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AN UNKNOTTING LEMMA FOR SYSTEMS
OF ARCS ΪN Fxl

C H A R L E S F R O H M A N

A criterion for the unknottedness of a system of arcs in the carte-
sian product of a closed surface and the unit interval is given.

0. Introduction. Unknottedness lemmas have a long and venerable
history. The canonical example is Papakyriakopoulos' criterion for
an embedded circle in S3 to be unknotted [P]. In the early seventies
Feustel and Brown [Fe, B] developed unknottedness criteria for sys-
tems of proper arcs in the cartesian product of a closed surface F and
the unit interval. In this case unknotted means that there is an isotopy
of F x / so that the arc system is of the form {pΪ9... ,pn} x /. More
recently the author gave an unknottedness criterion for a proper arc
in F x / that was useful in the study of minimal surfaces in the three
torus. Specifically a proper arc k in F x / is unknotted if and only if
the closure of the complement of a regular neighborhood of k in F x /
is a handlebody. (Since speaking of the closure of the complement of
a regular neighborhood of a set is rather clumsy we will abreviate by
just referring to the complement of the set. It will be clear from the
context when we actually mean the closure of the complement of a
regular neighborhood of the set.) Finally Gordon [G] proved an un-
knottedness lemma for systems of proper arcs in S2 x I. A system
of arcs in S2 x / is unknotted if and only if the complement of any
nonempty combination of the arcs in the system is a handlebody. In
this paper we generalize Gordon's result by showing that a system of
arcs in Fxl where F is a closed surface of positive genus is unknotted
if and only if the complement of every nonempty combination of the
arcs is a handlebody.

The structure of the proof is as follows. It is little trouble to show
that if AT is a system of vertical arcs in F x I then the complement of
any nonempty combination of the arcs in K is a handlebody; hence we
will only concern ourselves with proving the converse. Our proof will
be by induction. Lemma 1.1 of [F] handles the case of one arc. Since
the inductive step is rather involved we will first prove the lemma
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when the system consists of two arcs. We then use a result appearing
in [G] to show that the general inductive step can be carried out in
a fashion similar to the case when the system consists of two arcs.
We are indebted to Prof. Gordon for suggesting the lemma and useful
conversations that led to the proof. We would also like to thank Bill
Menasco for helping us clarify the proof.

1. The case of two arcs. In [F], the following lemma appears:

LEMMA 1.1 [F]. Let F be a closed surface of positive genus. A proper
arc k in F x / is unknotted if and only if the complement of k is a
handlebody.

We now show how to use Lemma 1.1 to prove the lemma when
there are two arcs in the system.

LEMMA 1.2. Let F be a closed surface of positive genus. Let k\,k2

be proper arcs in F x I and let N(k\) and N(k2) be small regular
neighborhoods. Suppose that H\ = ~{F x / - N(k\)), H2 =
-{F x / - N{k2)), and Hl2 = ~(F xl - N(k{) U N{k2)) are all han-
dlebodίes. Then there is an isotopy of F x I so that k\ and k2 are
vertical.

Proof. Let A be a vertical incompressible nonseparating annulus in
F x I. By Lemma 1.1 of [F] after an isotopy we may assume that
k\ c A. Let Ci be a nontrivial simple closed curve on the frontier of
N{ki). Since Hχ2 and H2 are handlebodies there exists a proper disk D
in H\2 such that dD n C\ consists of a single point of intersection. We
may assume that among all disks of this sort D minimizes the number
of points of dD Π c2.

