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A CONSTRUCTION OF HARMONIC FORMS
ONU(p+l9q)/U(p9q)xU(l)

ROGER ZIERAU

The point of this paper is to give a method for constructing bun-
dle valued harmonic forms on the indefinite Kahler symmetric space
U(β-\-l,g)/U{p,q)xU(l). Such a space of harmonic forms has been
studied by Rawnsley, Schmid and Wolf in order to unitarize certain
representations acting on Dolbeault cohomology spaces. They prim-
iarily study a space of "special" harmonic (0, s)-forms representing
Dolbeault cohomology, and s is the dimension of a maximal com-
pact subvariety. Here, harmonic forms are constructed in arbitrary
degree (0,5). We construct harmonic forms corresponding to "lowest
AΓ-types" and we determine the other possible AΓ-types in the repre-
sentation spanned by these. We also determine when these are L2 (in
an appropriate sense).

The methods used here are similar to those used to construct the
discrete series of a semisimple symmetric space (see [2], [14]). First
we study the space of bundle valued harmonic forms of the Rie-
mannian dual, U(p + q, 1)/U(p + q) x 1/(1), (hyperbolic space) of
U(p + l,q)/U(p,q) x C/(l). This is an easy extension of the work
of P. Y. Gaillard ([5]). Intertwining operators (called Poisson trans-
forms) of certain principal series representations of G = U(p + q, 1)
into the space of harmonic forms on hyperbolic space are obtained.
In §2 we give a vector bundle version of the Flensted-Jensen (F.-J.)
duality. To apply this we need to determine some //-finite vectors in
(the hyperfunction realization of) the above principal series represen-
tations. A fairly detailed account of such //-finite vectors which are
supported in a closed orbit is given in §3. In §4 we determine which of
the harmonic forms constructed as above (i.e. F.-J. duals of Poisson
transforms of the //-finite vectors) are L2.

This project is motivated by the following very difficult problems.
Let Y be any indefinite Kahler symmetric space and let Sfχ be a ho-
mogeneous holomorphic line bundle over Y.

(a) Under some negativity condition on S?χ, unitarize the Dolbeault
cohomology space Hs(Y,JZχ) by constructing L2 harmonic forms. This
is done in [15] when a "holomorphic fibration" condition holds. One
would like to drop this condition to include many more Y.
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378 ROGER ZIERAU

(b) Determine the full space of L^ harmonic -S^-valued forms on
7, along with its natural invariant indefinite hermitian form.

We do not solve either (a) or (b) completely. The contribution
here is to give an explicit construction of L2 harmonic forms. For (a)
one must study the natural invariant indefinite hermitian form on the
image of the Poisson transform (see the remark in §4.1), we do not
do this here. For (b) one would like to construct the full space of L^
harmonic forms. The obstacles are the fact that the Poisson transform
constructed in § 1 is in general not easy to study (for example when is
it onto, when does an //-finite distribution lie in its kernel?), also there
does not seem to be any way of working with //-finite distributions
which are not supported in closed orbits. Some results similar to the
results of this paper have been obtained for SO(4, l)/SO(2)xSO(2,1).

I would like to thank Pierre Yves Gaillard, Jerry Orloff, Wilfried
Schmid, David Vogan and Joe Wolf for many useful conversations
related to this project.

1. In this section we will describe the relevant work of P. Y. Gaillard
([5]) on the space of harmonic forms on hyperbolic space. We will
show how to extend this to the case of line bundle valued forms.

1.1. The main idea is to use the following version of Frόbenius
reciprocity to construct intertwining maps from principal series repre-
sentations into the space of harmonic forms. Let G be any connected
linear reductive Lie group and K a maximal compact subgroup of G.
Let 00> to be the Lie algebras and g, t their complexifications. Let
P = MAN be the Langlands decomposition of a minimal parabolic
subgroup of G. Let Σ be the roots of α in g (α = Lie(-4)c) and Σ + the
positive system defined by n. For any finite dimensional representation
W of P we define an induced representation as follows. I(W) is the
strong continuous dual of £?{G/P, W*) = W(G) ®W*®> Cp}

p where
^ ( ) denotes real analytic functions (sections), p = \ Σ α > 0 α, C^ is the
one dimensional representation with A acting by ep and the superscript
P means P-invariants. I(W) is the space of W-valued hyperfunctions
on G/P. The version of Frόbenius reciprocity that we will use is

C-,, V) ~ BomG{I{W)9 V)

for any admissible V which is a "maximal" globalization. This follows
from work of Schmid ([17]), see [5] for a discussion of this.

The case of interest to us is when (i) N acts trivially on W (ii) A
acts by some character ev, v e α* and (iii) M acts irreducibly. In
this case I{W) is the maximal globalization (in the sense of [17]) of a
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minimal principal series representation of G. V will be the space of
harmonic forms on hyperbolic space and W will be the iV-invariants
in V.

