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HARMONIC ANALYSIS ON
EXPONENTIAL SOLVABLE HOMOGENEOUS SPACES:

THE ALGEBRAIC OR SYMMETRIC CASES

RONALD L. LIPSMAN

One of the main results of this paper is a complete description of
the spectral decomposition of the quasi-regular representation of an
arbitrary exponential solvable symmetric space. Benoist had shown
previously that such a representation is multiplicity-free, but he was
unable to compute the precise spectrum and spectral measure. More
generally, the quasi-regular representation is considered for any expo-
nential solvable homogeneous space. In previous work of the author
and Messrs. Corwin, Greenleaf and Grelaud, the analysis of these
representations was carried out in the nilpotent case. The spectral
decomposition arrived at was in terms of the Kirillov orbital param-
eters. Corresponding results are obtained here for algebraic expo-
nential solvable homogeneous spaces in case the stability subgroup is
either: a Levi component, or its nilradical is multiplicity-free in the
nilradical of the homogeneous group. The description of the spectral
decomposition in the Mackey parameters is also obtained for these
representations.

1. Introduction. The themes developed in this paper have their ori-
gin in the subject matter of [2], [3], [4], [16], [17], [21]. Namely, we
study harmonic analysis on homogeneous spaces G/H, where both G
and H are connected Lie groups. The basic problems considered in
the above papers concern the spectral analysis of the unitary represen-
tations

Ind^^ and π\π,

where π and v are irreducible unitary representations of G and H
respectively. In this paper we shall restrict attention to the induced
representation with v — 1—what is usually called the quasi-regular
representation of G on L2(G/H). Moreover, we shall be primarily
concerned with the cases: G/H symmetric (with G non-semisimple),
or G exponential solvable, or G algebraic.

The spectral analysis of the quasi-regular representation means a di-
rect integral decomposition of Ind# 1 into irreducible constituents. In
particular it calls for an explicit parameterization of the spectrum, the
spectral multiplicities and the spectral measure. Since we are dealing
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with non-semisimple groups, there are only two possible candidates
for the parameters: Mackey Machine parameters or Kirillov orbital
parameters. Mackey parameters will usually suffice to describe any
particular example. But it is to the orbital parameters that we look for
general descriptions of harmonic analysis on non-semisimple homoge-
neous spaces. As one knows from previous efforts in non-semisimple
groups [1], [17], in order to obtain the final form of the spectral de-
composition in orbital parameters, one must derive and employ the
Mackey parameters as an intermediate tool.

It is our goal to give an orbital description of the spectral decom-
position for the quasi-regular representation of an arbitrary exponen-
tial solvable homogeneous space. There are two approaches one can
take towards achieving that goal. One approach is to try to general-
ize the method used in [3] or [17]. This would require a long and
complicated argument involving mathematical induction and struc-
ture theory. The nilpotent structure causes the argument in [17] to
split into four different special subcases. It is apparent that a cor-
responding argument for arbitrary exponential solvable homogeneous
spaces would require more than a dozen such special cases. A concep-
tually prettier approach is the following: first, utilize the fact that the
nilpotent case is done; then extend it to algebraic exponential solvable
groups by the three-step procedure of [15] (that is treat the case of
abelian unipotent radical, then Heisenberg unipotent radical and fi-
nally general unipotent radical); and then proceed to arbitrary groups
a la Pukanszky (see [19]). It is the latter approach we adopt here. Al-
though we don't succeed completely, we do obtain the explicit spectral
decomposition in orbital parameters for the quasi-regular representa-
tion when H is a Levi component (Thm. 4.1), or when its unipotent
radical is multiplicity-free (Thm. 5.2). We also obtain it for arbitrary
exponential solvable symmetric spaces (Thm. 6.2), thereby settling a
conjecture of Benoist.

The arrangement of the paper is as follows. In §2 we describe the
basic goal—i.e. precisely what the orbital spectrum formula should
look like for exponential solvable homogeneous spaces G/H (Def. 2.1).
We show the formula is true for the pair (GH) if it is true for a pair
(N9 H) with H c N c G,N normal of co-dimension 1 in G (Theorem
2.2). We then deduce that for algebraic groups G = AN, it is enough
to consider subgroups of the form H = AM, M c N (Lemma 2.4). In
§3, we examine the Weil representations (that arise from the Mackey
Machine) as representations of the split abelian groups Aγ, γ e N. We
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compute their spectrum (Prop. 3.4). We also give a general result on
their spectrum when Aγ is only reductive (Thm. 3.2). In §4, we give
the orbital spectrum formula for co-normal subgroups (i.e. M trivial)
(Thm. 4.2). This uses the Mackey parameterization of co-normally
induced representations (derived in [17, Thm. 7.1]). This Mackey
parameterization is generalized in §5 to L2(AN/AM) (Thm. 5.1), and
then used to obtain the orbital spectrum formula when L2(N/M) is
multiplicity-free (Thm. 5.2). Finally, these results are employed in §6
to settle Benoist's conjecture—namely we obtain the orbital spectrum
formula for arbitrary exponential solvable symmetric spaces (Thm.
6.2).

