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ON RECURSIVE FUNCTIONS AND REGRESSIVE ISOLS

JOSEPH BARBACK AND WILLIAM JACKSON

In memory of Dr. Erik Ellentuck

We are interested in regressive isols, recursive functions, and the
extension to the isols of recursive functions. Our results in the paper
were motivated by an interest to clarify the nature of the domain in
the regressive isols of the Myhill-Nerode extension to the isols of a
recursive function of one-variable.

In particular, if / is a recursive function, fA the Myhill-Nerode
extension of / to the isols, Λ the set of isols, and AR the set of
regressive isols, we give a characterization of the set

fA = (AeAR:fA(A)eA),

and then relate fA(DomfA) to otR where a is the range of / and
aR = AR Π α Λ where aA is the Nerode extension of α to the isols.

1. Notations. Let ω be the set of non-negative integers (numbers).
The domain and range of a (partial or total) function g will be denoted
δg> PS respectively. All functions will be assumed total, i.e., their
domain = ω, unless otherwise specified. We will say that a function
g: ω —> ω is increasing if x < y implies g(x) < g(y), and say that
it is eventually increasing if there is a number k such that k < x < y
implies g(x) < g(y).

The following theorem combines two well-known results which are
proved in [1] and [2] respectively.

THEOREM Tl . Let f be a recursive and eventually increasing func-
tion. Then /v maps AR into AR, and if a is the range of f, then
<*R =

The primary motivation for this paper is an attempt to understand
the consequences of removing the clause "eventually increasing" from
the above theorem, and the main techniques applied to investigate
those consequences are infinite series of isols, [4], and some of the
fundamental work of E. Ellentuck in [7].

2, Preliminaries. We would like to assume that the reader is famil-
iar with topics and terminology in the theory of isols. In particular,
we will assume a familiarity with techniques involving infinite series
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of isols. Important to our study is a fundamental representation the-
orem of Ellentuck in [7], and also the method of [7] for representing
an extension to the isols of an increasing function as an infinite series
of isols. These topics we shall now review.

It is a well-known result that if the extension to the isols of an
increasing recursive function is evaluated at a regressive isol, then this
value can be expressed as an infinite series of isols. We wish now to
discuss a similar representation due to Ellentuck, but first we must
define the notion <* due to Dekker, [5], and the difference function
Δr of a function r. For functions, t, u, define t <* u if there is a partial
recursive function p with pt c δp and p(tn) = un for n e ω. For Y a
regressive isol and u a function, define Y <* u if Y is finite or t is a
regressive function with pt e Y and t <* u. For a function r, define
Ar(n) = r(n + 1) - r(n). We can now state Ellentuck's representation,
[7], for extending functions that are increasing but not necessarily
recursive. Let r be any increasing function, and let Y be a regressive
isol. Then the extension of r, rA, will be a partial function on the isols
defined as follows: if Y is finite, then rA(Y) = r(Y)\ if Y is infinite
and Y <* Δr, then

In [7] Ellentuck showed that the value of rA(Y) is equivalent to the
value obtained by taking the Nerode extension, [10], of r to isols.
We note that if r is a recursive increasing function, then Δr is also
recursive, and therefore Y <* Δr for every regressive isol Y. Also, let
us note that when r is an increasing function and Y is a regressive isol
with Y <* Δr orY finite, then the value of rA(Y) is also a regressive
isol. This property is well known; it may be obtained from the infinite
series representation of rA(Y) when Y is infinite, and from knowledge
that rA(Y) is finite when Y is finite.

The following theorem is a basic result for our paper, and it is
proved in [7].

THEOREM T2 (Ellentuck). Let f be a recursive function, and let r be
any increasing function such that the composition for, (f o r)(n) =
f(r(n)), is also increasing. Let A e AR with A <* Δr. Then A <*
Δ(/or) and (fΌr)A(A) = fA(rA(A)), and therefore also the isol rA(A)
belongs to ΌomfA.
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It turns out that the representation given in this theorem leads to
a characterization of the form of the regressive isols that are in the
domain of fA.