We will need some facts about hyperbolic space. Let G = U(n91),
K = U(n) x ί/(l), then X = G/K is hyperbolic space. The subgroup
T c G of diagonal matrices is a compact Cartan subgroup of G. The
root system Δ = Δ(t,β) is {βj• - εk\ 1 < 7 ^ k < n + 1} where

and we take Δ+ = {βj• — εk | 1 < j < k < n +1} as a positive system. Let
0 = t + p be the Cartan decomposition. Set Ac = {a e Δ|g(α) c 6} (the
compact roots), Δ+ = ΔcnΔ+ and Anc = Δ-Δ c (the noncompact roots).
X has an invariant complex structure defined by / = Ad(£), where ζ
is an appropriate element of the center of t The holomorphic and
antiholomorphic tangent spaces at eK are p± = {η G p\J(η) = ±/^/}.
We choose £ so that Anc nΔ+ = Δ(p+) (= {α e Δ|g(α) c p+}).

If (π, E) is a finite dimensional irreducible representation of K with
highest weight χ e t* then we may form the associated homogeneous
holomorphic vector bundle J? —• X. The Laplace-Beltrami operator
on g'-valued differential forms is given by the following proposition.

PROPOSITION (see [8]). D = \(r(Ω) - (χ,χ + 2p)) where r(Ω) is
the action of the Casimir as left invariant differential operator, p =
1 Σ)α€Δ+ a and E' Ω and (, ) αr^ defined with respect to the trace form
on U(Λ, 1).

DEFINITION. The Harmonic space β?^ or %?^{GjK, g) is defined
to be the space of C°°(r,5 )-forms ω satisfying Ώω = 0.

It is known that J^(r'5) is an admissible G-module, and in fact a
maximal glocalization (see [17] and [5]).

1.2. We will now show how to compute the iV invariants in
First note that G = NAK by the Iwasawa decomposition. We take A
to be exp αo with

0 1"

.1 0.

Let Σ = Σ(α, g) be the restricted root system, so Σ = {±t, ±2t}, we set
2
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Let A^S\X, %) denote the space of C°° ^-valued forms on X of type
(r,s) and let Λr'5 be the elements of type (r,s) in Λ(p)* (the exterior
algebra of p*). Then A^S\X,%) ~ {C°°(G) Θ Λr>5 ® £ } * , the K-
invariants (the K action on C°°(G) being right translation). This is
the space of functions ω: G —> Ar>s ®E such that ω(gk) = k~ι

for all * e (7, λ: € # .

LEMMA. {^(r'5)(X, &)}N ~ C°°(α0) ® Λr's ®E as MA modules.

Proof. Since G = NAK we have (C°°(G) <g)Λr'5 (
Λr'5 ®E9 as 7V̂ 4 module. The iV-invariants (left TV-action on C°°) are

E. D

REMARK. The space of TV-invariants of the lemma is identified with
C°° functions R -> Ar>s<g>E. Such a function 9? corresponds to the form
ω(netZk) = k~ιφ(t) where

0 1

z =
1 0

α0.

Also, the left action of Z is by -d/dt.
Let Ω and ΩM be the Casimir elements for G and M, both w.r.t.

the trace form.

LEMMA. Ifφ e {A^\X9Z)}N then

dφ

Proof (sketch). This is a routine calculation with root vectors which
we will only describe briefly. Since g = (n+0n)Θαθm is an orthogonal
decomposition of g we may choose orthonormal bases of n + θn, a and
m so that Ω = ( ) + \Z2 + ΩM- The term in parentheses can be
rearranged to lie in 2^(g)n + α, the terms with n on the right kill n-
invariants, the terms in α give the -nd/dt term. D

In order to apply the Frόbenius reciprocity (Eq. (*)) to W =
{β^(r^)}N we must determine W as an ΛL4-module. We are almost
done once we decompose (Λ r5 ® E)\M- This can be done, but we are
more concerned with the less complicated case when E is one dimen-
sional and r = 0. So let E = CX where
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for l e i . We use χ to also denote the weight -len+\ and we denote
the line bundle % by £?χ.

LEMMA. ( Λ ( O ' 5 ) ® Cχ)\M ^ WX®W2 (for s = 0 ,1 , . . . ,n) where
Vi are irreducible M-modules with highest weights:

occur for s = 0

Proof. This follows immediately from the branching law for the
restriction of representations of U(ή) to U(n - 1) see [18]. D

Now we are in position to solve the Laplacian on {A^s\X,3?

χ)}N.
Recall that Ω>M acts on Wt by (σ, ,σ/ + 2ρ(xa)). There are two cases
φ(t) C Wh i = 1,2. By the preceding two lemmas we get

^ and

The solutions are:

( ± ( ( / i ) ) ) / t y i E W u a n d

Since the left action of Z is -d/dt we conclude the following.

PROPOSITION. fΓ = {βr^s\X,S?χ)}N ® C^ (C^ gives the proper p-
shiftfor Frδbenius reciprocity) is the sum of four irreducible P-modules
as follows:

(i) As an M-module W is the sum of two copies ofWx © JV2,
(ii) A acts by ev with v e a* given by v(Z) = ±{n - (s - / - 1))

on the two copies ofW\f and v(Z) = ±(n - (s - /)) on the two
copies ofW2.

(iii) Λf acts trivially.

COROLLARY. For each of the four cases above there is a nonzero
Poisson transform of the corresponding principal series representations
into
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The operators d and d* acting on N-invariants can be written in
explicit form as follows. Let X\ — f-ji], then (X\,X\) = 1 where ~X\
is the conjugate of X\ with respect to the real form U(Λ, 1).