la. Notation. In this paper G exponential solvable means G is
simply connected and its Lie algebra g is solvable and has no purely
imaginary eigenvalues. G algebraic means that G is the group of real
points of a complex algebraic group G defined over R. If G = AN
is a Levi decomposition, then G = AN, where N = N n G (referred
to as the unipotent radical) is characteristic, simply connected and
nilpotent, and A = A Π G (referred to as a Levi component) is a
reductive group acting semisimply on n. When G° is exponential,
A0 is a vector group. In that case we shall write G (resp. A) for G°
(resp. A0) and refer to G = AN as an algebraic exponential solvable
group. For G exponential solvable, G is in bijective correspondence
with Q*/G, the set of co-adjoint orbits. The corresponding terminology
is: π G G «-* @π e Q*/G; φ e Q* or Ω e Q*/G <—> πφ or UQ. For any
ψ £ fl*> we can find b c 0, a maximal totally isotropic subalgebra
(for the skew form Bφ(X, Y) = φ[X, Y]) which satisfies the Pukanszky
condition. The character χφ: cxpX -+ eiφ(χ\X e b, is well-defined
and πφ = Ind^/^.

The symbol PQ shall denote the regular representation of G, PQ9H

stands for the quasi-regular representation Ind^l . If v is a unitary
representation of H in the Hubert space CV, we set

L2(G;H;u) = I f\G->T measurable,

f(hg) = Hh)f(g), heH,geG, f \\f\\2 < oo 1,
JG/H J

it being understood that a quasi-invariant measure on G/H has been
fixed beforehand. Ifi/ = 1, we write L2(G\H) for L2{G\H\ 1). Finally,
if X is a locally compact space with Borel measure μ, and A is a group
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of Borel isomorphisms of X which leave μ relatively invariant, we
write δχ{A) for the modulus

δχ(a) ί f(a-ι x)dμ(x) = / f(x)dμ(x).
Jx Jx

If X is a group G and A = G acts by inner automorphism, δG gives
the modular function. If X = G/H, we shall write δGH in place of
δG/H. If A = //, then (5G)// agrees with the quotient of the modular
functions (see [10]).

2. Orbital spectrum for subnormal homogeneous spaces. Our prime
interest is to describe the orbital spectrum for Ind# 1, or more generally
Ind/jrJ/, when G is exponential solvable and H is a connected subgroup.
This is carried out completely in [17] if G is nilpotent or if H is normal
The normal case is treated by combining the Kirillov-Bernat orbital
parameters with the Mackey parameters as derived in [17]. When G
is nilpotent, the proof uses induction on dim G/H—a key point being
that for G nilpotent one can always place a normal subgroup between
H and G—and then it employs the normal case in co-dimension one.
It is natural to ask how far this scenario can be pushed when G is only
exponential solvable. Of course, between any H and G there may not
lie any normal subgroups. But the important point I wish to make is
that, //an intermediate normal subgroup does exist, then basically the
same reasoning as in [17] can be carried through. We now make that
precise.

DEFINITION 2.1. Let G be exponential solvable, H c G a connected
subgroup, (i) We say that H is subnormal if there is a connected proper
normal subgroup N of G which contains H, We say H is strongly
subnormal if N can be found of codimension 1. (ii) For v e H we say
that Ind#z/ obeys the orbital spectrum formula if the result [17, Thm.
3.1] is valid, i.e.

(7

μv

GH the push-forward of the natural measure on p x{@v) under the
canonical projection p: Q* —• f)*.