3. On the isols in DomfA. Let f:ω-+ω denote any recursive
function. It is known, from results in [1], that if / is not eventu-
ally increasing, then there will be some infinite regressive isols that
fA does not map into the isols. However, in contrast to the above,
there will always be some infinite regressive isols that are in the do-
main of fA, i.e., that are mapped by fA into the isols. Actually much
more is known with respect to the existence of isols that lie within,
and without, the domain of fA. In [11] A. Nerode showed that there
are infinite regressive isols that belong to ΌomfA for every recursive
function / . In [7] E. Ellentuck called such isols recursively strongly
tone and studied some of their properties. Ellentuck, in [7], also in-
troduced a class of regressive isols called recursively strongly universal.
If such an isol belongs to Dom fA for a recursive function /, then/ is
eventually increasing.

It is well known that if A is a regressive isol and fA(A) e Λ, then
fA(A) e AR. It follows from this property that ΌomfA may be ex-
pressed as:

Dom/Λ = {AeAR: fA(A) eA) = (AeAR: fA(A) e AR).

If d: ω —• ω is any function, then we shall sometimes write dn for
d{n). We would now like to state a property about certain infinite
series of isols.

Let u: ω —• ω and v\ ω -* ωbt any functions, and let A be any
infinite regressive isol. Assume that A <* w, A <* υ, and also that

Because A is an infinite regressive isol, it is then possible to verify that
there will be infinitely many numbers d such that

u(0) + + u(d) = t (O) 4- + v(d).

Furthermore, there is a variety of other properties that follow from
(1), and we shall state these properties in the following lemma.

LEMMA LI. Let u: ω -» ω and v: ω -> ω be any functionsf and let
A be any infinite regressive isol Assume that A <* u, A<* v, and also
that
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Then there is a strictly increasing function d: ω —• ω with

u(0) + + u(di) = v(0) + + v(di)

for every number i e ω. Moreover, the function d has the following
additional properties, (i) Let a: ω -» ω be any regressive function that
ranges over a set in A. Set b(n) = a(dn), for each number n eω. Then
b will be a regressive function, (ii) Let β = (bo, b\9...) and let B be
the regressive isol with β e B. Then B < A. (iii) Define the function p
by

p(0)=l

p(n + I) = d(n + 1) - d(n).

Then B <* p and

B

Proof. Let a be a regressive function with paeA. Then

(1)

is a representative of ΣA u with the understanding that the sequence

7(fl/, 0),...,y(α,, Ui - 1) is empty if M/ = 0. Likewise, a representative

of ΣA V ^S

(2) OXflo J0),...,^α 0 >t;o-l),7(Λi,0),...,7(α 1,t;i--l),...).

Denote the set (1) by au and the set (2) by av. Since ΣA u = ΣA V>
there is a one-one partial recursive function p with au Cδp, av c ρpy

and p(αw) = α^. We wish to show the existence of a strictly increasing
function d: ω —• ω with w(0) H h «(rf/) = v(0) H \-v(di) for every
/ G ω. To accomplish this, we begin by considering the set

γ = (x: u{0) + -" + u(x) = υ(0) + + υ(x)).

Suppose γ is finite. Then there is a number k such that

(3) x>k-± w(0) + + u(x) Φ υ(0) + + υ(x).

Let ΛQ, ̂ i , . . . , ah be given. Since pa eA and a <* w, we can effectively
find wo> Wi,..., Uk, and hence we can form the set

4 = t/(ao, 0),...,7(00, wo - 1),-..,7(Λfc, 0),...,7(0^, uk - 1)).

Since ^ <* v, we can likewise form the set
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However, since cardα^ = u(0) H h u(k) and cardα£ = υ(0) H h
v(fc), by (3) we have cardα^ Φ cardα£. If cardα^ > cardα*;, we can
use p to produce an element j(ax,y) e av with x > k. If cardα^ <
cardα£, we can use p~ι to produce an element j(aXyy) e au with
x > k. In either case, we can effectively find an ak^ with k{\) > k.
As above, since a is a regressive function, A <* u, and A <* υ, we can
effectively form the sets

o, 0) , . . . , j(ao, u0 - 1),. . . , j(ak{ϊ), 0 ) , . . . , j{ak(ι> uk{ι) - 1))

and

<*vil) = O'(^o? 0),.. .9j(ao, v0 - 1),... ,7(αΛ ( 1 ), 0),. . .J{ak{ι> υk{ϊ) ~ 1)).