LEMMA. For φ e {A(°>s\X,Jΐ?χ)}N decompose φ as ψ\ + φ2 where
ψi{t) G W\. Let e and i denote exterior and interior multiplication.
Then

\ ( ^ ^ and

- {In - (s - I - 1))^) , Tφ2 = 0.

Proof. This is a calculation similar to the one giving the formula
for D on the TV-invariants (or see [5]). D

1.3. Nonzero maps of four principal series representations into
^ ( 0 ' 5 ) (X J β 2χ) have been constructed. We now study these maps in a
bit more detail. Let ^ : I{W) -+ ̂ ^s\X^χ) be one such map.

LEMMA. K e r ^ is the sum of all G-submodules ofI{W) not contain-
ing the K type Λ0'5 0 Cχ.

Proof If U c K e r ^ is a G-submodule then Λ0'5 ® Cχ is not con-
tained in U because the image of & contains this Λ>tyρe (and the
AΓ-types in I{W) occur with multiplicity one). On the other hand if
U does not contain this K-type then U c K e r ^ , otherwise there is a
ueU such that &>{u) Φ 0, i.e., (&u)(g) Φ 0 for some g e G. But this
means that ^ ( g " 1 w)(e) 7̂  0> so evaluation at e gives a nonzero map
£/-+Λ°'5(g)Cχ. D

Thus, we may determine the kernels of the Poisson transforms by
determining the composition series of the I(W). This is well known
(see [11], also [1] has a good treatment). The results needed are given
below, first for infinitesimal character p, then an application of the
translation principle gives the results for the correct infinitesimal char-
acter.

The irreducible admissible representations of U(n, 1) with infinites-
imal character p are parametrized by non-negative integers α, b with
0<a + b<nas follows:

For 0 < a + b < n, Jaj> is the Langlands quotient of Ia^ =

Indp(σ ® v) where v = n - a- b and σ e M has highest weight

with b ones and a minus ones.
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For a + b = n, Ja^ is the discrete series representation associated to
the chamber

n n , n

Λ i n Λ n n

--b-2,...,-- + X,--,-

PROPOSITION. The socle filtration of Iaj) is

Ja+l,b

ybr 0 < <z + 6 < n (and for a + b = n - I the bottom term does not
appear).

From § 1.2 it is clear that we are concerned with principal series rep-
resentations with infinitesimal character χ + p. The appropriate form
of the translation principle is given in [10], Theorem B.I, page 496.
So, suppose we have a principal series representation Indp(σ®z/) with
infinitesimal character λ and we want to translate to a representation
with infinitesimal character λ'. We consider λ, λf as elements of some
abstract Cartan subalgebra, λ and λf must lie in the same chamber and
λ—λr must be integral. The translation ψ is accomplished by tensoring
by the finite dimensional G-module with extreme weight μ = λf - λ.
Let μ e ((t Π m) Θ α)* be the Cayley transform of μ.

PROPOSITION (Knapp, Zuckerman [10]).

£ (8) v)) =

where σ1 is the finite dimensional M-module with infinitesimal charac-
ter σ + p(m) + μ|tnm and v' = v + μ\a.

We apply this to translation from p to χ + p. As we will see in
§§3.2 and 4.2 the interesting case is then χ 4- p satisfies the negativity
condition:

(χ + p9β)<0, for/?eΔ(p+).

(Actually, a slightly weaker condition suffices but there are some added
(well understood) complications. This negativity condition for χ =
-ten+\ is / < —Λ, assume this holds.



384 ROGER ZIERAU

LEMMA, (i) For 0 < a + b < n, ψ(Ia,b) — Indp(σ' ® v') where v1

n - 1 - b and σ' has highest weight

> - / - n + l , 2 , . . . , 2 , l , . . . , l , 0 , . . . , 0 , ^ - δ + l ,

for

When b = 0, v1 = -a - I - 1 and σ' has highest weight

α
(ii) For a + b = n, ψ(Ja,b) is the discrete series representation with

infinitesimal character χ + p associated to the same chamber as Ja^.

Proof. This follows from the preceding two propositions by straight-
forward, but tedious, calculations. D

Let Ia9b(x) be ψ{Ia,b) a n ^ Jaj>(x) the irreducible quotient. Then the
h.bix) have the same socle filtrations as the Ia^. The four principal
series representations mapping into the harmonic space are I{W) =
In-sθ(χ), In-s-\ o(x) a n d their duals. The filtrations are:

(i) W\M = wiv{Z) = -(n - (s - I - 1)).
2<s < n: s= I:

0 <
0 ( ^ )

^ Jn-s,l(X)

(iii) Reverse the diagrams for the duals.

LEMMA. Λ0'5 ® C χ occurs as a K-type in Jn-Sio(χ), and occurs in no
other Ja9b(χ).

Proof. This AΓ-type occurs in In_Syo(χ) and In-s-\9o(x) a n ( ^ ̂ n n o

other Ia,b(x) (otherwise there would be more Poisson transforms, see
§1.2). By (i) above, Λ0'5 ® C^ must occur in /Λ-5,oQ() BY (ϋ) ̂  does
not occur in /w_ 5_io(/). O
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COROLLARY. For the four Poisson transforms of §1.2 the kernels are
as follows:

= /Λ-5+i foU) + Jn-sM) + Jn-s+l,l(X),

REMARK. Similar explicit calculations can be carried out for any
homogeneous vector bundle & —• X (no negativity condition neces-
sary). One finds that ^ r ' 5 (X,l?) can have summands with different
infinitesimal characters.