It follows from the work of [17, Thm. 3.5] that when Ind^z/ obeys
the orbital spectrum formula, we also have the multiplicity formula
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where μu

G H is again the push-forward of the natural measure, and
nv

φ = # //-orbits on Gφ Γ\p~ι(<fv). (The dimension criterion for finite
multiplicity in [17, §1] does not hold—see [17, Expl. 8 (ii)].) Now we
have

THEOREM 2.2. Let G be exponential solvable, H c G strongly sub-
normal, v E H. Let N be a co-dimension 1 normal subgroup of G
containing H. If the representation Inά^v obeys the orbital spectrum
formula, then so does the induced representation ^

Proof. To prove the result we must return to [17] and examine
where, beyond the existence of intermediate normal subgroups, the
nilpotency of G is used. In fact, the first result [17, Thm. 0.1] is true
as it stands for G exponential solvable and N normal of co-dimension
1. Theorem 0.1 is a summary of results first stated in [9] for nilpotent
groups—but it has long been known that nilpotence is not necessary.
Of course co-dimension 1 normal subgroups may not exist, but if they
are postulated (as in Thm. 2.2), then [17, Thm. 0.1] is valid. (Actually,
the proof is not too difficult—the ideas in the proof of [17, Thm. 6.1]
are all that is required.) This proves Theorem 2.2 when dim G/H = 1
or H = N.

Next assume dimG/H > 1 and H c N< G,dimG/N = 1. We
examine the argument of [17, §§2,3]. In §2 the case that v is a character
is treated. We used nilpotence there to assert that group actions were
smooth—i.e. the quotient spaces are countably separated. The same
is always true of exponential solvable actions. Then we observe that
in the rest of the proof in §2, nilpotence is never invoked. G might
as well be exponential solvable throughout the entire section. (And
in the appendix as well.) In fact, the only consequence of replacing
nilpotent by exponential solvable is that in case (a) the multiplicities
may not be finite. The bijections constructed in the section are still
intact. In §3, the proof is completed by allowing v to be an arbitrary
irreducible rather a character. Nilpotence is invoked to know that
any real polarization for v satisfies the Pukanszky condition. That is
untrue for exponential solvable groups. Nevertheless, any v e H can
be realized by induction via some real polarization which satisfies the
Pukanszky condition—i.e. v = Indj^/^, ^ € ^ , t a real polarization
for ψ such that K - ψ = ψ + t1. The bijection of Proposition 3.2,
which comes from [3], is still legitimate. Nowhere else in §§2, 3 is
nilpotence invoked or required, and so Theorem 2.2 is true.
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Now suppose H c G and both are algebraic exponential solvable.
Let N be the unipotent radical of G.

COROLLARY 2.3. For any v e H, the induced representation Inά^v
obeys the orbital spectrum formula if the representation Ind/PV obeys
it

Proof. The result is an immediate consequence of Theorem 2.2 if
dim G/HN < 1. Otherwise, the result still follows from the theorem
by a simple (mathematical) induction argument. This is because G/N
is a vector group.

Continuing with H c G both algebraic exponential solvable, N the
unipotent radical of G, we have

LEMMA 2.4. To prove the orbital spectrum formula for Inά^v it is
enough to assume there is a Levi decomposition ofH of the form H =
AM, where M c N and A is a Levi subgroup ofG.

Proof. Consider G\ = HN, a closed normal subgroup of G. The
only way G — G\ can occur is if some Levi subgroup of H is already
a Levi subgroup of G. Let A c H be such a Levi subgroup. Then
if M is the unipotent radical of H it must be that M c N and H =
AM c G = AN. Now suppose G Φ G\. Clearly the unipotent radical
of G\ is N. Then if the orbital spectrum formula is proven for the
pair (G\,H), it follows by Corollary 2.3 that it is also proven for the
pair (G,H). This completes the proof of the lemma.

Combining Corollary 2.3 and Lemma 2.4 we see that, for algebraic
exponential solvable homogeneous spaces, to prove the orbital spec-
trum formula (when v — 1) we need to consider only the induced
representations

The most important and most tractable example of these induced rep-
resentations occurs when M is trivial, that is co-normally induced
representations

I n d ^ l .

We take these up in §4 and (part of) the more general situation in §5.

3. Spectrum of the Weil representations. We have explained in §2
why co-normal induction plays a critical role in our approach to alge-
braic exponential solvable homogeneous spaces. The Mackey parame-
ter description of a co-normally induced representation was obtained
in [17]. Let us recall it.
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Suppose G = HN is a semidirect product with N normal and type I.
Let γ e N,Hγ the stability group, γ an extension of γ to Hγ satisfying

γ(h)y{h-χnh) = γ(n)γ(h), neN,heHγ

(these are the Weil representations), γ is specified up to a character,
but the Mackey co-cycle (class) ωγ defined by

i) = ωy{huh1)y(hχh2\ hj e Hγ

is uniquely determined. The Mackey Machine representations are

^ σ 0 y x y , σ e H™γ.

