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NONRATIONAL FIXED FIELDS

JAMES K. DEVENEY AND JOE YANIK

We present an example of a flag of rational extensions, stabilized
by the action of the group of order 2 such that the fixed field under
the group action is not retract rational and hence not rational. This
fixed field is shown to be a genus 0 extension of a pure transcendental
extension.

Let L O K D F be fields finitely generated over F. If K =
F(X,...,X,) where {Xy,...,X,} is algebraically independent over
F then K is a rational extension of F. Saltman defined K to be
a retract rational extension of F if K is the quotient field of an F-
algebra A and there are maps f: F[X,...,X,](1/w) — 4 and g: 4 —
F[X,...,X,](1/w) such that f o g = id, where {Xi,..., X} is al-
gebraically independent over F and w € F[X,,...,X,]. If rational
extensions are considered free objects then retract rational extensions
could in some sense be considered as projective objects.

Let G be a finite group of k-automorphisms of a rational
function field k(Xi,...,X,). Assume that the “flag” of subfields
{k[X1,...,X;)/1 < i < n} is stablized by G. Then in many situa-
tions, for example if |G| is odd, the fixed field of G will be rational
over k [10, Lemma 4, p. 322]. We present an example of G as above,
where |G| = 2 and the fixed field of G is not even retract rational. We
also describe this field as a genus 0 extension of a pure transcendental
extension of the rational members.

Let o be the automorphism of Q(X, X5, X3, X4, Z1,...,Zg) defined
b

Y a(X,')=Xi+1 for 1 3133,

- Xl for i = 4,
a(Z))=Ziyy for1<i<7,
Zl for i = 8.

Then « is a k-automorphism of order 8 and induces a G-action on
Q(Xy, X, X3,X4,Z,,...,2Zg) where G = Cg. Furthermore, the restric-
tion of a induces a faithful G-action on each of Q(X|, X3, X3, X4)
and Q(Z,,...,Zg). By [2, Propositioon 1.4, p. 303] this implies
that Q(Xy, X3, X3, X4, Z1,...,2Zg)* is a rational extension of both
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O(X1, X2, X3, X4)* and Q(Z,,...,7Zg)*. But Q(Z,,...,Zg)* is not
retract rational [6, Theorem 5.11, p. 281] and stable isomor-
phism preserves retract rationality [4, Proposition 3.6, p. 183], so
O(X,, X3, X3, X4)* is not retract rational.

Consider Q(X;, X2, X3, X4)*'. We claim that

2 X.%—Xlz 2 2
Q(XI’XZsX3aX4)a =Q< X, X le +X3’
113

X1 X7 + X3X4, Xo X5 — X1X4) =L.

Clearly L is fixed by a2 and

X3

Lg_L(Xng,—X-,—
1

) Cc Q(XlaX2>X3> X4)'
Since X3/X; is a root of

X2 - x2
2_ (23 71 —1=
z ( X1X3 )Z =0

and, X\ X5 = (X? + X3)/(X1/ X3 + X3/ X)),

L(r ).c] -2

Since X3 is a root of (X,/X3)Z? — X, X3 =0,

[Z(Xl, Xz, X3, X4)Z L(X1X3, —//‘Yl—?)] =2.
Thus L is of codimension 4 and the claim is established.

Let U = (X7 - X)/Xi X3, V = X+ X3, W = X1 Xy + X34,
and Y = X,X; — X X4. Then a has order 2 on Q(U,V,W,Y) and
Q(U’ V’ VV’ Y)a = Q(Xla XZ’X39 X4)a'

One can check that a(W) =Y, a(Y) =W,

w24+ v? (W2-YHU+WY

oV)=— and o(U)= gy wr_ye

Thus « stabilizes the flag of subfields
QW +Y)COW,Y)C oW, Y,U)cQW,Y,V,U),

o has order 2, and its fixed field is not retract rational.
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It is interesting that the fixed field of « has a rather simpler descrip-

tion:
oW, Y,V,U)

/ LIL;;_ \
WYV) WYU
7 \

\ /

OQWY,W+Y)

where L; and L, are the fixed fields of the restrictions of a to
Q(W,Y,V) and Q(W, Y, U), respectively, and Q(W,Y,V,U)* = L,L,.
Li/QIWY,W +Y)and L,/Q(WY,W + Y) are both genus 0 because
they became rational after a change of base to Q(W,Y). So the fixed
field of « is just the free join of two genus 0 function fields over a pure
transcendental extension of Q. Actually, it is possible to get an even
simpler description, but first we need a few preliminaries.

Let L/K be a Galois extension with group G and let Z be tran-
scendental over L. It has been noted (for example in [11]) that an
extension of G to L(Z) corresponds to a “crossed homomorphism”
from G to PGL,(L), (i.e. to an element of H'(G,PGL,(L))) in the
following manner: Given an extension we define

G — PGL,(L)

by o — M, where,
aZ +b
cZ +d b d

(note the transposition of the b and the ¢) and M [+ is the image of M,
in PGLy(L). Then one can check that 67 — M, M where

. _|a ¢ s _ |o(a) a(c)

o= ol = [0 o)

In the case where G = {e,c} is a group of order 2 the above can
be summarized by saying that there is a one-to-one correspondence
between extensions of G to L(Z) and equivalence classes of matrices
M, such that M;M? is a diagonal matrix. The correspondence is
given by
aZ +b —
cZ+d Mo

z[a c] where M, = N, & M, = AN, for some 4 € L.

if 0(Z) = then M, = [ € GLy(L)

o(Z)=

b d
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The fixed field of the extension of M, L(Z)™- is actually a generic
splitting field for a quaternion algebra over K (see [1], [3]). The asso-
ciated algebra has {1, 8} as an L-basis with multiplication defined by
62 = aa(a) + co(b) and the requirement 6 f = a(f)6 for f € L.