2. Our main concern is the construction of harmonic forms on the
indefinite Kahler symmetric space U(p + l,q)/U(p,q) x 17(1). This
is the non-Riemannian dual X° of hyperbolic space X in the sense
of FΊensted-Jensen (and described below). There is a correspondence
between harmonic forms on X° and harmonic forms on X.

2.1. As in §1, let go = u ( ^ ? 1), ίo = u(n) x u(l)> e t c The Cartan
involution is θ = Ad[ !β _?j ]. Consider the involution

(Ip λ
a = Ad I -/^ I , where p + q = n.

V iy
The two involutions commute so we may decompose go ( a n d fl) i n

several ways.

0O = t0 + p0 ? ±1 eigenspaces of θ.

9o = ΐ)o + qo> ±1 eigenspaces of σ.

g0 = ϊ)o n to + to n qo + ô n po + Po n qo

Define:

So = f)o n e0 + /to n qo + % n p0 + Po n qo.

to = ho n 60 + /t0 n q0.

ί)o = ho n to + iho n po
G° is defined to be the connected subgroup of GQ = GL(n + 1, C) with
Lie algebra g§. Thus G° = U(p + l,q), defined by the hermitian form
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Similarly, #° = (G°)θ ~ U(p,q)xU(l)9H° = (G°)σ = U(p+l)xU(q),
K = GΘ = U{n) x U{\) and U = Gσ = U(p, 1) x U(q). Note that K°
is noncompact, H° is a maximal compact subgroup of G° and σ is a
Cartan involution of G°.

DEFINITION. The non-Riemannian dual of X = G/A: is X° =

There is a G°-invariant complex structure on X° so that the holo-
moφhic and antiholomorphic tangent spaces are p§. = p±.

2.2. Here we extend the duality of Flensted-Jensen ([2]),

to a vector bundle setting. So, let (π,E) be an irreducible finite di-
mensional representation of K with highest weight χ and let I? —> X
be the corresponding homogeneous holomorphic vector bundle. Since
K and K° have the same complexifications there is an irreducible fi-
nite dimensional representation (π°9E) of K° with highest weight χ.
There is a one-to-one correspondence between the finite dimensional
irreducible representations of K and those of K° (for more general
G, //, K... integrality conditions must be considered and this is not
quite the case). The same holds for H and H°.

PROPOSITION. There is a left % (^-isomorphism

preserving the action by the invariant differential operators.

Proof. We state this a little differently as follows. Since (Γ±X)* ~ g7

and ( Γ ^ 0 ) * ~ i"0 for E ~ ρ τ , we may absorb the exterior algebra
terms in E (i.e., replace E by Λr'5 ® E) and consider sections instead
of forms. Also, if (δ, F) is an irreducible finite dimensional //-module
we need only show an isomorphism

where the subscript means the H (H°) finite vectors of type δ (δ°).
Thus we show

where the action of// (resp. K) on C°°(G) is by left (respectively right)
translation and similarly for the actions of//0 and K° on C°°(G°).
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The decomposition G = exp(f)o Π Po)eχP(Po n qo)^ (see [13],
Theorem 5, page 31) will be used. For φ in the right hand side of (*),
define φ° in the left hand side by

/(expXexp Yk) = (δ(expX)'1 ® π(k)-ι)φ(exp Y)

where X e ίjo n po, Y € po Π qo, k e K and note that exp(p0 Π qo) c
G Π G°. It is easy to see that φ —• φ° is a linear isomorphism. The
proof that it is a 2 (̂g) isomorphism (on the sum over δ, δ° of each
side of (*)) is exactly as in the case of functions (E = C), see [2] or
[16] Theorem 8.2.1.

As for the action of any invariant differential operator, note that
an invariant differential operator %\ —• J% may be identified with an
element of {^(β) ® H o m c ^ i , ^ ) } ^ where the action of K is by Ad
on^(g) and A: A = π2(k)Ά'πx(k-χ) ϊor A eHomc{Eι,E2). An ele-
ment D = Σui®Ai acts on {C°°(G) ®E}K by Z>(^) = ΣiAi{r{Ui)<p)
where r(M/) is the right action on C°°(G). An invariant differen-
tial operator on X° is given by the same formula (and the same D,
note that the ^-invariants coincide with the ^-invariants), call it the
dual operator. We check that Dφ° = (Dφ)°. It is enough to check
(Dφ°)(y) = (Dφ)°(y) for y = exp Y e exp(p0 Π q0), by the invariance
o f D. W e s h o w ( ( r ( Z ) ® A)φ°)(y) = ((r(Z) ® A ) φ ) ° ( y ) f o r Z E J ,
4̂ G Homc(£i,£2) Since functions corresponding by ( )° agree on

exp(po n qo) we may drop the 0 on the right hand side. Also, A plays
no role, so we show

(**) (r(Z)φ°)(y) = (r(Z)φ)(y), Ze&ye exp(p0 Π q0).

There is a decomposition g = 6 + p Π q + Ad(y~ι)fj Π p for any

y e exp(p0 n qo) (see [16], page 153). We check (**) separately for Z

in each summand.