Again, using (3) and fc(l) > /:, we have cardα^1^ ^ cardα^^^ and
by repeating the above argument, we can effectively find an ak^2) with
k(2) > k(l). By iterating the above construction, we effectively pro-
duce an infinite recursively enumerable subset of pa. But this con-
tradicts pa € A being an isol. Thus, γ = (x: w(0) + + u(x) =
v(0) + - + v(x)) is infinite. If we now let do = least member of
γ = (μx) (x e γ) and di+\ = (/ιx) ( x e y and x > di), then d will be a
strictly increasing function with

w(0) + + u(di) = υ(0) + + v(di)

for every / e ω.
Turning our attention to (i), we let a: ω —• ω and d: ω —> ω be as

above, and define £„ = α(*/Λ). To establish (i), we need to show that
from bn+\, we can effectively find bn. Let bn+\ = a{dn+\) be given.
Since a is a regressive function, we can effectively find

(4)

and

(5)

From (4),.

(6)

and

(7)

a[dn+ι - \),...,a{dn),

dn+ι-l,...,dn,...

A <* u, and A <* v, we can find

u(dn - l),...,u(dn),.

v(dn-l),...,v(dn),.

From (6) and (7), we can find the largest number x from (5) for which
w(0) H h w(x) = v(0) H h t (x). By the definition of d, we have
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dn = x. From dn and (4), we can find a{dn) = bn, and therefore, (i)
is established.

If we let β = (bo, b\9b29...), then to establish (ii), we need to show
that β and pa- β are separated. To this end, let x e pa. Since a is a
regressive function, we can effectively find the j such that x = Uj and
in the process we can produce the list

(8) aj,aj-ι,...,ao.

From (8), A <* u, and A <* v we can effectively find UQ, . . . , w,, and
Ϊ O, . . . , Vj. Then by the definition of /?, we have x e β if and only if
uo + -- + Uj = vo-\ Wj.

Our first step in establishing (iii) is to show that B <* p. Thus, from
bn = a(dn), we need to effectively find pn. Recall that a,b: ω -+ ω
are regressive functions. Now, given bn, we can effectively find n. If
n = 0, then from bo = α(rfo) w e c a n effectively obtain do, and then
p0 = l + df0. If n > 0, we can effectively find bn-\. From bn,bn-u we
can obtain dn,dn-\ in an effective manner, and then pn = dn- dn-\.

To finish the proof of (iii), and of the lemma, we need to show that
A = ΣBp. That is, we need to show that a representative of A:

(9) (flθ,Λl,02,...)>

and a representative of

(10)

are recursively equivalent. To accomplish this it suffices to show that
the mappings an —> tn and tn —• an have effective extensions where
t: ω —> ω is the function ranging over the set in (10). We thus need
an explicit definition of t. We define:

tn = j(bθ9 n) forO<n<po- 1,

o + >+pk <n < p0 + +pk +pk+ϊ - 1.

Since /?„ is one-to-one and p^ > 0 for every /:, / is a well-defined
one-one function from ω onto the set in (10).

Let an be given. Since dx is a strictly increasing function, either
n < do or djζ < n < d^+i for a unique k e ω. Since α x is a regressive
function, we can effectively find ao9a\9...,an. In addition, since dx

ranges over

γ = (x: u0 + + ux = v0 + * + vx),
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A <* w, A <* v9 and ΣA U = ΣA V> w e c a n u s e ̂ e technique employed
at the beginning of this proof to effectively produce

0 Γ an,'

depending on whether n < do or dk < n < dk+\ respectively.
First, suppose n <d$. Then, as noted above, we can effectively find

adφ) = bo, and hence also do and po= I + do- Since n < do = Po - 1>
we have effectively found tn = jφo, ri).

Now, suppose d^ < n < dk+x. Again, we can effectively find
ad{k+\) = Â:+i Since bx is a regressive function, we effectively ob-
tain

from fejt+i» a n ^ hence also

(11) dk+ι,...9d0.

From (11), we can calculate

(12) Pk+\=dk+\-dk,.-., P\=dχ-do, Λ) = ̂ o+1

Using (12) and our assumption that dk < n < ̂ + b w e obtain

Hence, we have effectively found

tn = j(bk+ι,n - (po + +Pk))>

so that the mapping an -• /Λ has an effective extension.
We have left to show that from tn we can effectively produce an.

