straightforward to check that ~ q s is an equivalence relation for

chains of subspaces. Unfortunately (as we shall see later, in §5), this
relation does not preserve completeness. Nevertheless, it is possible to
provide a very simple classification for nests, modulo quasisimilarity.
Note that we do not require the induced order homomorphisms from
yΓ onto Jt and vice versa to be reciprocal. Indeed, they need not be
even order isomorphic.

In §2, we obtain a classification of nests up to quasisimilarity. In
§3, we try to make this more precise for countable nests by giving ex-
amples and theorems in special cases. In §4, we show that a nest is
quasisimilar to the Volterra nest precisely when every initial segment
is uncountable. The general uncountable case is briefly considered.
In the last section, we clarify which chains are quasisimilar to nests.
Finally, we give further evidence that our definition of quasisimilar-
ity for nests is the correct one by disposing of the only other likely
candidate.

2. The basic construction. The first lemma is routine, and is left to
the reader.

2.1. LEMMA. Let Jt and JV be chains of subspaces and let X be a
quasiaffinity such that JV = XJΐ. Then card(^) < card(^*f) and for
each pair of subspaces M\, M2 in Jf with M\ c

θ XMi) < d i m M 2 e M x .

If dim Mi < oo, then this is an equality. Furthermore, if{Mk,k > 1}
and M = \Jk>x Mk belong to Jt9 then

ΎM=
k>\
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Note that the quasiaffinity X determines an order preserving epi-
morphism θχ oϊJί onto JV. The lemma shows that θx is a dimension
reducing and left continuous map which preserves the dimension of
intervals M2 θ M\ when M\ is finite dimensional. The converse is the
key to our theorems.

2.2. LEMMA. LetJV be a nest. Then there is a compact quasiaffinity
K in F{JT) such that TN = N for every N in jr. (Here 9τ\jr) = {T e
38{%?): TM c M for all M in Jir) is the nest algebra associated with
jr.)

Proof. Let {An,n > 1} be the atoms oϊjr. Choose compact quasi-
affinities Kn in 3S{A^) with | | ^ | | < n" 1 . Let P be the projection onto
(Σ)Λ>I Φ^n)±- Then PjV\PSίf is a continuous nest. This is similar
to t ie Volterra nest [6]. Use this similarity to produce a compact
operator Ko in ZΓ{PJV) similar to the Volterra operator V. Since

VMt = Mt = { /€L 2 (0 5 1): supp(/) c [0,ί]}

for all 0 < t < 1, it follows that Ko has the same property in
Now

n>0

has the desired properties. D

2.3. THEOREM. Let Jt and JV be nestsy and let θ be a dimension
reducing, left continuous order epimorphism ofJ? onto JV such that

dim(0(M2) Θ θ{Mx)) = dim(M2θMι)

whenever dim M\ < oc and M\, M2 belong to Jΐ. Then there is a
compact quasiaffinity X such that θ = θx.

Proof. Since θ is monotone, θ is strictly increasing except for count-
ably many proper disjoint intervals θ~ι(Nj) = [M'j.Mj] which are
closed or half closed. Add to this list the atoms θ~ι(Nj) = {Mj} =
(Mj9Mj] such that dim(Nj θ Np < dim(Mj - Mp. In both these
circumstances, the hypotheses imply that dim(Nj) = oo. Let Pj —
P(Mj - Mj) and Qj = P{Nj θ θ(Mj)). Let P = Σj Pj and Q = £ y Q7.
Let JIQ be the restriction to ̂ # to P1^, let Jfi be the restriction of
JT to Q^, and let ΘO(MO) = β-L(9(M0) for Mo in jt0. Then θ0 is a
dimension preserving order isomorphism of ̂  onto JQ.
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By the Similarity Theorem [1], there is an invertible operator S in
^(P1^, Q1^) implementing 0O For each j and M'} < M < Mj9

rank Qj = dim Θ(M) θ θ(Mj) < dimM θ Mj.