THEOREM 2. Let L be a Galois extension of K with group G = {e,d}
of order 2 and let Z be transcendental over L. Let M, and N, be
extensions of G to L. Then L(Z)™- is K-isomorphic to L(Z)™ if and
only if M;M?Z = nNyNZ where n is the norm of an element of L.
In particular, L(Z)™- is rational over K if and only if My;M? is the
norm of an element of L (identifying L* with the diagonal matrices in
GL,(L).

Proof. The above theorem can be seen as a relatively straightforward
application of the fact that the map H'(G,PGL,(L)) — H*(G, L") is
one-to-one [7, Theorem 1]. However, we choose to present a more
constructive proof which avoids the cohomology.

Assume we have an isomorphism f: L(Z)M- — L(Z)™. Note that
L(Z)M @ L = L(Z)M-[L] = L(Z) and that if we extend the action
of 6 on L to1®0 on L(Z)M ®x L we get M, under the above
identification with L(Z). Extend f to f: L(Z)M- @k L — L(Z) ®k L
by f = f® 1. Then f is an L-automorphism of L(Z) over L, so
f(Z)=(aZ +b)/(cZ +d) for some a,b,c,d € L.

Let B = [} 5]. Then by the above discussion we must have M, =
B-IN,B? in PGL,(L).

Therefore, there is a A € L such that M, = AB~!N,B° . Thus

My;M? = AB~'N,B°a(A)(B°)"'N?B
= A0 (A) Ny N2 (using the fact that N, N7 is a scalar matrix).

Now let n = Aa(4).
Suppose that M, and N, correspond to extensions of ¢ and that

MsM7 = nNs;NZ where n =Aio(4).

By replacintg N, with AN, we can assume that 7 = 1. Suppose that
we can choose a matrix A4 in M,(L) so that

B = AMJ + N;A° is invertible.
Then we claim that M, = B~ N;B°. In fact

NyB? = N;A°M; + Ny N2 A
= NgA°M; + AN;N? (because N;NJ € L)
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But NaNg = MGMO'G'
Note that
(M MZ)(MIM,)™" = Mo MIM; (MZ)™!
= M;'M;MZ(M?)~! (because M, M € L*)
=1.
Hence M, M? = M M,.
Therefore
NyB? = NgA° My + AMIM; = (NgA° + AMZ)M; = BMj,
and the claim is estal;lished.
But, as before, if f is the L-automorphism of L(Z) corresponding
to B then M, = B~' N, B® means that M, = f ' oN,of and L(Z)M- =
L(Z)"-. Therefore, it only remains to prove the following.

LEMMA 1. With My, Ny as in the theorem, there is always an A such
that B = AMZ + NzA° is invertible.

Proof. We will show that, in fact, we can choose A4 to be of the form
0
A= [i)c y]‘ /
Let M, = [4 5], No = [£ 5 ]. Then
B xa(a)+ada(x) xo(c)+ca(y)
T |yob)+ba(x) yo(d)+da(y)

det B = [(det M?)y + d'a(a)o(y)]x + [d'a(d)y + det Nya(y)]o(x)

~b'a(c)xa(x) —a(b)ya(y).

By the algebraic independence of 1 and o we can choose y so that
det MZy +d'a(a)a(y) # 0.

With this choice of y we get

detB =ax + fo(x)+yxo(x)+J6 witha #0.
Now choose x so that det B # 0.

Finally, L(Z)M- is rational over K if and only if L(Z)™- is isomor-
phic to L(Z)! where I is the identity matrix. Thus L(Z)C is rational
over K if and only if M,M? is a norm.

Returning to the example, with L = Q(W,Y), K = Q(W,Y)* and
Z =U, aon Q(W,Y,U) corresponds to the matrix

Wi-Y? 4wy
Naz[ WY WZ—YZ] and
o [~ + Y2 0
NaNa = l: 0 __(W2+ YZ)Z .
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Since (W? + Y2)? is a norm, Theorem 2.1 says that we can find a
new variable Z such that a(Z) = -1/Z.

In fact, referring to the proof of the theorem, with N, =
No/W?2+Y%), M, =[%]!],and 4 = [.9] we get M, = B"'N.B
where

w?_y? —4WY+1
_AAfO L N A W24+Y2 W24Y2
B =AM® + N, A~ = WY+ . W;_Yz
W2+47Y? W2+ Y2
ie. if
w?2_y? wyYy
(T—2>U+ﬁ“l
7 \W2+Y W2+Y
(1_ 4WY) +W2-Y2
W24 Y2 W24 Y2

_ (WP-YHU+WY — (W?+7Y?2)
T (W24 Y2 -4WY)U + W2 -Y?2)

then a(Z) = -1/Z.

So Q(W,Y,U)* = Q(W, Y, Z)" is not rational over Q(W, Y)*, but it
is rational over Q, as can be seen by applying [4, Proposition 1.4] to
Q(W,Y,Z)>. One generating transcendence basis 1s

zZ2 -1 Z2+1
—Ww — (W -=Y) ;.

Applying the theorem again to Q(W, Y, V)*/Q(W,Y)* we see that
Q(W,Y, V) is not a rational extension of Q(W, Y)* (because W2 +Y?
is not a norm). Thus the fixed field of « is a genus 0 extension of a
pure transcendental extension in three variables over Q.
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