THEOREM 3.1 ([17, Thm. 7.11]). Suppose N is unimodular, N/H is
countably separated and γ is type I for a.a. γ e N. Let

ny{σ)σdμy(σ)

be the unique direct integral decomposition ofγ. Then
rΦ r® _ _

Ind^l = / / nγ(σ)πγiσdμγ(σ)dμN(γ),
JN/H JH"7

where μ^ is the push-forward of the Plancherel measure μN on N.

Our goal is to reconcile the Mackey parameters in Theorem 3.1
with orbital parameters for co-normally induced representations which
arise in algebraic exponential solvable groups. To achieve that it is
clearly important to have a good understanding of the spectrum of γ.
In the algebraic exponential solvable situation H will be split abelian.
Before specializing to that case, we present a general result which may
be of independent interest.

THEOREM 3.2. Suppose G is algebraic with Levi decomposition G =
HN. Let γ e N and suppose Hγ is reductive. Then

(i) there exists θ e &γ C n* such that Hγ = Hθ. Hence Gθ = HΘNΘ

and there is a natural map Hγ -> Sp(n/n^).
(ii) Suppose the image is of a full rank—i.e. it contains a Cartan

subgroup. Then γ is of finite multiplicity. If the image contains a
compact Cartan subgroup, then γ is multiplicity-free.

Proof. The proof of (i) may be found in [15, Lem. 3.3] where it
is called the Alignment Lemma. We demonstrate part (ii). First we
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observe that if H\ is a closed subgroup of H so that (H\)γ c Hγ, then
clearly

Therefore if γπ{ is of finite multiplicity, or respectively multiplicity-
free, then a fortiori yπ must have the same property. We combine this
observation with the fact that the image of Hγ inside Sp(n/πβ) must
be closed and reductive. Hence it suffices to prove the following

LEMMA 3.3. Let N be simply connected nilpotent, θ en*, C a Cartan
subgroup ofSp(n/nθ). Let Hbe a group of automorphisms of N fixing θ
so that the corresponding homomorphism H —• Sp(n/nθ) has image C.
H fixes the class ofγ = γg, so let γ be an associated Weil representation
of H. Then γ is of uniform finite multiplicity 2r, where r is the split
rank ofC. In particular, ifC is compact, γ is multiplicity-free.

Proof. Before beginning the argument, let us note that the "degen-
erate" case in which γ is a unitary character obeys the Lemma and the
Theorem. In that case n = nθ and γ is the trivial homomorphism. If
γ is not a character, we reason as follows. We know (by [1] or [15])
that there is an //-invariant positive polarization m c nc for θ. Let
D = m Π n, e = (m + m) Π n. Then we may realize the representation γ
as the holomorphically induced representation via m from χθ on Λ^.
Furthermore, we may take the Hubert space for that representation to
be

L2(n/e)®2l(e/D),

where 2l(e/D) denotes the holomorphic functions which are square-
integrable with respect to a canonical Gaussian (see [18]). The point
is the action of N in this realization is horrendous, but the description
of the action of //, i.e. γ9 becomes very simple. This is because we
know precisely the weights for the action of C on n/nθ. In fact we
may split C = BA into a direct product of its maximal torus and a
split component A so that:

A acts on n/e by r = dimn/e independent positive characters,
A acts trivially on e/5,
B acts on c/D by s = dimc e/ί independent unitary characters,
B acts trivially on n/e.

Let K be the kernel ofH-+ Sp{n/nθ). Then H/K = C. It is obvious
that fa = Id. Moreover we have (see [15])

YH = 2 r
 PA x PB
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where

»» t h e n PB =
m€ls me(2s)+

(Z5)+ = the set of ^-tuples of non-negative integers.

This concludes the proof of Lemma 3.3 and Theorem 3.2.
It follows from Theorem 3.2 that the usual Weil representation of

Sp(/7, R) is multiplicity-free. Other applications to semisimple groups
are possible, but in line with our main interest in algebraic exponential
solvable groups, we now specialize H to be a split abelian group.

PROPOSITION 3.4. Let G = AN be algebraic with unipotent radical
N and A split abelian. Suppose θ e n*, γ = γθ e N and A = AΘ. If the
map A —• Sp(n/nθ) is of full rank, then the Weil representation γ has
uniform multiplicity 2 r, r = \ dim n/nθ. