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NONRATIONAL FIXED FIELDS

JAMES K. DEVENEY AND JOE YANIK

We present an example of a flag of rational extensions, stabilized
by the action of the group of order 2 such that the fixed field under
the group action is not retract rational and hence not rational. This
fixed field is shown to be a genus 0 extension of a pure transcendental
extension.

Let L D K D F be fields finitely generated over F. If K =
F(X\,...9Xn) where {Xu...,Xn} is algebraically independent over
F then AT is a rational extension of F. Saltman defined K to be
a retract rational extension of F iϊ K is the quotient field of an F-
algebra A and there are maps /:F[X\,...,Xn](l/w) —• A and g: A —•
F[Xu...,Xn](l/w) such that /o g = id, where {Xu...,Xn} is al-
gebraically independent over F and w e F[X\,...9Xn]. If rational
extensions are considered free objects then retract rational extensions
could in some sense be considered as projective objects.

Let (? be a finite group of ^-automorphisms of a rational
function field k(X\,...9Xn). Assume that the "flag" of subfields
{k[X\,...,Xi)/l < i < ή) is stablized by G. Then in many situa-
tions, for example if |G| is odd, the fixed field of G will be rational
over k [10, Lemma 4, p. 322]. We present an example of G as above,
where \G\ = 2 and the fixed field of G is not even retract rational. We
also describe this field as a genus 0 extension of a pure transcendental
extension of the rational members.

Let a be the automorphism of Q(X\,X2,X3,X4, Z\,...,Z%) defined

by
a(Xi)=Xi+ι for 1 < i < 3,

- Xx for i = 4,
α(Z, ) = Z/+i for 1 < i < 7,

Zi for i = 8.

Then a is a A:-automorphism of order 8 and induces a G-action on
Q{X\, X2, X?» X4, Z i , . . . , Zg) where G = Cg. Furthermore, the restric-
tion of a induces a faithful (r-action on each of Q(Xι,X2,X3,X4)
and (?(Zi,...,Zg). By [2, Propositioon 1.4, p. 303] this implies
that Q(X\,X2,Xi,X4,Z\,...,Z%)a is a rational extension of both
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Q{XuXlyX^XA)
a and β(Z 1 , . . . ,Z 8 ) t t . But Q(ZΪ9...,Zs)a is not

retract rational [6, Theorem 5.11, p. 281] and stable isomor-
phism preserves retract rationality [4, Proposition 3.6, p. 183], so
Q{XuX2,X3,X4)

a is not retract rational.
Consider Q(XuX2,X3,X4)

a\ We claim that

X\X2 + X3X4, X2X$ — X\X4 I = L.

Clearly L is fixed by a2 and

L C L(XXX3, rj^j C

Since Xi/X\ is a root of

and, ^ D

\X i,-γ- ).L\ =
X\) J

Since X3 is a root of (X,/X3)Z2 - XyX3 = 0,

= 2 .

Thus L is of codimension 4 and the claim is established.
Let U = (Xl - XJ)/X{X3, V = X} + X], W = XXX2 + ^3X4

and Y = X2X3 - XχX4. Then a has order 2 on Q(U, V, W, Y) and
Q(U, V, W, Y)« = ρ(X,,Z2)X3,X4)α.

One can check that a{W) = Y, a{Y) = W,

and

Thus a stabilizes the flag of subfields

Q{w + Y) c β(ίτ, y) c Q(FF, y, £/) c β(jr, y, F, U),

a has order 2, and its fixed field is not retract rational.
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It is interesting that the fixed field of a has a rather simpler descrip-
tion:

Q(W,Y,V,U)

LχL2

Q(W,Y,V) / v Q(W,Y,U)

\

where L\ and L 2 are the fixed fields of the restrictions of a to
Q(W, Y, V) and Q(W, Y, U), respectively, and Q{W, Y, V, U)a = LXL2.
LχlQ{WY, W + Y) and L2/Q(WY, W +Y) are both genus 0 because
they became rational after a change of base to Q(W, Y). So the fixed
field of a is just the free join of two genus 0 function fields over a pure
transcendental extension of Q. Actually, it is possible to get an even
simpler description, but first we need a few preliminaries.

Let L/K be a Galois extension with group G and let Z be tran-
scendental over L. It has been noted (for example in [11]) that an
extension of G to L(Z) corresponds to a "crossed homomorphism"
from G to PGL2(L), (i.e. to an element of Hi(G,PGL2(L))) in the
following manner: Given an extension we define

G -> PGL2(L)

by σ i—> Mσ where,

(note the transposition of the b and the c) and Mσ is the image of Mσ

in PGL2(L). Then one can check that στ H-> MσM? where

b d\> [σ(b) σ(d)\

In the case where G = {e,σ} is a group of order 2 the above can
be summarized by saying that there is a one-to-one correspondence
between extensions of G to L(Z) and equivalence classes of matrices
Mσ such that MσM% is a diagonal matrix. The correspondence is
given by

aZ + b -yj
M

L , where Mσ = Nσ o Mσ = /IΛ^ for some
b a
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The fixed field of the extension of M σ, L(Z)Mσ is actually a generic
splitting field for a quaternion algebra over K (see [1], [3]). The asso-
ciated algebra has {1, θ} as an L-basis with multiplication defined by
θ2 = aσ(a) + cσ(b) and the requirement θf = σ(f)θ for / e L.