Thus it is possible to choose a projection Rj < Pj with ranki?7 =
rank Qj such that (RjM)~ = (Rani?,)" for all M > Mj. Let Uj = UjRj
be a partial isometry carrying Rjβ? onto Qj%?. Then the operator
Y = SP1 + 53- C7/ is easily seen to have the property that YM = Θ(M)
for all M in Jt. However, Y is generally not injective.

Let K be an injective compact operator in ZΓ{/V), provided by
Lemma 2.2, so that KN = N for every N in Jf. Since 7^ is al-
ways infinite dimensional, it is routine to obtain pairwise orthogonal
infinite rank projections Ej < P(Nj). Let Kj be compact injective op-
erators in ^{Pj^.Ej^) so that Ran(J^-EJKJPJ) nRan(A') = {0} and
\\Kj\\<2-J. Define

It is easy to verify that X is injective and

XM = YM = Θ{M) for all M in Jt.

Thus X is the desired operator. D

This theorem yields, as an immediate corollary, a necessary and
sufficient condition for two nests to be quasisimilar. For any nest yf,
let

2.4. THEOREM. TWO nests Jt and JV are quasisimilar if and only
if there are dimension decreasing, left continuous order epimorphisms
φ: Jt —• jy and ψ: JV —• ^# such that

JtiM^Moo} and ψ\{N eJ^: N < N^}

and reciprocal maps.

Proof. From Lemma 2.1, it follows that a quasisimilarity between
Jf and JV yields the desired epimorphisms φ and ψ which in partic-
ular effect a dimension preserving order isomorphism between {Me.
Jt: M < Moo) and {N e J": N < N^}. Conversely, the fact that
φ\{M < MQO} and |̂{Λ^ < Λ^o} are reciprocal and dimension reduc-
ing means that they are dimension preserving isomorphisms. Now the
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quasiaffinities are produced by Theorem 2.3, showing that ^# and Jf
are quasisimilar. α

3 The countable case. It is immediate from Lemma 2.1 that qua-
sisimilar nests have the same cardinality. In particular, one is count-
able if and only if the other is. Although Theorem 2.4 is, in a certain
sense, a complete classification up to quasisimilarity, it is not always
easy to recognize when the conditions are met. The following results
and examples illustrate some of the phenomena involved.

3.1. COROLLARY. ifJί is a finite nest and Jί ~ q s Jf, then Jt ~ J¥.

3.2. COROLLARY. Suppose that Jt is order isomorphic to ω + 1 and
all its atoms are finite dimensional that is

J£ = {MQ = {0} C Mx C M2 C - C Mn C C &}9

where {dimMj}^ is a strictly increasing sequence in N U {0}. If

•* ~qs JV, then J? ~yf.

However, the presence of a single infinite dimensional atom can
produce a quite different picture. Indeed, we have

3.3. EXAMPLE. Let

jg = {Mo = {0}cMιcM2cM3C'"CMnC" C

and

jr = {NQ = {0} c N{ c N2 c N3 c c Nn c c,

(Jt\JV ~ ω + 1), where M\ and N\ are infinite dimensional,

dim{M2j+i θ M2j) = 1

and
dim(M27 θ M2j-ι) = dim(Λ}+i θ Nj) = 2

for all j = 1,2,...; then ^({0}) = ^({0}) = {0},^(^) = ψ(βT) =
J^,φ(M2j+ι) = φ(M2j) = Nj9ψ(Nj) = Mj f o r ; = 2 , 3 , . . . , and

φ{M\) = N\, ψ(N\) = M\ define epimorphisms satisfying the hypothe-
ses of Theorem 2.4.