Thus, let tn be given. Now, tn = j(x,y) with x = bk,.
If k' — 0 then x = 6Q = ^( 0 ) = #p(θ)-i> a n d therefore we can

effectively find

(13) Λp(0)-b >Λ0j

since α z is a regressive function. Also, since x = bo, n = y and
0 < y < Po - 1. Thus, from (13) we can find an.

\ϊk' > 0, then x = bk, = bk+x with k > 0 andy = «-(/?0H \-pk) =
n - (dk + 1). Since Z?z is a regressive function, we can effectively find

(14) bk+x = tf^+i), bk = ad(k),...,b0 = adφy

Since az is a regressive function, we can, from (14), effectively find dk

and
ad{k+\)> ad(k+\)-\> ? &d{ky

Thus, since y and dk are known, we have found an = ad^+y+χ. Thus,
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from tn we can effectively produce an thereby completing the proof of
the lemma.

THEOREM T3. Let f:ω-+ωbe any recursive function, and let A
be any regressive isol. Then A G Dom fA if and only if there is an
increasing function r and a regressive isol E such that for is increasing,
E <* Ar, and A = rA(E).

Proof. In view of Theorem T2 one only need verify one direction of
the theorem. Let us assume A e DomfA. Then we wish to show that
there is a function r and a regressive isol E with the desired properties.
Assume that fA(A) = Y.

If A is finite, then we may set r(n) = A, for all numbers n, and let
E = 0. Then rA(E) = r(0) = A and / o r is a constant function. Also
E <* Δr, since E is a finite number. This gives the desired result in
the case A is finite.

Assume now that A is infinite. Let / + and /~ be recursive increasing
functions such thatf(n) = f+(ή) — f~(n), for all numbers n. One may
select / + and /~ as the positive and negative combinatorial parts that
are associated with / . We will write f£ for ( / + ) Λ ? and f^ for (/~)Λ

Then, it follows that fA{A) = fA(A) - fA(A), and therefore also,

(1) f+(A)=f-(A) + Y.

If we express each of the extensions fA(A) and fA(A) in (1) as an
infinite series, we may then, from (1), also obtain

(2) /+(0)+χ>/+ = / - ( o ) + 5 > r + Y.
A A

In (2) we would like to attach the value of / + (0) to the infinite series
next to it, and similarly with the value /~(0) to the series next to it.
Let us modify Δ / + by making Δ/+(0) be / + (0) +Δ/ + (0), and making
Δ/-(0) be /-(0) + Δ/~(0). Then (2) may be written as

(3)

We recall that Y will be a regressive isol. Also, by the work of J.
Gersting in [8], it follows from (3) that Y can also be expressed as an
infinite series. In particular, as
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where A <* c, and 0 < c(n) < Af+(n), for each number n. Then, by
[9, Lemma 17.18], the summands of the series representations of the
right side of (3) may be combined so as to obtain,

(4)
A A

where A <* Δ/+ since Δ / + is recursive, and A <* (Δ/~ + c) since Δ/~
is recursive and A <* c. To equation (4) we now apply Lemma LI,
treating A as itself, Δ/+ as w, and (Δ/~ + c) as v. Let the functions d
and p, and the regressive isol B, be as introduced in Lemma LI.

We note that, from the definition of d, it follows that for all
numbers n,

d{n) d{n)

Also,
d(n)

ί)= 5>/+(z), and
o

d(n)

0

for each number n. It therefore also follows,

d(n)

(5) /(£/(/!)+ l) = X)c(ι),
0

for each number n. Let the function r be defined by, r{n) = d(n) + 1,
for n e ω. In view of (5), we see that the composition function for
is increasing. Also, we note that r(0) = p(0) and Δr(n) = p(π + 1),
where /? is the function obtained from Lemma LI. In addition, also
by Lemma LI, one has B <* p and

(6) A
B

Because B <* p and Ar(n) = p(n + 1), it follows that 5 - 1 <* Δr.
Combining this property with r(0) = p(0), we may then obtain from
(6) the following representations for the isol A,

B-\

B-\
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If we now set E = B - 1 then the desired representation for the isol
A is obtained. This completes our proof.

