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WEIGHTS INDUCED BY HOMOGENEOUS
POLYNOMIALS

Boo RIM CHOE

Let B be the unit ball and S the unit sphere in Cn (n > 2). Let σ
be the unique normalized rotation-invariant Borel measure on S and
m the normalized area measure on € .

We first prove that if Λ is a holomorphic homogeneous polynomial
on C" normalized so that Λ maps B onto the unit disk U in C and
if μ = σ^Λls)" 1 ], then μ < m and the Radon-Nikodym derivative
dμ/dm is radial and positive on U. Then we obtain the asymptotic
behavior of dμ/dm for a certain, but not small, class of functions Λ.
These results generalize two recent special cases of P. Ahern and P.
Russo. As an immediate consequence we enlarge the class of functions
for which Ahern-Rudin's Paley-type gap theorems hold.

1. Introduction. Let n be a positive integer. Write B = Bn for the
unit ball in Cn and let S = Sn = dBn. When n = 1, we use the notation
U and T in place of B\ and S\, respectively. We shall let σ = σn denote
the unique normalized rotation-invariant Borel measure on S and m
the normalized area measure on C. The symbol Pn stands for the
class of holomorphic homogeneous polynomials Λ on Cn normalized
so that A(B) = U. The maximum modulus set Λ" 1 (T) n S of Λ e Pn

is denoted by MaxΛ. It is assumed n > 2 in the rest of the paper
unless otherwise specified.

To begin with, let us look at some special cases which motivated
the main results of this paper. We have the following "change-of-
variables" formula for Λ e Pn of degree 1 [Ru, Section 1.4]:

(1) [ ψoA*dσ = (n-l) ί ψ(λ)(l - \λ\2)n~2dm(λ).
Js Ju

Here Λ* = A|^ and ψ denotes an arbitrary nonnegative Borel function
on U. The similar integral formula for Λ(z) = z\ Λ h z\ has been
recently proved by P. Russo [Rus]:

(2) f ψoA*dσ = (n-l)/2 [ ψ(λ)(l - \λ\2γn~^2 dm(λ).
Js Ju

Also, P. Ahern [A] has shown that if Λ(z) = nnl2z\ zΛ, then

(3) / ψ o A* da = ί ψ(λ)w(λ) drn(λ)
Js Ju
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where w is a weight such that

(4) 0 < lim w(r)/(l - r2γn~3^2 < oc.

Here and in what follows, a weight means a positive [m] a.e., radial
integrable Borel function on U.

Formula (1) is an immediate consequence of Formula 1.4.4 in [Ru].
In [A] and [Rus], while (2) and (3) are the important first steps to the
main pullback results (see 3.4 below), their proofs strongly depend on
the precise formula of Λ. In §2 we prove that every AePn induces a
unique (up to a set of [m] measure 0) weight w so that (3) holds. Note
that the exponents in (2) and (4) are the same, while they are different
from that in (1). WhyΊ One possible way to explain this might be as
follows. It is easily verified that if Λ(z) = z\ Λ V z2, then MaxΛ is
topologically equivalent to Sn~ι x T and if Λ(z) = nnl2zx -- zn, then
MaxΛ is topologically equivalent to Tn. Also it is clear that if Λ e Pn

is of degree 1, then MaxΛ = Γ, topologically. Hence a close look
at the exponents in (1), (2) and (4) leads to the interesting fact that
all these exponents can be written as a single expression S(A)/2 - 1.
The notation δ(A) means the topological co-dimension of MaxΛ in
S, i.e., δ(A) = (In — 1) — dim(MaxΛ) where dim(MaxΛ) denotes the
topological dimension of MaxΛ. It is known that δ(A) > n - 1 (see
[Ru, Section 11.4]). Although one cannot expect precise formulas of
weights as in (1) and (2) in general, it is a pleasant fact that <5(Λ)/2-1
is the right exponent for a certain class, say Ωn, of functions Λ € Pn.
More precisely, in §3 it is shown that if w is the weight induced by
Λ € Ωw in the sense of (3), then

(*) W(r) = c(Λ)(l - r

2)δ^2-ι[l + <9(\Λ - r2)] a s r | l .