Z G ϊ,{r{Z)9°){y) = ^φo(yexpsZ)\s=o

{ Z ) \ s = 0 = (r{Z)φ)(y).

Zepnq,(r(Z)<p°)(y) = ^

=0 = (r(Z)φ)(y)
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Z=Ad(y-χZ',Z'et)eρ,

(r(Z)φ°)(y) = 4~9°

^ f ) ) \ s = 0 = (r(Z)φ)(y).

The important cases of this are d, 5* and D = dd* + d*d. <9 is
expressed by choosing a basis {Xj} of p+ so that (Xj,Ύk) = δjk, then

a = ]£r(X/) ® *(-*))• τ h e d u a l operator 9° on X° is given by the
same formula, we check that this is the ~d operator on X°.

The 5-operator on X° is given by choosing bases {Xj}j=\,...,p of ρ+ Π
f)° and {Yk}k=ι_q of p+nq° so that (JΓy,^) = ~*jk and (Y),'^) = δjk

(—is conjugation w.r.t. the real form G°). Then

9χo = - E w ® ^ ( ^ ) + Σ r(y*) ® ^^)
1 1

This is given by the same formula as fl» given in the preceding para-
graph because there the conjugation is w.r.t. G and this differs from
the conjugation for G° only by a minus sign on the Xj e p + Π f)°. A
similar calculation for d* gives the following lemma.

LEMMA. The operators on X° dual to ~d, ~d* and Ώ on X are the
d",ZΓ -operators and the Laplacian on X°.

COROLLARY. The proposition gives a one-to-one correspondence be-
tween the H-finite vectors in the space of £-valued harmonic forms on
X and the H° finite vectors in the space of &°-valued harmonic forms
onX°.

3. By § 1 we have nonzero maps of certain principal series repre-
sentations into ^(°>s\X,Jϊ?χ). Since our goal is to determine i/°-finite
o2^°-valued harmonic forms on X°, we must produce /f-finite vectors
in the appropriate principal series representations. These will be dis-
tributions supported in closed /f-orbits in G/P.
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3.1. As in §1 P = MAN is a minimal parabolic subgroup of G with

α 0 = R Z ,

ΓO 1

is the fixed points of

1 0

σ = Ad -I.
1

By the work of Matsuki ([12]) there are two //-orbits in G/P. One
can see this directly as follows.

Give C M + 1 the hermitian form ~ Σ " = i \zί\2 + \zn+ι\2- G/K can be
identified with {positive lines in C" + 1 } ~ open unit ball in C". G/P
can be identified with {null lines in C" + 1 } ~ S 2 " " 1 (the boundary of
the domain G/K). There are two H-orbits in {null lines} (p, q > 1)
by Witt's theorems. They are:

Γ l
0

and

= H

= H

is closed and ff1 is open.
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It is very important for the upcoming calculations that for the P
that we have chosen H n P is a minimal parabolic in H and H =
HnKA HπN is the Iwasawa decomposition of //. Thus, for the
closed orbit we have (9 « H/H Π P « H n Ay 7/ Π M.

3.2. Certain //-finite vectors in /(W) are written down explicitly
when W\sWχ® ev or W2 ® e" as in §1.2. These will be distributions
given in terms of the invariant measure on the closed orbit and certain
matrix coefficients. This is an extension of the construction in [2].

Let (δ, F) be a finite dimensional irreducible //-module. Let W be
one of the four possible P-modules from § 1. Suppose that

{F* g> W ® C - , + 2 Λ }
HnP ^ HomHnP(F, W ® C

contains a nonzero element t, (p^ is half the sum of the positive α
roots in ()). The corresponding matrix coefficients are h —• t(δ(h~ι)v),
veF,heH.

DEFINITION. Tυ(φ) = JHnK(φ(l),t(δ(l-ι)v))dί, φ e C™{K/M, W*)
W*}M.

PROPOSITION. TV is H-finite of type (δ,H) in I(W).

Proof. We will use the following facts.

(i) C°°(K/M, W*) - C°°(G/P,W*) as ϋΓ-modules, the identifi-
cation is Φ(g) = e^'PfH^φ(κ(g)). The Iwasawa decomposition
KAN determines K and H: g e κ(g)eH^N. Thus, for h e H,
{h~x p)(/) = e^~P^hl^φ{κ(hl)), any /.

(ii) fκf(k)dk = fκf(κ(g-ιk))e-<2P>H(*-lk»dk for any # G G,
this is proved in [7], page 197.

(iii) LetleHnK,heH,l = hh~H = hκ{h-χl)eH^h~^n implies
κ{hκ{h~xl)) = I and H{hκ(h~ιl)) = -//(Λ"1/).

(iv) Let / G // n K, h e //, υ e F.

t{δ{Γι)δ{h)v) = t{δ(h-χl)-χv) = t(δ(κ{h-χl)eH{h~Ί))-χ{v))
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Now we prove the proposition. Let heH.

(h • Tυ)(φ) = Tυ{h~x • φ)

e^-p'H{hl)){φ{κ{hl)),t{δ{l-χ)v))dl,
HΠK

HΠK

M(hΊ)) dlf b y ( i i )_

= / e-{v-p+lpl»H(h~H)){φ{l),t(δ{κ{h-χl))-λv))dl, by (iii).