4. On the extension of recursively enumerable sets to the isols. Let
a be a non-empty recursively enumerable (RE) set, and let aA be the
extension of a to the isols. Let ^ = Λ ^ Π α Λ . Let / be any recursive
function that has range equal to α. In this section we wish to study
some properties related to the two collections fA(DomfA) and aR.

To begin, we will introduce some terminology to enable us to de-
scribe the representation of α# that is obtained in [3]. Assume r: ω ->
ω is a strictly increasing function. We will say that r is the principal
function for the set of numbers that is the range of r. We also define

DomrΛ = {A e AR: A <* Δr).

Let δ be any set of numbers. We define a collection of isols δ% in the
following way. If δ is a finite set, then δ% = δ. If δ is an infinite set,
then

where r is the principal function that has range δ. Based on our earlier
comments we note that all the elements of δ% are regressive isols.

REMARK Rl. The collections δΣ were first introduced in [3]. In [3]
their definition is made a little differently than here, but the two are
readily shown to be equivalent. We would like to verify that fact here.
In [3], <5χ is defined in the following way. If δ is finite then δ^ = δ. If
δ is infinite, let r be its principal function, and let the function d be
defined by, d(0) = r(0), and d(n + 1) = r(n + 1) - r(n). In [3], d is
called the e-dijference function of r, and δ^ is defined by

and A<*d

To show that the two definitions of δ% are equivalent, we may as-
sume that δ is an infinite set. Let the functions r and d be as in-
troduced in the preceding paragraph, and note that, d(0) = r(0), and
d(n + 1) = Ar(n). Then, from the characterization of δ% given in [3]



ON REGRESSIVE ISOLS 219

and noted above, we have

AR, A< 1, A<* d j

> 1, A- 1 <*Δr

= ( r A ( Λ - l ) : Λ e Λ Λ , Λ > 1, Λ - l <*Δr)

= (r A (5): B G A*, 5 <* Δr) = r Λ (Domr Λ ),

and the desired equivalence follows.

To represent a union among sets we shall write X). The following
result is proved in [3].

PROPOSITION PI. Let a be any recursively enumerable set. Then

δCa

From Proposition PI it follows that for any RE set a one has a c
CXR. Also if both α and β are RE sets, then a c β implies aR c /?#.
These properties are actually true for the extension to the isols for
any sets of numbers, and can be obtained from the earlier work of A.
Nerode in [10]. We also want to observe two additional properties,
and they will be presented in the following lemma.

LEMMA L2. Let a and β be any RE sets, and let f and g be any
recursive functions. Then,

(a) If a and β differ by only a finite set, and Y is an infinite isol,
then Y eaR if and only ifYe βR.

(b) Ifk is a finite number, and iff(x) = g{x)for all numbers x >k,
then f\(A) = g\(A) for all isols A with A>k.

Proof. Property (a) follows from Lemma 1 in [3]. Property (b) was
already used in the proof of Theorem T3. It is a well-known property
and it may be verified in the following way. Assume k G ω and that
x > k implies f(x) = g(x). Then the equation f(x + k) = g(x + k) is
valid for all x G ω, and therefore, by the Myhill-Nerode metatheorem,
the equation fA(X + k) = gA{X + k) is valid for all isols X. This gives
the desired result, and completes the proof.

Let us now consider the two sets fA(ΌomfA) and aR, when / is a
recursive function and a is its range. We note that by Theorem Tl it
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follows that if / is an increasing function, then fA(DomfA) = aR. In
general, we have fA(ΌomfA) c aR, yet the inclusion can be proper,
even when a is a recursive set. Also, if a is any non-empty RE set,
then there exist recursive functions / that have range α, and with
fA(DomfA) = aR. Some recursive functions that are related to a in
this fashion are called complete for α, and are introduced below. We
would now like to verify these properties. It is helpful for the following
presentation to first reflect on a special feature of some infinite series
of isols.

Let u: ω —> ω be any function and let A be any infinite regressive
isol with A <* u. Let

and assume Y is infinite. It follows that there will be infinitely many
numbers m for which u{m) is positive. Let σ = (x: u{x) > 0), and let
s be the principal function of σ. Let a be any regressive function that
ranges over a set in A. Set b(n) = a(s(n)), and let B be the isol that
contains the range of b. Since a is a regressive function and A <* u,
it is readily seen that b is also a regressive function and B <* u os. In
addition, B < A and

Y = Y^uos.
B

It is this representation of Y that is useful for us to observe. It is
applied in the proof of the following theorem.