Even when n = 1, <J(Λ)/2 - 1 is the right exponent at least in the
weak sense. Of course δ(A) = 0 for every Λ e P\ and it is not hard to
verify that

α|0

in the weak*-topology of the dual of C(Π). Hence

f
= lima !ψ{λ){\ -\λ\2)a-χ dm{λ)

a|0 Ju
for every ψ e C(U).

We do not know whether (*) holds for every Λ e Pn.
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2. Existence. In this section we shall prove that to each Λ e Pn

corresponds a unique weight as mentioned above. This will be derived
from a more general fact Theorem 2.4 below. We shall let (, ) denote
the complex inner product on Cn and \z\2 = (z, z) for z e Cn.

2.1. Jacobian and co-area formula. Consider a continuously differ-
entiable function φ: S —• C. Fix ξ e S and Tξ(S) be the real tangent
space to S at ξ. We regard Tξ(S) as a (In - 1)-dimensional real space
sitting in Cn. Also C is regarded as a 2-dimensional real space. There-
fore, for z e C", z e Tξ(S) if and only if Re(£, z) = 0. Let D be the
differential of φ at ξ defined by

d
D{X) = ftφ(γ(t))

t=o
for XeTξ(S)

where γ is any curve in S such that y(0) = ξ and /(0) = X. If
ranki) < 1, then ξ is called a critical point of φ. The Jacobian of φ at
ξ is defined by

Jφ(ξ) = y/detDoD*.

By the Binet-Cauchy formula [G], one computes Jφ(ξ) as the square
root of the sum of squares of the 2 by 2 subdeterminants of the matrix
realization of D with respect to orthonormal bases of Tξ(S) and C. It
follows that ξ is a critical point of φ if and only if Jφ(ξ) = 0.

Federer's co-area formula for manifolds [Fl, Theorem 3.1] will be
the key to proving the existence of weights. A simple version, which
is enough for our purpose, is as follows:

/ gJφdσ = c(n) / / gdh2n-?>dm{λ)
Js JcJφ-'iλ)

for every nonnegative Borel function g on S. Here /?2«-3 denotes the
(In - 3)-dimensional Hausdorff measure on S.

2.2. LEMMA. Let φ e C2n~2(S). Then

σ[φ~x] < m if and only if Jφ> 0 [σ] a.e.

Proof. First assume σ[φ~ι] < m. It suffices to show m[φ(K)] = 0
where K is the set of all critical points of φ. But this follows directly
from Sard's theorem (see [F2, p. 310]) because φ e C2n-2(S).
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Conversely, assume Jφ>0 [σ] a.e. By the co-area formula we have

/ Jφdσ = c(n) f hln-Aφ-\λ)]dm{λ)
Jφ~*(E) JE

for every Borel set E in C. In particular, if m(E) = 0, then σ[φ~ι(E)]
= 0. In other words, σ[φ~ι] < m. The proof is complete. D

The following lemma was proved for Λ(z) = z\ -\ h z2 in [Rus].
The proof given below is a modification of P. Russo's proof found
there.

2.3. LEMMA. Suppose φ is a function on S which extends to a func-
tion holomorphic on some open set containing B. Then

(1) Jφ = \Vφ\y/\Vφ\2-\Rφ\2

where Vφ is the complex gradient ofφ and Rφ is the radial derivative
ofφ,i.e.,Rφ(ξ) =

Proof Fix ξ e S. Let D be the differential of φ at ξ and Tξ(S)
the real tangent space to S at ξ. We may regard φ as a function
holomorphic on some open set containing B. Hence by the chain rule

(2) D(W) = (W,Vφ(ξ))

for every W e Tζ(S). Define X = Vφ{ξ) - Rφ(ξ)ξ. Then (2) can be
written

(3) D{W) = (W,X) + iRφ(ξ)Rc(WJζ)

because Rt{W,ξ) = 0 for W e Tξ(S). It is easily seen that iξ,
X and iX are orthogonal vectors in Tξ(S). Also it is easy to see
\X\2 = \Vφ(ξ)\2 - \Rφ(ξ)\2 because Rφ(ξ) = (Vφ(ξ),ξ). Using (3),
we easily obtain D(iξ) = iRφ(ξ)9 D(X) = \X\2 and D(iX) = i\X\2. In
addition, if W e Tξ(S) is orthogonal to iξ, X and iX, then D{W) = 0.
Now assume that X Φ 0, extend {iξ,X/\X\, iX/\X\} to an ordered or-
thonormal basis for Tξ(S) and regard {1, /} as an ordered orthonormal
basis for C. With respect to these orthonormal bases, D can therefore
be realized as a 2 by In - 1 matrix