(φ(l),t(δ(Γι)δ(h)v))dl
HΠK

Therefore υ —• Tv is an jFΓ-homomoφhism of F into I(W). D

REMARK. The motivation for the definition is as follows. If M is
a manifold, N c M a closed submanifold, "V —• Λf a vector bundle
and *V -± N the pullback to TV, then the space of 2^-valued distri-
butions on Af is ^ ' ( M , ^ ) = C0°°(M,^* ® Λt0PΓ*Af);. This con-
tains 3f'{N^ ® Aι°v(TM/TN)). Therefore the distributions on M
contain the sections C°°{N,T ® Λtop(ΓΛf/ΓiV)) (and does not con-
tain C°°(7V,^)). In our situation we have <f = /////̂  n P c G/P,

Λ top Γ * = C 2 ^ ? At0»(TM/TN) = C _ 2 / ? + 2 A 5 ^ = H^ΘC^ so we see that

C°°(H/Hn P, WxC_p+2p,) C ^ ( G / P , FF ® Cp) C

(and the shift by -p + 2p^ is explained). Finally,

C°° (///// ΠP,W® C-, + 2 Λ -̂finite ^

where the sum is over all finite dimensional irreducible //-modules.
Now we must determine which (<5, F) satisfy {Z7*® W/®C_p+2/?1)

^ 0, note that this is equivalent to

HomMAnH(F/(n n W ,̂ ^ ® C ^ p J 7̂  0.

Recall from § 1 that there are four possibilities for W. We must de-
compose each W ® C_p +2^ as Λf̂ 4 n //-module.

1. W = Wx ®en-(s~ι-χ\ W{\MnH decomposes into MnH
modules with lowest weights
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with s - 1 ones appearing (the line separates the pth and p + lth slots).
After applying the Cayley transform, W®C-p+2P^ \A h a s the following
weight on the compact Cartan subalgebra:

(2p-{s-l-\) 2p-(s-l-l)
V 2 >u,...u, 2

Therefore (p-s+l, 0 . . . 0 , 1 , . . . 110?... 0 , 1 , . . . 1, - p - / + l ) is the lowest
weight of an //-module with {F* ®W<& C-p+2ph}

HnP Φ 0 provided
this weight is antidominant for H. This is the case as follows: For
s > P+ 1, (p -s + l , 0 , . . . 0 , l , . . . l | 0 , . . . 0 , l , . . . l , -/? - / + 1) when
/ < -p (or / < -p + 1 in case there are no ones in the first p places)
and for s = p, ( 1 , 1 , . . . l | 0 , . . . 0 , - p - / + 1) when / < -p.

Case 2. W = Wx ® e-(n-(s-ι-i))m j ^ e lowest weights of possi-
ble F are: For s < n - p, (-n +p - / ,0, . . .0 ,1, . . . l | 0 , . . .0 ,1, . . . 1,
n - p - s + 1) (with s - 1 ones) when I > -n+ p (or / > -n + p + 1
in case there are no zeros in the first p places) and for s = n - p - 1,
(-Λ + p - /, 0,... 0| 1,... 1,0) when l>-n+p.

Case 3. W = W2® en~^s~ι\ The lowest weights of possible F are:
For s > /?, (/? - s, 0,... 0,1, . . . l |0,. . . 0,1, . . . 1, -/?-/) (with s ones)
/ < -p - 1 (or / < -/? in case there are no ones in the first p places)
and for s=p- 1, ( 1 , . . . l | 0 , . . . 0 , - p - / ) when / < -p - 1.

Case 4. W — W2 ® ̂ -(^-ί^-O). The lowest weights of possible Z7

are: For s < n - p - 1, (-/ - n + p , 0 , . . . 0 , 1 , . . . l | 0 , . . .0 ,1, . . . 1,
n - p - s) (with s ones) when I > -n + p (or I > -n + p - 1 in
case there are no zeros in the first p places) and for s — n — p,
(-/ - n + p, 0,... 0| 1,... 1,0) when l>-n+p.

3.3. The following theorem gives information on the possible //-
types in I{W). Let W be one of the four cases listed at the end of
§3.2 and assume that //-types listed there occur (i.e., the conditions
on s and / hold).

THEOREM 3.3. Let T be an H-finite distribution in I{W) supported
in the closed orbit and suppose that T is a lowest weight vector. Let
Λ G (t Π m)* Θ α* be this lowest weight. Then Λ = δv - Σ nββ> where
the sum is over all positive ( t Π m ) θ a-roots in q with β\a Φ 0, nβ > 0
and δv is one of the lowest weights listed in the four cases o/§3.2.

Proof. Let δv be one of the lowest weights listed in §3.2, (δ,F)
the corresponding finite dimensional irreducible //-module and let
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{Tv}υef be the corresponding //-finite vectors in I{W) of type δ. For
<peC°°(K/M,W*)

v(9)= ί (φ(l),t(δ(Γι)v))dl
JHΠK

= /
JNNΠH JMΠH

= L (φ(κ(n)),t(δ(κ(n))-ιυ))e-{2pt»H{Ti)) dn.