THEOREM T4. Let a be a non-empty recursively enumerable set and
let fbe a recursive function that has range α. Then, fA(ΌomfA) c aR.

Proof Let Y e /Λ(Dom/Λ). Then Y = fA(A), and by Theorem T3,
we may write A = rA(B) where r and / o r are increasing functions,
and B <* Δr. Applying Theorem T2 also yields Y = (for)A(B)9 with
# < * Δ ( / o r ) , and

(1) r = (/o
B

We will now consider three cases.

Case 1. B is finite. From (1) it then follows that Y is also finite and
Y = {for){B) = f(r(B))9 and therefore Yea. Hence also Y e aR.



ON REGRESSIVE ISOLS 221

Case 2. B is infinite and Y is finite. Then from (1) it follows that
there will be a number k such that Δ(/o r){m) = 0 for all numbers
m>k. Then

ι=0

In this case then Y = f(r(k + 1)) G α, and therefore Y G α#.

Case 3. B is infinite and Y is infinite. Then A is infinite. Let #
be defined by, g(x) = 0 for x < r(0), and #(;c) = /(JC) for x > r(0).
Then 7 = yχ(v4) = ^Λ(^4) by Lemma L2(b). Let λ be the range of the
function g. Then λ and α differ by only a finite set, and hence Y eaR

if and only if Y e XR, by Lemma L2(a). It therefore suffices for us to
show Y G XR. Let us note that one also has that g o r is an increasing
function, and B <* A(g o r). We then have

(2) Y
B

since (g o r)(0) = 0. Combining (2) and the fact that Y is infinite,
it follows by our earlier observation that there will exist a strictly
increasing function s and an infinite regressive isol U such that, s
ranges over the set (x: A(g o r)(x) > 0), and U <* A(g or) os, and

(3) Y
u

Let the function p be defined by,

p(0) = 0, and

p{m + 1) = (Δ(^ o r) o s)(0) + + (Δ(^ o r) o s)(m).

Then p is strictly increasing, and Ap = (A(g o r)) o s. Since U <*
Δ(<g

p or) os then also I/ G Dom^ Λ , and therefore from (3) it follows
that

(4) Y=PA(U).

Let us note that p(0) = 0, and
m m

p(m + 1) = ]Γ(Δ(g o r))(5(0) =
i=0 /=0

where the second equality follows from the fact A(gor)(t) = 0 for any
ί with r < 5(m) and t £ (5(0),.. .,s(m)), and the third equality follows
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because (g o r)(0) = 0. Thus it follows that p is a strictly increasing
function that ranges over a subset of the range of g. If p ranges over
δ, then δ c λ, and, in view of (4), Y e δΣ. Therefore Y e λR and
then, as previously noted, Y eaR. This completes our proof.

We would like to illustrate in the following example a setting where
the inclusion obtained in Theorem T4 may be proper. This may even
be true when the range of the function / is a recursive set.

EXAMPLE El. Let / be the recursive permutation defined by, f(2n)
= 2n + l and f(2n +1) = 2n. Then the range of / is ω, and it is known
that ωR = AR. We would like to show that fA(DomfA) is a proper
subset of AR. Because / is not eventually increasing, it follows from
the main result of [1] that there exists some Y e AR with fA{Y) φ Λ.
Equivalently, this means Y e AR-DomfA. But then it will also follow
that Y £ fA(DomfA). For if there is some A e AR with Y = fA(A),
then, since f{f(x)) = x is always true in ω, one would have

which would imply Y is in the domain of fA. Hence Y e AR -
/ Λ (Dom/ Λ ) .

Let a be any non-empty RE set. While for some recursive functions
/ that range over a one may have, as in Example El, fA(DomfA) Φ
aR, it turns out to always be possible to choose a recursive function /
with range a for which the two corresponding sets are the same.

DEFINITION Dl . Let a be a non-empty recursively enumerable set.
A recursive function / is called complete for α, if (1) the range of /
is α, and (2) every infinite subset of a is the range of / upon a set of
numbers where / is strictly increasing.