'-lm Rφ(ξ) \X\ 0 O
ReRφ(ξ) 0 \X\ O O^

It is easily verified that this matrix realization of D is still valid when
X = 0. A little computation now leads to (1). D
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2.4. THEOREM. Let φ e C2n~2(S) and μ = σ[φ~x\ Suppose that φ
is nonconstant and extends to a function holomorphic on B. Then

(l)μ<m,
(2) dμ/dm > 0 [m] a.e. on φ(S). More explicitly,

[m]a.e.λec.

Proof. The proof of Theorem 1 in [S] shows that the set of critical
points of φ has [σ] measure 0. In other words, Jφ > 0 [σ] a.e. Thus by
Lemma 2.2, we obtain (1). Since Jφ is also continuous, Xφ-\(E)/Jφ is
a Borel function on S whenever E is a Borel set in C. Here Xφ-\(E) de-
notes the characteristic function of φ~x(E). Apply the co-area formula
to this function and obtain

μ(E) = c(n)[ f
JEJφ-

From this it follows that

(3)
dm Jφ~ι(λ)

Now suppose that λ G φ(S) is a regular value. This means that λ is
not in the image of critical points under φ. Since λ is a regular value,
φ~ι(λ) is a [In - 3)-manifold and thus the right side of (3) is strictly
positive. Since φ e C2"~2(iS), Sard's theorem says that the set of
regular values of φ is of full [m] measure in φ(S). This proves (2). D

We now come to the main result of this section.

2.5. THEOREM. Let A e Pn. Then there exists a unique [up to a set
of[m] measure 0) weight w on U such that

(1) ψoA*dσ= ψwdm
Js Ju

for every nonnegative Borel function ψ on U.

Note. Since σ(MaxΛ) = 0, ψ o Λ* is a Borel function defined [σ]
a.e. on S. This w will be called the weight induced by A.

Proof Let μ = σ[{A*)~1]. By Theorem 2.4 μ < m. Put w =
dμ/dm. Since A(S) = A(B), w > 0 [m] a.e. on U by Theorem 2.4.
Recall that we have

w(λ) = c(n)f ^ p l forλeU
ΛΛ )-W JA*
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after redefining υ ona set of [m] measure 0. Since Λ e Pn, |VΛ| is Γ-
invariant, i.e., |VΛ(< )̂| = \VA(ξeiθ)\ for every ξ e S and real number
θ. Since RA = (degΛ)Λ, /Λ* is Γ-invariant by Lemma 2.3. It follows
from homogeneity that w is radial, because /̂ 2«-3 is also Γ-invariant.
Thus w is a weight on U. Now, by definition of//, (1) holds for every
characteristic function ψ of a Borel set in £/. The general case follows
from a standard approximation. The proof is complete. D

2.6. REMARK Let w be the weight induced by Λ € Pn. For every
nonnegative Borel function ψ on [0,1) we have

[ ψo |Λ*|dσ = 2 f rψ(r)w(r)dr.
Js Jo

Thus w is completely determined by such ψ. This fact will be the
basis for the asymptotic estimate of w near r = 1 in §3.

3. Estimation. We shall estimate the asymptotic behavior of the
weight induced by a function belonging to a subclass of Pn.

We need some more notation and terminology. Suppose that φ\
and φ2 are C-valued functions on D\ c C^ and D2 cCι, respectively.
We shall let φ\ ® φi and φ\ ® Φ2 denote the functions defined by
(Φ\ ® φi)(z, w) = φχ (z)φ2(w) and (φ{ ® φ2)(z9 w) = 0!(z) + φ2(w) for
(z,w) E ΰ i X ^ c C ^ x C ^ C^+/. For simplicity A e Pn is called
£0θflί if MaxΛ is a disjoint union of finitely many compact manifolds
in S and if the weight induced by Λ satisfies (*). Also every Ae P\ is
called good.