The second equality is an integration formula (see [7], page 198) and
the last equality is because m e M n H. Now take v to be a lowest
weight vector V- w. r. t. NnH for (δ,F). Then

t(v-) =

Hence,
£ φ ( ( ) ) 9 ( ) ) dn.
NΠH

There is an inclusion ~N &Ή - eP ^ G/P « ϋT/M as an open and
dense submanifold, and NnH is open and dense in the closed orbit.
We may restrict distributions T on K/M to distributions V on N.
Under the identification of C°°(K/M, W*) ~ C°°(G/P, W*) we have

Therefore,

= L (Φ(n),t(v-))dn.
JNΠH

This formula defines an Λ̂  Π /^-invariant distribution on N supported
in ΊfnH. Since C°°(ΛΓ, W_*) c± C°°(iV)_® W* we conclude that all W*-
valued distributions on iV which are Λ̂  n //-invariant and supported
in NnH are normal derivatives of some Vυ (v- e F for some (<5,F)
listed in §3.2).

Let T be as in the theorem and V its restriction to N. V is NnH
invariant (because T is a lowest weight vector) and has support in
NnH. We conclude that V = u 7^ for some v_ and some u e
^(nΠq). Here w is acting by left invariant differential operator on Λf
and nnq is the direction in N normal to NnH. We may also assume
V- is a lowest weight vector for ( t n t n ) θ α (since the same holds for
T by assumption).

Let Y e (t n m) 0 a,y = exp Y and let Φ e Cf?(N) ® PΓ*.
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Case (i), Yea. Note that (y T)'(Φ) = e"-P(y)T'(ΦoAd(y)) because
{y-χ Φ)(7ϊ) = Φ(yn) = eu~P{y)Φ{Ad{y)fί).

e\y)T\Φ) = (>; Γ)'(Φ) = ev-P(y)T\Φo Ad(y))

/ ((Ad(y)(iι) Φ)(Ad(y)n), ί(v-)
JNΠH

ί (
JNΠH

Case (ii), Y e t n m. Let σ denote the representation of M on W.
As above we have ( y 1 Φ)(7ϊ) = σ(y)~xΦ(Ad(y)n). Therefore,

eA(y)T'(Φ) = / {(Ad(y)u Φ)(Ad(y)7ϊ), eτ(y)ί(t;-)> dn
JNΠH

= [_ {{Ad{y)u.φ){n)Ayv-))dή
JNH
[_
NΠH

Since u € 2^(ΰ Π q)? w is a sum of terms X\ X\ with j?7 as in

the theorem. Thus for y e (tΠm) Θ α, Ad(y)w = e~^nββ{y)u and we
conclude A = δu -Σriββ. Π

REMARK. The proof gives a bound on the number of times an 77-
type can occur in I[W) with support in the closed orbit. This bound is
the number of ways to write Λ as δv - Σ riββ as in the theorem. To see
this note that if 5, T are as in the theorem and S' = u- Vv_ = V then
(S - T)' = 0 on an open subset of the closed orbit. Since the support
of an /f-finite distribution is a union of //-orbits, supp(*S - T) = 0
(since contained in 0 - ~N n H and *f is minimal).

REMARK. Theorem 3.3 holds for general semisimple symmetric
spaces and any W (under conditions similar to those listed in cases
1-4 of §3.2), this is given in the appendix. In the case of W\M ~ C
this was done by Flensted-Jensen and Okamoto ([4]).

3.4. An explicit integral formula for //-finite harmonic forms on
X = G/K is given here. First we will explicitly write down the Poisson
transform discussed in §1. Then we apply it to the //-finite distribu-
tions constructed in §3.2.

Consider the general situation of § 1.1. The Frόbenius reciprocity
stated there is

HomP(W ® CP9 V) ~ Hom σ (/(»0, V)
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and we assume that V is an admissible subrepresentation of
C°°(G/K,g). Given a G-homomorphism I{W) -» V we obtain a
P-homomorphism by restricting to W ®CP c I{W). It takes a bit
of care to go the other way. Suppose we are given a nonzero P-
homomorphism W ® Cp —• V. If this map is followed by evaluation
at e we get an M-homomorphism W\M —• E\M. Let us make a few as-
sumptions, (i) Assume that this map W\M —• J?|JI/ is an isomorphism
(there is no loss of generality), (ii) A acts on W by ev for some z/ e α*,
and (ii) TV acts trivially on W. Let {WJ} be a basis of E{W) and {ur*}
the dual basis of E*{W*). It makes sense to define

j

for Γ G /(WΓ) = jtf{K/M, W*)'9 xeG.

PROPOSITION. & is a G-homomorphism of I{W) into V and the
restriction of 3? to W is the original map W ® Cp —• V.

Proof (sketch). One must show that

e-{v+pMχ-χk))π(κ(χ-\ky\}w* e ^(κ/M, W*)

and that &>T eV c C°°{G/K,^) so that the definition makes sense.
Also one must show that & is a G-homomorphism. These are rou-
tine (but tedious) calculations using simple properties of the Iwasawa
decomposition. D

REMARK. & is called the Poisson transform of the P-homomorphism
W -+ V. In case E (and W\M) are trivial this reduces to the usual
Poisson transform

= f
JK
f
K

see [6].

REMARK. In case T is given by a function / e G°°(K/M, W) we get

K

We now apply & to the //-finite distributions constructed in §3.2
to obtain explicit formulas for //-finite harmonic forms on G/K. So
let Tv e I[W) belong to the //-type (δ,F). Then

HΠK

This will be used in §4 to determine when these harmonic forms are

L2.
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4. We now discuss the square integrability of the harmonic forms
on X° which have been constructed above. A notion of L2 is required,
this comes from [15] (§7) and is described below.