It is easy to see that every non-empty RE set has a recursive function
that is complete for it; for example, any recursive function that ranges
over the set and takes on every value in the range infinitely often will
be complete for the set. We note that if a is infinite and recursive,
then the strictly increasing recursive function that has range a will be
complete for α.

THEOREM T5. Let a be a non-empty recursively enumerable set, and
let f be a recursive function that is complete for α. Then yχ(Dom fA) =
aR.

Proof. In view of Theorem T4, we need only verify the property
α Λ c / Λ ( D o m / A ) .
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Let Y G CXR. If Y is finite, then Y e a so that there is a finite number
a with Y = f(a) = f\{ά). Thus, since ω c Dom/ Λ , 7 G /γ(Dom/γ).

If a is a finite set, then aR = a so that every member of aR is finite.
Thus, α# c fA(DomfA) follows from the preceding paragraph.

Let us now assume that a is an infinite set, and that Y is an infinite
isol with Y G aR. By Proposition PI, it follows that there will be a
subset δ of a such that Y e δΣ. Since Y is an infinite isol, δ will be
an infinite set. Let r be the principal function of δ. Then there will
be an infinite regressive isol A with A <* Δr and Y = rA(A). Let the
function / be defined by

t(0) = (μs)(f(s) = r(0))9

t(m + 1) = (μs)(s > ί(m) and f(s) = r(ra + 1)).

Because r is a strictly increasing function that ranges over a subset of
α, and / is a recursive function which is complete for α, it follows
that t is a well-defined and increasing function, with f(t(n)) — r(n),
for all numbers n G ω. In addition, because A <* Δr, it will also be
true that A <* Δ(/ o ί) and 4̂ <* Δί. By Theorem T2 one may then
obtain

Let 5 = t\(A), and note that B e AR. Then also 5 G Dom/X, since
fA(B) = Y G Λ#. Hence, 7 G yX(Domyχ), and this completes our
proof.

COROLLARY Cl. Let a be a recursively enumerable set and let f be
an increasing recursive function. Then f\(otR) = /(«)/?.

Proof. If a = 0, then the result is close at hand, because all of the
sets involved are also empty. Let us assume then that a is non-empty.
Let g be a recursive function that is complete for a. Let us observe
that the composition function / o g is complete for the recursively
enumerable set /(α). Furthermore, since / is an increasing function,
Dom(/ o g)A = Dom # Λ . Now, since (/ o g)A = fAo gA for recursive
functions / and g, one may use Theorem T5 to obtain:

= {fog)A(ΌomgA)

= (/ o ί)A(Dom(/ o g)A) = (/ o g(ω))R = f(a)R,

and this is the desired result.



224 JOSEPH BARBACK AND WILLIAM JACKSON

REFERENCES

[I] J. Barback, Recursive functions and regressive isols, Math. Scand., 15 (1964),
29-42.

[2] , On recursive sets and regressive isols, Michigan Math. J., 15 (1968),
27-32.

[3] J. Barback and W. D. Jackson, On representations as an infinite series of isols,
Compositio Math., 22 (1970), 347-365.

[4] J. C. E. Dekker, Infinite series of isols, Proc. Symposia Pure Math. (A.M.S.), 5
(1962), 77-96.

[5] , The minimum of two regressive isols, Math. Z., 83 (1964), 345-366.
[6] E. Ellentuck, Review of Extensions to isols, by A. Nerode (see [10]), Math.

Reviews, 24 (1962), #A1215.
[7] , Diagonal methods in the theory of isols, Zeitschr. f. Math. Logik und

Grund. d Math., 26 (1983), 193-204.
[8] J. Gersting, A note on infinite series of isols, Rocky Mountain J. Math., 2 (1972),

661-666.
[9] T. G. McLaughlin, Regressive Sets and the Theory of Isols, in Lecture notes in

pure and applied mathematics, 66 (1982), Marcel Dekker, Inc.
[10] A. Nerode, Extensions to isols, Annals of Math., 73 (1961), 362-403.
[II] , Diophantine correct non-standard models in the isols, Annals of Math.,

84(1966), 421-432.

Received November 3, 1987 and in revised form July 11, 1988.

SUNY COLLEGE
BUFFALO, NY 14222

AND

US ARMY TANK-AUTOMOTIVE COMMAND
APPLIED RESEARCH BRANCH
AMSTA-RSA
WARREN, MI 48397-5000