3.1. THEOREM. Suppose φx e Pk (k > 1) and φ2 e P/ (/ > 1). Let
A e Pn (n = k +1) be one of the following-.

(a) A = bφx® φ2, b>0,
(b) Λ = fl^θ 02, degΛ > 3, 0 < a < 1,
(c) Λ = aλ2 Θ 02> degΛ = 2, 0 < a < 1.

In case (c), A: = 1 awd? / = /* — 1. T/*^ α«rf 0 2 #re <?^^ ίΛ̂ Λ w w Λ.

3.2. COROLLARY. Suppose that A e Pn is a monomial or Λ(z) =
a\zd

χΛ h β«zf. 7% «̂ Λ is good. D

3.3. Class Ωn. It is easily seen from Remark 2.6 that if Λ is good,
then so is any power of Λ. Also, if Λ is good, then so is Λ o ^ for every
unitary transformation ^ on Cn because Λ and Λ o ^ induce exactly
the same weight and Max(Λ o &) = ^*(MaxΛ). Now choose any
function as in Corollary 3.2, but of fewer variables, apply Theorem
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3.1, (a) through (c), repeatedly to construct a new function in more
variables, form any power of this new function, and compose it with
any unitary transformation. Let Ωn be the subclass of Pn obtained by
any combination of this process. Then every Λ e Ωn is good. The class
Ωn is not small in the sense that it contains most of those functions
which may occur in the actual examples or applications.

Before we prove Theorem 3.1, let us look at some consequence*

3.4. Pullback theorem. Let 0 < p < oo. The Hardy space HP{B)
consists of functions / holomorphic on B such that

= sup ί \f{rξ)ψ dσ{ξ)
0<r<l Js

For a > - 1 , the weighted Bergman space Aζ(U) consists of functions
g holomorphic on U such that

\g(λ)\p(l-\λ\2rdm(λ)<oo.
u

Now consider A e Ωn and let w be the weight induced by Λ. Then
g e AP(U) where a = <J(Λ)/2 - 1 if and only if

/ \g(λ)\pw(λ)dm(λ) <oo.
Ju

Hence it follows that g o A e HP(B) for every g e Ap

a{U). This
pullback property is sharp in the sense that the "weight" <J(Λ)/2 - 1
cannot be improved.

It is known [A], [Rus] that if Λ(z) = nn^zx --zn or Λ(z) =
z\ + + z^, then g o A* is a function of bounded mean oscilla-
tion on S for every Bloch function g on U. P. Ahern and W. Rudin
have recently found a new proof of this BMO-result, which does not
seem to extend to the Hp -context mentioned above, and proved the
same for every monomial AE Pn. Their method has been used by the
author [C] to prove the same BMO-result for a certain subclass of Ωn

containing all the previous functions.

3.5. Gap theorem. Let E be a set of positive integers. Following
[AR2] we call E a Paley set if \{k e E: N < k < 2N}\ stays bounded
as N —• oo. Also we recall that E is called a Λ(#)-set, for q > 2, if
there is a constant C such that

V* / \ 1/2

Σ
keE
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for all {ajc}. It turns out that every Paley set is a Λ(#)-set for every
q > 2. Fix Ae Pn. If / e Lι (σ) and if k is a nonnegative integer, then
we shall write fa for the projection of / into the one-dimensional space
spanned by Ak. In their recent paper [AR2] P. Ahern and W. Rudin
have also shown the following Paley-type gap theorems which have
no analogue in the one variable case for a special class of functions
Λ e Pn, i.e., for Λ monomials and Λ(z) = z\ Λ V z\. We refer to
[AR2] for further details:

THEOREM. Let \<p<2<q<oo. Then the following are equiva-
lent

(a) E is a Paley set

(b) ΣkeE IIΛIIJ < C\\f\\pp for every f e H'(B).
(c) There exists t < 2 so that ΣkeE WfkW'p < Q\f\\p for every f e

HP{B).