4.1. The trace form defines a hermitian form (X, Y) on p°, thus
giving a G^-invariant indefinite hermitian metric on X°. A noninvari-
ant positive definite hermitian metric on X° is defined as follows. On
Teκo(X0) ~ ρ° it is given by -{X, oΎ). On other tangent spaces we de-
fine it by using the decomposition G° = H°BK°, B = exp b, b c PoΠqo
maximal abelian. An arbitrary point of X° is x = h°bK° and tangent
vectors at x are of the form υ = τ^ oτ^(JΓ), for X e ρ° (τ^ is left trans-
lation by g e G°). Set ||z;||2 = (X,σY). This is well defined because
(X,σΎ) isH°nK° = Hn/^-invariant.

Consider A{j"s\X^2?

r). Let # be the Hodge-Kodaira orthocomple-
mentation operator with respect to the noninvariant positive definite
metric on X°. Then

(ω, ω') = / ω Λ #ω ;

Jx°
defines a hermitian form on the space of L2 forms where we define a
form ω to be L2 if \\o^\\2

Li = (ω, ω) < oo.

DEFINITION.

= {ωe Ate\X°9&χ)\Πω = 0 and | |ω| | i 2 < oo},

we call this the L2 harmonic space.

4.2. Let ω be the harmonic form on X° ~ U(p+l,q)/U(p,q)xU(l)
corresponding to the harmonic form 3°TV on X by the duality of §2.2.

PROPOSITION. Corresponding to the four cases in §3.2 we have: \\ω\\Ll

< ex) as follows;
Case 1. / < —n + s - 1 (and I < -p, for Tv to exist).
Case 2. / > - n + s - 1 (and l>-n+ /?).

3. I <-n + s (and I <-p- 1).
4. / > -H + s (and I > -n +p).

Proof. Let dx be the invariant measure on X°. Let || \\x be the
positive definite form on AT*(X°) coming from the positive definite
form on TX(X°). Note that || H ^ = || || = positive definite form on
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Λp* (coming from (X, σΎ)), h°y e H° exp b.

I M U 2 = / ω(x) Λ#ω(x) = f \\ω(x)\\2dx
Jχ° Jχo

= ί I \\ω(h0y)\\2

0yδ(y)dydh0

JH°Jb+

(by an integration formula in [7], page 186)

\\ω(h°y)\\2δ(y)dydh0

H°Jb+
0 r

\\ωi{y)\\2δ{y)dy

\\&Tv,{y)\\2δ{y)dy

<C ί \ψχ{y)\2δ{y)dy.
J b +

The first inequality is because

where (A0)"1 co = Y^j=\Ci(h0)ωi [d = dim/7°-type containing ω,
and ωz are a basis of this /f°-type). The vt e F are chosen so that
ωz =&>(TVi). The last inequality is as follows.

\\&Tυ(y)\\ =

<
JHΠK

ί e-(v+p,H(i-ιy)) {

JHΠK
< const = const

'HΠK

where ψχ is the function constructed by Flensted-Jensen (see [16] page
125) with λ = -v.

r

\ψλ(y)\2δ(y)dy < °°> w h e n <^ α ) < o,vα G

(see [16] page 157). Checking this condition for the four possible v
parameters finishes the proof. D

Appendix. A version of Theorem 3.3 for general semisimple sym-
metric spaces is stated and proved. We let G/H be a semisimple sym-
metric space, i.e., G is a semisimple Lie group and H is the fixed point
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set of an involution σ of G. The Lie algebra go of G decomposes as
l)o + 0o> the ±1 eigenspaces of da. For a minimal parabolic subgroup
P = MAN, the action of H on G/P has finitely many orbits, see [12].
Fix a closed orbit 0. Suppose P may be chosen so that (9 = H eP
and P has the property that HπP is a minimal parabolic subgroup of
H and A ^ n i / ^ n Z / N n T / i s a n Iwasawa decomposition of H.

Fix a representation FT of P so that N acts trivially. Consider the
set {(δi,Fi)} c H of irreducible finite dimensional representations of
//forwhich {F*®W®C.p+2pί)}

HnP = HomHnP(Fh W®C-p+2PβenHk) ™
nonzero. For each t e HomHnP(Fi, W ® C-^+2^) and for each v e /*/
define a ^-valued distribution Tv on i£/Af as in §3.2.

PROPOSITION. Tυ is H-finite in I{W) of type (δi9Fi).

The proof is exactly as in §3.2.
Let W\HnP = W\ Θ Θ Wk and consider the following condition:
(*) For each Wt there is a (<*,-, F() such that {F* ®Wi® C-p+2pt) }HnP

THEOREM. Suppose (*) holds. Let T be an H-finite distribution in
l{W)y assume T is a lowest weight vector. Assume T is supported in
0. Then the weight ofT isΛ/ -Y^n^β whereλι is the lowest weight of
some δ[, and the sum is over all positive ((trim) Θ α) n f) roots in g with

φθ,nβ> 0.

The proof is exactly as in §3.3. Note that cases 1-4 at the end
of §3.2 determine exactly when condition (*) holds for the particular
G/H and W under consideration there.
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