Therefore, ^# ~ q s JV. However, Jt and JV are not similar. D

3.4. EXAMPLE. TWO quasisimilar countable nests need not be order
isomorphic. In fact, they need not have initial intervals which are
isomorphic. Let

jg = l H h S2 + &2 + S\ + &>ι (ordinal sum)



248 KENNETH R. DAVIDSON AND DOMINGO A. HERRERO

and

jr = 1 + ... + @2 + ̂ 4 + ̂ 3 + S\ + &>2 + &\ (ordinal sum),

where ^ have order type ω + 1 with one dimensional atoms and @k

have order type 1 + ω* with one dimensional atoms.
Define φ from Jί onto JV by sending the atoms of ^ onto the

corresponding atoms of ^ in Jf, likewise sending €2k
 o n t o &k> anc*

annihilating €2k-\ for k > 1. This is easily seen to produce an order
surjection. To define an epimorphism ψ, of Jf onto ^#, we proceed
in a similar way. Map S^ onto &k in the natural way; and map 9°2k

onto ^ a n d annihilate 2̂/c—l for fc > 1. Again this is seen to be a
dimension reducing order epimorphism. By Theorem 2.4, Jt ~ q s ^ .

On the other hand, it is apparent that no initial segments of Jt and
JV are order isomorphic.

Now, let us consider nests order isomorphic to 1 + ω*. Let «^+^*
denote the nest order isomorphic to 1 + of with all atoms of rank p,
1 < p < oo; and let ^ ^ * denote the nest with atoms An satisfying
rank An = n for n > 1.

3.5. THEOREM. A nest Jί is quasisimilar to a nest of order type
1 + ω* only ifJί = 1 + ω*. Furthermore, if An are the atoms

(i) je - q s j r ^ l<p<oo if and only if

sup dim An = lim sup dim An = p\
n n—>oo

(ii) Jt - q s ^ ί ( ^ * ( Γ ^ ^ onty ifdimAn <oo for all n and

sup dim An = oo;

(iii) ^ ~ q s ^ ( ^ l if and only if dim An = oo infinitely often.
In general, suppose that m^ is the integer such that

dim^4mo > sup dim^4w = lim sup dim An = p.
>

Let 3* be the finite nest with atoms Am, AmQ_\ 9...,A\. Then Jf ~ q s

^ l + i * + - ^ Similarly, ifAmo is infinite rank and An is finite rank for

n > mo, but sup dim An = oo, then ^# ~ q s

 ( ^

Proof. The only homomorphic images of 1 + ω* are finite or iso-
morphic to 1 + ω*. Furthermore, if
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then any quasiaffinity X such that XJt is a nest must satisfy

f| XMn = XM0 = {0}.
n>\

Thus if Jt ~ q s JV, then JV is order isomorphic to 1 + ω*.

Suppose Jΐ ~ q s ^ + ^ From Theorem 2.4, it is clear that the atoms
An = MnθMn+\ oϊJί cannot exceed p in dimension, and d i m ^ = p
must occur infinitely often. Whence

sup dim An = lim sup dim An =p.

Conversely, suppose d i m ^ = p for an infinite sequence Π\ < rii <

. . . . Define φ: Jt - JT^ω. by φ({0}) = {0},

φ{M) = N{ for all M in [Mnι, JT]

and
φ(M) = Nk for all M in [MHk, M^_ t), fc > 2.

Likewise, define ^ : ^ + ^ * -^ -^ by ^(iVjt) = Af̂  for k > 0. It is not

difficult to verify the hypotheses of Theorem 2.4. Hence Jt ~qs ^ ί+^*
The remaining cases are similar and are left to the reader. D

3.6. REMARK. A similar analysis can be made of nests order iso-
morphic to ω+1 which contain an infinite dimensional atom to permit
absorption of atoms as in Example 3.3. For example, let JT have or-
der type ω + 1 and atoms of dimension p except for the first which is
infinite dimensional. Then Jt ~ q s Jf if and only if dim M\ = oo and

sup dim An = lim sup dim An= p.