(d) \\h\\% < CΣkeE\\h\\q

q for every h e H<(B) of the form h =
k

(e) There exists s > 2 so that \\h\\s

q < CΣkeE \\hk\\s

q for every h e
H*(B) of the form h = k

THEOREM. Let 1 < p < 2 and q the conjugate exponent If E is a
A(q)-setf then the following two equivalent conditions hold.

(a) ||A||; < CΣkeEWhWl for every h e H*{B) of the form h =
k

0>) ΣkeE WfkWp < C\\f\\l for every f e H?(B).

THEOREM. If2<p< oc, then \\f\\p

p < CΣ%o(Σ2J<k<2^ \\fk\\P)
p

holds for every f e HP{B) of the form f = ΣkL k

The only property (except Λ e Pn) used in their proof is the follow-
ing:

(1) / |Λ | 2

Js
The notation « means that the ratios of two terms are bounded above
and below. The only importance of the exponent δ(A) is the positiv-
ity. It is not hard to verify via Stirling's formula that (1) holds for
every A £ Ωn. It follows that Ahern-Rudin's Paley-type gap theorems
mentioned above hold for every A E Ωw. The above observation leads
to a natural conjecture that (1) holds for every A E Pn.
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Now we return to the proof of Theorem 3.1. The following integral
formula will be the main key to proving this. The normalized volume
measure on Ck is denoted by z>%.

3.6. PROPOSITION {Integration by Averaging). Ifk and I are positive
integers such that k + I = n, then for every f eLι(σn)

f fdan ={n~k

X) jβ js f(
z>yJl -

holds.

Proof. Let O be the group of all unitary transformations on Cι and
fix / e Lι(σn). By Lemma 1.4.2 in [Ru] we have

ί fdσn= ί [ f(ζ,Vη)dWdσn(ζ,η)
JSn JSn JO

where d%f is the Haar measure on O. In the right side of the above
the inner integral is independent of η once ζ is chosen, and hence by
Formula 1.4.4 in [Ru] the left side of the above is equal to

where ξ is an arbitrary point in S/. By Proposition 1.4.7 in [Ru] the
inner integral of the above is in turn equal to

f{z^\-\zH)dσι{ξ).

The proof is complete. D

3.7. Proof of Theorem 3.1. We will assume k > 2 (in cases (a) and
(b)) and / > 2. The proof when / = 1 or k = 1 is much simpler and in
fact the proof given below can be repeated without any difficulty, ψ
will denote an arbitrary nonnegative Borel function on [0,1). Also, vh

i = 1,2, denote the weights induced by φι and w the weight induced
by Λ. We will handle the constants c = c{k,Uφ\,φi) in the usual
manner; they are not necessarily the same at any two occurrences.

Case (a). In this case MaxΛ = Max^i x Max φι, topologically, and
therefore <5(Λ) = δ(φ\) + S{φ2) + 1. It remains to verify that

(1) w(r) = c(l - r)
{δίφι)+δ{φ2)-ι)/2[l + O(\/T^T)] as r ΐ 1.
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Put d = deg^i and e = deg</>2. Note that d, e > 1. Define

-xY f o r 0 < j c < 1.

Note that h is strictly increasing on [O,Xo]> strictly decreasing on
[x0,1], and h(x0) = 1 where JC0 = d/(d + e). Let / be the inverse
function of h on [O,.Xo] and g the inverse function of h on [xo> 1]

Integration by averaging, integration in polar coordinates and
change of variables show that

/ ψo\A*\dσn=c ί xk~l(l-x)1-1

Jsn Jo

JSk JSi

[lθ(p)ψ(p\φι(ξ)\\Φ2(η)\)dpdσι(η)dσk(ξ)
t Jo

[ [ [l

Jsk J J

where θ = fk~x{\ - f)ι~ιf -gk~ι(l- g)l~xg'. By definitions of vλ

and V2, the latter integral is equal to

ί ίί ί ί θ(p)ψ(psήd(psήvι(s)v2(t)dsdt
Jo Jo Jo

= c ί ψ(r) if θSit(r)vx{s)v2{t)dsdtdr
JO JJst>r

where θs t(r) = θ(r/st) for st > r. From this we conclude (see Remark
2.6)

(2)

ht>r
x if θst(r)(l -

JJst>r
It remains to estimate θStt(r) as r | 1. Since h'(xo) = 0 and h"(xo) < 0,
we have

(3) ψ
and

(4) h'(x) = h"(xo)(x-xo)[l + 0(\x-x0\)] asx->x0.