THEOREM 2. Let L be a Galois extension ofK with group G = {e, σ}
of order 2 and let Z be transcendental over L. Let Mσ and Nσ be
extensions ofG to L. Then L(Z)Mσ is K-isomorphic to L(Z)Nσ if and
only if MσM% = ηNσN% where η is the norm of an element of L.
In particular, L(Z)Mσ is rational over K if and only if MσM% is the
norm of an element of L (identifying L* with the diagonal matrices in
GL2(L).

Proof. The above theorem can be seen as a relatively straightforward
application of the fact that the map Hι(G,FGL2(L)) -> H2(G,L*) is
one-to-one [7, Theorem 1]. However, we choose to present a more
constructive proof which avoids the cohomology.

Assume we have an isomorphism f:L(Z)Mσ —• L(Z)Nσ. Note that
L(Z)M° ®KL = L(Z)M°[L] = L(Z) and that if we extend the action
of σ on L to 1 ® σ on L(Z)Mσ ®κ L we get Mσ under the above
identification with L(Z). Extend / to J : L(Z)Mσ ®KL-+ L(Z)Nσ®KL
by / = / ® 1. Then / is an L-automorphism of L(Z) over L, so
J(Z) = (aZ + b)l(cZ + d) for some α, b9c,d e L.

Let B = [£ 5] Then by the above discussion we must have ~Mσ =

B-{NσB
σ in PGL2(L).

Therefore, there is a λ e L such that Mσ = λB~ιNσB
σ . Thus

MσM° = λB-{NσB
σσ(λ)(Bσ)-ιN%B

= λσ(λ)NσN%(using the fact that NσN% is a scalar matrix).

Now let η = λσ(λ).
Suppose that Mσ and Nσ correspond to extensions of σ and that

MσM% = ηNσN% where η = λσ(λ).

By replacintg Nσ with λNσ we can assume that η = 1. Suppose that
we can choose a matrix ^ in M2(L) so that

5 = AM% + Λ7

σ̂ 4cr is invertible.

Then we claim that Mσ = B~ιNσB
σ. In fact

- NσA
σMσ + ANσN% (because 7VσΛ^ e L*)
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But NσN° = MσM?.
Note that

(MσMg)(MgMσ)-χ = MσM%M-

= M-ιMσM
σ

σ{Mσ

σy
ι (because MσM

σ

σ e L*)

= /.

Hence MσM% = M%Mσ.
Therefore

NσB
σ = NσA

σMσ + AM°Mσ = (NσA
σ + AM*)Mσ = BMσ

and the claim is established.

But, as before, if / is the L-automorphism of L(Z) corresponding

to£thenΛf σ = B~ιNσB
σ means that Mσ = J~loNσoJ and L(Z)M° s

L(Z)Nσ. Therefore, it only remains to prove the following.

LEMMA 1. With Mσ> Nσ as in the theorem, there is always an A such
that B = AM* + NσA

σ is invertible.

Proof. We will show that, in fact, we can choose A to be of the form
A - Γ x O l

LetMσ = [g5] ,Λ r

σ =[g; ί ] . Then

Γxσ(α) + α'σ(x) xσ(c) + c'σ(j ) 1
[Mi) + ̂ W yσ(d) + dfσ(y)\

l)y + rf;σ(fl)σ(y)]jc + [a'σ{d)y + detNσσ(y)]σ(x)

-b'σ{c)xσ{x) - cfσ(b)yσ(y).

By the algebraic independence of 1 and σ we can choose y so that
detΛf^y + d'σ{a)σ{y) Φ 0.

With this choice of y we get

det£ = αx + βσ( c) + γxσ(x) + <5 with a φ 0.

Now choose x so that det5 ^ 0.
Finally, L(Z)Mσ is rational over K if and only if L(Z)Mσ is isomor-

phic to L(Z)1 where / is the identity matrix. Thus L(Z)σ is rational
over K if and only if MσM% is a norm.

Returning to the example, with L = Q(W, 7), K = Q(W, Y)a and
Z = [/, α on Q( W, 7, [/) corresponds to the matrix

W2-Y2 -4WY
WY W2-Y21 a n d

~(W2 + Y2)2 0
0 -(W2 + Y2)2
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Since [W2 + Y2)2 is a norm, Theorem 2.1 says that we can find a
new variable Z such that a(Z) — — 1/Z.

In fact, referring to the proof of the theorem, with N'a =
Na/(W2 + Y2\ Ma = [°χ J ] , a n d Λ = [ J ? ] w e get M α = B~lN'aB
where

B =

-4WY

WY
- 1

i.e. if

-y2
W2-Y2

W2 + Y2

4WY W2-Y2z =

_ (W2 - Y2)U + WY - (W2 + Y2)
- (W2 + γi _ 4WY)U+ W2 - Y2)

thenα(Z) = - l / Z .
So Q(W9 Y9 U)a = Q(W9 Y, Z)a is not rational over Q(W, F) Q , but it

is rational over Q, as can be seen by applying [4, Proposition 1.4] to
Q(JV,Y,Z)a. One generating transcendence basis is

Applying the theorem again to Q(W, Y, V)a/Q(W, Y)a we see that
Q{W,Y, V)a is not a rational extension of Q(Wy Y)a (because W2 + Y2

is not a norm). Thus the fixed field of a is a genus 0 extension of a
pure transcendental extension in three variables over Q.
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