3.7. EXAMPLE. If J£ and JV are order-isomorphic to 1 + ω* +
ω* + ω* + .-. + 1, and M\+ω* and iVi+ω* are the subspaces of Jt
and, respectively, of JV, corresponding to 1 + ω* in this order, then
the dimensions of the atoms of Jf\N\+ω* := {N e JV\ N c Λ î+ω*}
(thought of as a nest on N\+ω ) are related to the dimensions of the
atoms of ^\M{+ω* according to the same rules as in Theorem 3.5.

But this is not necessarily true for the atoms in the segments corre-
sponding to (1 + ω*, 1 + ω* + ω*], etc.

For instance, if all the atoms of Jt have dimension one, and all the
atoms of JV have dimension one, except for the one corresponding to
1 +ω* + ω*, which has infinite dimension, then we still have Jt ~ q s
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To see this, define

= {0},
iffc = 0, m = 0 , l ,2 , . . . ,

N\+ω*+(ω*-n-\), if k = 1, n = 1 , 2 , . . . ,

i f k = 2, /ι = 0 , l , 2 , . . . ,

- Π ) , if ^ > 3, rc = 0 , 1 , 2 , . . . ,

a n d

ψ(N\+ω*k+{ω -n)) = M\+ω*k+(ω*-n) for fc, /! = 0, 1, 2 , . . . .

Now the result follows from Theorem 2.4. Indeed, Jt ~ q s ^ provided
all but finite atoms of each of the segments (N 1 + ω*£, JV1+ω*(£+i)] for
k > 1, as well as all the atoms of the initial segment of J^ have
dimension one.

4. Uncountable nests. In some ways, things become simpler for
uncountable nests. The prototypical continuous nest is the Volterra
nest jr = {Nt: 0 < / < 1} where

Nt = {feL2(0,l)m supp(/) c [0,^]}.

The fundamental step in our analysis is the classification of nests qua-
sisimilar to Jf.

4.1. THEOREM. A nest Jt is quasisimilar to the Volterra nest if and
only if every initial segment ofJί is uncountable.

Proof. First, we note that there is a quasiaffinity X such that
is a nest 2* if and only if & contains no non-zero finite dimensional
elements. Necessity follows from Lemma 2.1. Conversely, suppose
-2* has order type Γ, a subset of [0,1] containing {0,1} such that ei-
ther 0 is a limit point of Γ\{0} or infΓ\{0} 7 = 7o corresponds to an
infinite dimensional atom. Define a map φ: [0,1] —• Γ by φ(s) =
inf{y G Γ: γ > s} for s > γo\ if γ0 > 0, set φ(s) = y0 for s in (0,y0]
Then φ is a left continuous order epimorphism. Moreover, every non-
trivial interval of jy has infinite dimension, so φ is dimension reduc-
ing. By Theorem 2.3, & is a quasiaffinity of Jlί.

Now, suppose X is a quasiaffinity such that X # = ^ . For any
nonzero Mo in ^f ,XM 0 is infinite dimensional and thus 6χ takes
{Λ/ E Jί: M < MQ} onto a nontrivial initial segment of JV. As the
image is uncountable, the initial segment of Jt is necessarily uncount-
able as well.



QUASISIMILARITY OF NESTS 251

Conversely, if every initial segment of Jί is uncountable, one can
choose Mi = β? D M2 D D Mn... so that f] Mn = {0} and
[Mfc+iyMk] is uncountable for every k > 1. Every uncountable com-
pact subset of R contains a Cantor set, from which we deduce that
there exists an order epimoφhism of the set onto an interval. Let φ
be such a map which carries the interval [Mk+{,Mk] onto [{k + I ) " 1 ,
k~ι] for each k > 1, and takes {0} to 0. It is clear that the image of
an interval of Jί is nonzero only if the interval is uncountable, and
thus is infinite dimensional. Therefore, φ is dimension reducing. By
Theorem 2.3, φ is implemented by a quasiaffinity. Hence Jί ~ q s J^.π

This result and its proof yield the following generalization.

4.2. COROLLARY. LetS^ and <%2 be quasisimilar nests on an infinite
dimensional space. Let J£ be any uncountable nest, and let Jlί be the
Volterra nest. Then

Proof. Let φ: 3[ —> «5| and ψ: 2^ —• 2{ be the dimension reducing
epimorphisms given by Theorem 2.4. As in the previous proof, it is
possible to extend ψ to a map Ψ of ^ +</f onto J2\+Jf by taking any
surjection of Jf onto Λf. On the other hand, ^ contains an element
MQ SO that every proper interval [MQ , M) is uncountable. Thus, extend
φ to Φ by setting Φ(M) = ^ Θ 0 = ^(1^) for M in [0,M0] and
mapping [Λf0,^] onto yf as in the previous theorem. Now Φ and Ψ
satisfy the requirements of Theorem 2.4. So 2{ + ̂ f ~ q s . 2 2 + ^ . D

For example, if ^f and JV are uncountable nests with initial seg-
ments {0} = MQ C M{ c C Mn and {0} = TVQ C N{ C C Nn

such that dim Mk = dim Nk < oc for 1 < k < n - 1 and dim Mn =
dim Λ^ = oc, then Jί ~ q s yf*.

4.3. REMARK. It should be noted that for the proof of Corollary 4.2
to work, it is only necessary that there be quasiaffinities X and Y so
that X3[ is an initial segment of «5|, and Y^ is an initial segment of
2{. However, we have been unable to construct an example in which
this additional generality is required.

The analysis that we have made of certain special cases leads us to

4.4. CONJECTURE. Let 3* and Jΐ be countable nests, and let JV be
the Volterra nest. If 3 + JV and Jt + JV are quasisimilar, then there
exist quasisimilar initial segments 3\ and Jΐ\ oϊ£? and Jί respectively
acting on infinite dimensional spaces.
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5. Quasisimilarity does not preserve completeness. First, let us look
at two examples.

5.1. EXAMPLE. Let JV be the nest {0} = No c c Nn c c
Nx=βT where dimiV^ < oc for k > 1, and f\>i Nk = No = {0}. If
X is any quasiaffinity, let Mn = XNn\ and Jf = {Mn> n > 0}. Then
either Jt is finite (whence ^# is a nest but is not quasisimilar to JV)
or Jί is infinite. Then Mω = Πrt>i Mi belongs to the complete chain
generated by Jt. Indeed Jt is a nest if and only if Λf = {0}.

However, if Mω Φ {0}, Jί cannot be quasisimilar to Jϊ. For if Y is
any quasiaffinity,

YMn 2 Y Π Mn\ = 7 ¥ ω ^ {0}.

Thus it is not possible that 7(^\{0}) = ^\{0} as this latter set has
zero intersection.

Note that a similar argument holds if Jf has subspaces Nn with
finite dimensional intersection. D

5.2. EXAMPLE. Let J^ be the nest on βf θ ^ given by {0} ,^ θ 0,
and ^ θ Nn, where Nn e J^ of Example 5.1. If J£§ = Xŷ o is a

quasiaffinity of Jfa, then X(<^ © 0) is infinite dimensional. If it is of
finite codimension, then J(Q is finite and is not quasisimilar to Jfi. So
after a suitable unitary equivalence, we may assume that X(βf Φ 0) =
J ' θ O . Following the reasoning of the previous example, ^b is finite
or of the form {0}, SIT φ 0, ;r Φ Mn,n > 1 where Mx = ^ . The
completion of ^ contains ^ φ Mω where M ω = Πrt>i Mi

For ^ o to be quasisimilar to ĉ o, it is necessary thaFthe dimensions
of dimiVrt θ Nn+\ and dimAf^ θ AfΛ+i be related as in Theorem 3.5.
However, it is not necessary (as it was in Example 5.1) that Mω = {0}.
To illustrate this, let us suppose that

dimiVfl θ Nn+\ = 1 = dimM^ θ Mn+\ for all n > 1.

Think of JHQ as the chain of subspaces of & φ %* φ %* given by {0},
0

Let K be an injective compact operator on ^ such that KNn = ^
for all ΛZ > 1. For example, the Volterra operator on L2(0,1) has this
property with respect to Nn = span{l,x,... ,xn~2}L. Fix a basis en

for ^ , n > 0. Choose integers 1 = k\ < ki and vectors xt in NkιθNkι+ι

such that
lim Kxnj+wjn = en
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Now let di• = {i\\Xi\\ + I)" 1 , and define an injective compact operator

Now define

I
0
0

0 '
K
D

Then X{& © 0) = %T ® 0, and X{& ® Λ )̂ =
To see this latter identity, note that

0

•Nn for n > 1.

= lim
k—>-oo

/+1)2*

0

. Since DNn =

Y =

Thus it is apparent that X(%* © Nn) contains
Nn, it follows that I ( J θ ^ ) = %? ® ̂  © ΛΓΛ. So

To reverse the process, it suffices to "bury" O θ ^ θ O i n ^ θ O . Let
/ be a quasiaffinity with Ran/ Π RanZ) = {0}. Define

J D 0
0 0 D

Then Y%*θθθθ = ̂ θ θ and 7 Z θ ^ θ O ^ ^ θ O also. It is now
clear that Yβt®βf®Nn = ̂ ®Nn, whence YJHQ — J$. So ̂ o ~qs ̂ δ.π

The lesson of these two examples is that as long as there are infinite
dimensions available, a "gap" can be created and swallowed up again.
A modification of this example yields a complete characterization of
chains quasisimilar to nests.

5.3. THEOREM. A chain Jί ofsubspaces of a separable Hilbert space
is quasisimilar to a nest if and only ifJί is closed under spans, and for
each finite dimensional element M in Jί,

M+ = f\{M' eJt:M'>M} belongs to Jί.

Proof. If Jί is quasisimilar to a nest Jf, then the epimorphisms
φ: Jί —• jy and ψ: Jf —• Jί are left continuous by Lemma 2.1. Thus
Jί must be closed under spans. The argument of Example 5.1 shows
that if M is finite dimensional, then ^# contains

/\{M'€^:M'

So we consider the converse.
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Let J!1 be the completion of Jί. Since Jt is closed under spans,
Jt'\Jt is a countable set {Mf

k} and each Mk has an immediate prede-
cessor Mk in Jt. Let %b = (\/k M'k θ Mk)

x

9 and let JIT = Λf |<#g. Then
JV is a nest. The map $?(M) = Λf Π^o is an order isomorphism of ^f
onto ./f which preserves dimension. It will be shown that Jf ~ q s JV.

By hypothesis, each Mk has infinite dimension, so Nk = φ{Mk)
does also. Thus it is possible to choose pairwise orthogonal infinite
dimensional subspaces Ek in %§ so that Ek < Nk. By Lemma 2.2,
there is a compact injective operator K on ^5 so that AΓ7V = JV for
every N insV. Choose compact injective operators Kk from M'kQMk

into Ek such that X) φ Kk is a compact operator with range disjoint
from Ran(Λ^). Define

x = */>(<*&) + Σ 0 ^ P ( Λ ^ Θ Λ4).
A:

It is routine to verify that X is a quasiaffinity such that X ^ = JV.
To reverse the process, note that each Nk is also infinite dimen-

sional as yy contains a sequence Nk n > Nk such that ΛΛ>i Nk,n = Nk.
One can choose pairwise orthogonal projections Rk in J^f so that
RkP(Nk) = 0 but RkP(N) φ 0 for all N > Nk. (The details are left to
the reader.) Now (by dropping to a subsequence) choose the sequence
NkfH described above so that Rk(Nk^nθNkn+ι) contains a unit vector
xkin. Let Fk = span{xkn;n > 1}. The spaces Fk are pairwise orthog-
onal, and N n Fk has finite codimension in Fk for every N > Nk in
jy. As in Example 5.2, we can choose a norm one compact injective
operator Ck in &{Fk,Λ/£ θ Λf, ) such that Ck(NnFk) = M'kθMk for
every iV > JV̂ .

Further mimicry of Example 5.2 suggests that we choose vectors

ykJ in Rk(Nk9nj θ Λ/]k,Λy+1) so that

lim C Λ ) ( 2 J +I)2- = ekJ

where {^^r / > 1} is an orthonormal basis of Mk θ Mk. Define
positive constants dkj = (/H^jll + I)"1? a n ^ the positive injective
operator

D= \ΣkWk9i))
7 k>\j>\

As in Example 5.2, we see that

DykA2j+\)2>
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Now define an operator Y in £g{?tr^2tr) by Y = D + Σk>\ ck&k
This is clearly injective. Moreover, the previous computation shows
that whenever N > Nk, YN contains M'k θ Mk. On the other hand,
since ΉN = N for all N in JT, it follows that YN = tf?"1 (N) for all ΛΓ
in JK. Hence ̂ f ~ q s ̂ . We also note that Y can be replaced by YK,
where K is obtained by Lemma 2.2. So 7 can be taken to be compact
if desired. D

Since —qs does not preserve completeness, perhaps we should con-
sider the possibility of replacing this relation by the following relation
for nests:

Jt = JV if there exist quasiaffinities X, Y such that JV —
strong closure (Xjt) and Jt = strong closure (Yjt).

Clearly, = is reflexive and symmetric, but unfortunately is not tran-
sitive (and therefore = is not an equivalence relation).

5.4. EXAMPLE. Consider the following nests

jr = {{0} c I2 c c I2 θ M2 c I2 θ Mx c I1 θ I1}

on I2 θ I2, where Mn = {ek}k>nΛek}kLι a n orthonormal basis of /2,

jr = {{0} c I2 C /2ΘC c C /2ΘCθAr2 C /2ΘCΘM! c / 2θCφ/ 2}

o n / 2 θ C θ I 2 , and

^=[{0}c/2c/2θCc/2θC2c

C / 2 Θ C 2 Θ M 2 C / 2 Θ C 2 Θ M 1 C / 2 Θ C 2 Θ / 2 }

on / 2 ΘC 2 Θ/ 2 .
Let Dejζ = ek/k (k = 1,2,...) and pick any u £ RanZλ Define

X(x θ y) = x θ (y, M) θ £ 2 y,

y (x e λ e y) = (z>χ + λu) e j .

It is straightforward to check that X and Y are quasiaίfinities, YJί =

yf, and X^f φ Jί, but

strong closure (XJf) = ̂ f.

Hence, ^f = jr. Define

W{x®λ®y) = x®λ®(y,u)®D2y,

Z(x®λ®μθy) = (Dx + μu) ®λθy;
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then W and Z are quasiaffinities, Z3* — Jί,

strong closure {W^) — S?',

and YZ3* = jr, but

strong closure (WXJ^)

= {{0} c / 2 c / 2 θ C 2 c c/ 2 θC 2 θM 2

This indicates that the obvious quasiaffinities, YZ and WX, do not
implement the relation JT = Sf.

Indeed, Jf andS* are not related at all\ For, if R: I2® I2 -> / 2θC 2θ/ 2

is any quasiaffinity such that

strong closure {R/f)

D{{O}C/2C C/ 2 ΘC 2 ΘM 2

C / 2 θ C 2 θ M ! C / 2 θ C 2 θ / 2 } ,

then

(Rl2)- = l2 and [R(l2 Θ Mn)Γ = I2 ® C2 ® Mh{n)

for a suitable non-decreasing function h(n) ofn such that h{n + \) —
h(n) < 1 and h(n) -> oc (n —• oo).

Therefore,

strong closure (Λ/Γ) = (i?^) U {"one point"}

cannot contain I2 ® C.
We conclude that = is not an equivalence relation.
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