From (3) and (4) it follows that

1 _ [1 + O(\x - JCQI)]
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Putting x = f(r), we obtain from (3) and (5) that

f{r) = xo[l + O{VT=~r)}

v v—2/

Similarly,

235

Hence

and therefore

(6) θS9t(r) =

gf(r) = -

θ{r) = 4

asrΠ.

Ί - r
as r

f(λ/1
uniformly in st > r as r ΐ 1.

1st - r

Insert (6) into (2) and estimate the double integral to obtain (1). D

Cases (b) and (c). Let d = degΛ. As above, we have

/ ψo\A*\dσn
Jsn

Jo

• / / ψ(\axd/2φ
Jsk JSi

r\

= c / xk~x{\-x)1

Jo

L

• f f ψ(\axd/2s + (l-x)d'2z\)v2(z)drn(z)svι(s)dsdx.
Jθ Jlmz>0

Compute the innermost integral in polar coordinates, make change of
variables, and get

./o J-\

u Ju

xk

o

- x)dt2 + 2astxd'2(l - x)dl2y)dytv2(ήdt
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In the inner integral of the above we make another substitution

r = ^a2xds2 + (1 - x)dt2 + 2astxdl2{\ - x)d'2y,

simplify the integral obtained, and arrive at

rhSJ{χ) 2rψ{r)drI
where

hSjt {x) = asxd'2 + ί (1 - x)dl2 and

So far,

/ ψo\A*\dσn
Jsn

Jo Jo [Jo JgsAx) Jr2 -

• svι{s)tv2{t)dsdt.

For each fixed s and t, the integral in the bracket is taken over the
region {(x9r): gs,t(x) < r < hSft(x)} and therefore the interchange of
the order of integration yields θSyt such that

ψo\A*\dσn = c rψ{r) I / Θsj(r)sυx{s)tv2(t)dsdtdr.
Jo Jo Jo

Accordingly,

(7) w(r) = cf I Θsj(r)svι(s)tv2(t)dsdt.
Jo Jo

Now we subdivide into two cases (b) and (c). Before going further,
we assume a > 0 (if a = 0, then MaxΛ = Max^2? topologically, and
the proof in case (a) can be easily adapted).

First, consider case (b). Since d > 3, hsj is strictly convex for every
s and t. By elementary calculus if t > (l/2)d/2~~ι, then hsj and gSjt are
strictly decreasing on [0,1/3] for every s. For such t, let asj and βsj
be the inverse functions of hs,t and gSyt on [0,1/3], respectively. We
first prove two sublemmas.
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SUBLEMMA 1. Define for t > r and r « 1
QsΛn xk'ι{\ -xy~[ dx

— : .

Then ESit(r) = c{t - r)k-{[\ + O(y/\ - r)] uniformly in t > r and s as

Proof of Sublemma 1. We easily obtain

( dasj(r) = 2(ί — r)[l 4- O(y/\ — r)],

rf^(r) = 2(ί - r)[l + O ( Λ / T ^ Γ ) ] ,

where O(y/l - r) is uniform in t > r and s as r | 1.
Define //^ = Λ^ and Gsj = ft2/. Since ύ? > 3, H'st(x) =

-dt2[l + O(y/x)] uniformly in t « 1 and ̂  as Λ: | 0. Thus by the
mean value theorem and (8), if βs,t(r) < x < &s,t(r)> then