We can place coordinates on N(kι) as follows. Let E be the unit
disk in the complex plane. Then N(k() is E x I where k[ = {0} x /.
Since D minimizes dD n c\ we may assume that dD n N(k\) is of the
form {p} x I where p is a point on the unit circle and dD Π N{k2) is
of the form \J{Pj} x / where the Pj lie on the unit circle. We may
complete D to a singular surface M by letting ~M be the union of D
and the fins of the form r{p) x I and r(pj) x I where r ranges from
0 to 1. (The symbol r(p) means the product of r and p viewed as
complex numbers.) Let D be a disk and let / : D -» M be a map that
is a homeomorphism of int D onto int M9 and so that the boundary of
D can be partitioned into segments at, b[ and k\, where kγ is an arc
mapped homeomorphically onto k\ in F x /, each arc b\ is mapped
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homeomorphically onto kι and each α, is mapped homeomorphically
onto an embedded arc in d(FxI) (see Figure 1). If there is but one arc
of type bj indD then we can make k\ and /^ simultaneously vertical.
Hence we will assume that there is more than one arc of type b[. It
should be noted that since C\ is homologous to Cι on dH\ι, there are
an odd number of arcs &/. Finally since the arcs b\ are identified to
one another in F x /, if f~ι(A) intersects one b( then it intersects all
of them.

a i

FIGURE 1

Our goal is to isotope ki so that it is disjoint from A. To this
end make Λf transverse to A and so that (i) dki n A = 0, (ii)
f~ι(N(k\) Π A) = k\9 (iii) then remove simple closed curves of in-
tersection from f~ι(A). We will now study the outermost arcs in D
of f~ι (A). If the set of such arcs is nonempty, there exist at least two
outer most disks, and therefore we can choose one, say D', such that
D' n k\ = 0 . There are then five possibilities for the endpoints of the
corresponding outermost arc K.

Type 1. The endpoints of K lie in distinct arcs Λ/ and α,.

Type 2. Both endpoints of K lie in the same αz.

Type 3. Both endpoints of K lie in the same b(.

Type 4. One endpoint in b\ and one endpoint in α7.

Type 5. The endpoints of K lie in distinct intervals bj and bj.

We will now show how to pull kι off of A by analyzing outermost
arcs in f~ι(A). We define the complexity of the disk Z) to be the
ordered pair consisting of the number of points in fc2 Π A, followed by
the number of points in f~ι (A)nd~D and order them lexicographically.
The following analysis will show that we can isotope M so that the
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disk D has complexity (0,«).
of A.

This implies that we can pull k2 off

Case 1. All outermost arcs are of type 1. In this case all the arcs in
f~ι(A) are of type 1. To see this note that since there are at least 2
outermost arcs, one of the associated outermost disks D' must miss kx.
Since αz and α ; are distinct intervals we have that D1 must intersect
some b(. This means that there are no arcs having their endpoints in
any b[. If an arc has both its endpoints in the same α/? then there must
be an outermost arc of this type. Thus there are no arcs of type 2.
This shows that all arcs in f~ι (A) are of type 1. Hence k2ΠA = 0 and
the complexity of the disk is of the form (0, ή)\ hence we are done.

Case 2. There is an outermost arc K of type 2. The arc K cuts a disk
E1 out of A. The union of E1 and D' is a disk whose boundary lies in
dF x I. Since F x / is boundary irreducible we have that E1 U D! is
the frontier of a ball embedded in F x /. Use this ball to isotope A
so as to replace Ef with a pushoίf of D', leaving that part of A that is
away from Ef fixed. This reduces the number of points in f~ι(A)ndD
without increasing the number of points in k2Γ\A\ thus the complexity
has decreased. (See Figure 2.)

FIGURE 2

Case 3. There is an outermost arc K of type 3. Use the outermost
disk D' to isotope away two points of intersection of k2 with A. Then
remove trivial simple closed curves intersection between M and A.
(See Figure 3.) This reduces the number of points of f~ι(A) Π dD,
and the number of points of k2 Π A.
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Case 4. There is an outermost arc K of type 4. The hypotheses
guarantee that the arcs a\ and bj containing the endpoints of K are
adjacent to one another on dD. Use the outermost disk Df to isotope
away the point of intersection of k2 and A corresponding to the end-
point of K lying in bj. (See Figure 4.) Then remove the trivial simple
closed curves of intersection. This decreases the number of points of
k2nA.

FIGURE 4

Case 5. There is an outermost arc K of type 5. Because K is out-
ermost the arcs b\ and bj must be adjacent to some ar on dD. The
outermost disk D' cut out by K has boundary consisting of four arcs,
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an arc d that is mapped into A, two arcs e\ and e2 that are mapped to
subarcs of k2, and an arc / that is mapped into d(F x /). Since the
two arcs β\ and e2 are identified we have that d and / are mapped to
simple closed curves. Since k\ is a nontrivial arc on A and the image
of d misses k\ we have that d is mapped to a trivial simple closed
curve on A. Let D" be the disk bounded by the image of d on A.
The image of Dr along with D" form a disk whose boundary lies in
d(F x /). (See Figure 5.) Since the boundary of F x / is incompress-
ible the image of the curve / bounds a disk on d(F x /). This allows
us to isotope away two points of intersection between D and c2, thus
contradicting our choice of D.

FIGURE 5

Now that k2 Π A = 0, choose a family of vertical disks each having
its boundary in A U d(F x /) so that the disks miss AnM, and they
miss the boundary of k2, and along with A they form a hierarchy for
F x I. Using moves as above we can isotope k2 so that it misses
A and the vertical disks. Cutting along the hierarchy we get D2 x I
so that when you identify some disks in ΘD2 x I you recover F x L
Since k2 is disjoint from the hierarchy we can view it as a proper arc
in D2 x I. The hierarchy can be viewed as lying in H2. If we cut
along the surfaces in the hierarchy at each stage we will still have a
handlebody. Consequently D2 x I - N(k2) is a solid torus. Since H2

is a handlebody we can see that k2 runs from D2 x {0} to D2 x {1}.
From this we conclude that k2 is isotopic to a vertical arc in D2 x /,
and hence in F x I. D
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2. The general case. We would now like to give some definitions
from [G] and state the major result of that paper. A family {Cj,...,
Cm} of disjoint simple loops in the boundary of a handlebody X is
called primitive if there exist disjoint disks {D\,..., Dm} properly em-
bedded in X so that all intersections between the Dt and Cj are trans-
verse in dX, and the number of points in J5/ n Cj is equal to Kro-
necker's delta δ(i,j).

THEOREM 1 [G]. Let {C\,...9Cm} be a system of disjoint simple
closed curves on the boundary of a handlebody, such that the result of
adding Wo handles along any subcollection of the Q is still a handle-
body. Then {C\,...,Cm} is primitive.

We will now use this to prove our unknotting lemma.

LEMMA 2. Let {k\,...,kn} be a system of proper arcs in F x I. If
the closure of the complement of every nonempty combination ofki is
a handlebody then there is an isotopy of F x I so that the arcs k[ are
vertical.

Proof. The proof is by induction. Assume that we have shown the
lemma for all collections of arcs having fewer than n elements. Let
k\,..., kn be a collection of n arcs satisfying the hypotheses and hav-
ing n elements. Let A be an incompressible vertical annulus. By the
inductive hypothesis we may assume that the curves k\,...,kn-\ have
been isotoped so that they are vertical arcs lying on A. Choose small
regular neighborhoods N{ki) of the arcs fc/. Let c, be a nontrivial sim-
ple closed curve on the frontier of N(K() for each /. By Gordon's
result the system of curves c\,..., crt_i is a primitive system of curves
on the boundary of the handlebody Hn = ~{FxI-N{k\) N(kn)).
Hence there is a system of properly embedded disks D\9...9Dn-\ in
Hn so that dDi and Cj intersect in δ(ij) points of transverse inter-
section. In specific the curve dD\ intersects c\ in a single point, and
misses C2 through cn-\. Homological considerations allow us to con-
clude that dDγ has odd intersection number with cn. Let D be the
disk having the least number of points of intersection with cn having
these properties. Now proceed with D as we did in Lemma 1, first
pulling kn off of A and then a vertical hierarchy for the complement
of A. The proof is now finished by the standard argument in the solid
torus.
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