Hs Λx) — r1 — d(as Λr) — x)[l + O{>/\ — r)λ

uniformly in t > r, s and x e (/?5^(r),α^(r)) as r | 1. Similarly,

r2 - Gsj(x) = d(x - βS9t(r))[l + O(VT^7)]

uniformly in / > r, 5 and x G (βsj(r),aSyt(r)) as r t 1. It follows that

ES9t(r) = c[l + O(VΪ
^ / : : - βs,t(r)\/asΛr)-χ

uniformly int >r and s as r | 1. In this integral, make the substitution

x - β,,(r)

and get

r
/ - i

This shows the sublemma by (8). D

If a = 1 and if s > (\/2)d/2~\ then /z^ and ^ ^ are strictly increasing
on [2/3,1] for every t. For such s, let γSJ and J5>r be the inverse
functions of hSJ and gSJ (with α = 1) on [2/3,1], respectively. The
proof of the following sublemma is "symmetric" and is omitted.
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SUBLEMMA 2. Define for s >r and r «

Fs,t(r) =
h(x) ~ r-r2

Then Fs>t(r) = c(s - r)'~ι[\ + 0{y/\ - r)] uniformly in s > r and t as

r T l •

Assume a = 1. Then MaxΛ is the disjoint union of Max<?!>i and
Max(/>2 Hence it is enough to prove that

(9)
w(r) =

• [1 + 0(\/l -r)] a s / " | l .

By a geometric consideration, for r sufficiently close to 1,

( 0 if t < r and s < r,

Es,t{
r) if s<r<t,

FsΛr) if t<r<s,

I Es,t(r) + FSί,(r) if r < t and r < s.

Hence by (7), up to a constant factor,

w(r) - / / Est(r)sυι(s)dstv2(t)dt
Jr Jθ

+ ί ί Fs,t{r)sυx{s)dstv2{t)dt
Jθ Jr

+ / / (Es>t(r) + Fsj(r))sυi(s)dstv2(t)dt
J r J r

= ί I ESJ(r)svι(s)dstv2(t)dt
Jr Jθ

+ ί ί FStt(r)sυι(s)dstv2(t)dt = I+ 11.
Jθ Jr

By Sublemma 1

I = c[\ + O(Λ/Γ=7)]/ (t-r)k-\\-

+
Similarly, by Sublemma 2

This proves (9).

as r | 1.

as r
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Now assume a < 1. Then MaxΛ = Max φι, topologically. Thus we
need show

( 1 0 ) w(r) = c(l - r ) δ ^ φ 2 ^ 2 + k - ι [ l + O(\/T^r)] a s r | l .

As above, for r sufficiently close to 1,

R JO iit<r,
θ s Λ r ) = \εsΛr) i f r < f .

Thus by (7) and Sublemma 1

Iw(r) = c[ I ESft(r)svι(s)dstυ2(t)dt
Jr JO

= c[\ + OiVT^r)] {t-r)k-\\-t)δ^φ2)l2-χdt a s r | l .
Jr

After a little calculation we obtain (10).
Finally, we consider case (c). In this case k = 1 and / = n - 1. Also,

MaxΛ = Max(/>2> topologically. Thus we need verify

w(r) = c{\ - r)δfa)P[i + tf(/Γ=7)] as r

Note that (7) is still available with s = 1, i.e.,

( 1 1 ) w(r) = c [lθu(r)tv2(t)dL
Jo

For r > a,

where -B/(r) is the function as in Sublemma 1 with appropriately de-
fined functions. More precisely, for t > r > a,

ht(x) = ax + t(l- x), gt(x) = \ax-t(l- x)\,

βt{r) =, βt{r)

and

<*t(r)f<*t(r) (i —χψ-Ίdx

Jm ψ2 - g}{χ)^hj{x) - r
(13) Et(r)

By (11) and (12), for r > a,

w{r) = c [ l + 0{y/l - r)] / Et{r){\ - t ) δ { φ l ) l 2 ~ x d t a s r j l .
Jr
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Thus it suffices to show that

(14) Et{r) = c[\ + 0{y/\ - r)] uniformly in t > r as r | 1.

Clearly at(r) = (9(1 - r) and βt(r) = 0(1 - r) uniformly in / > r as
r t 1. Hence it is not hard to see that

hf(x) -r2 = 2(1 - a)(at(r) - x)[l + 0(1 - r)]

and
r2 - g}(x) = 2(1 + a)(x - βt(r))[l + 0(1 - r)]

uniformly in / > r and x G (βt(r)9 at(r)) as r | 1. Substitute these into
(13) and obtain (14) as before. D
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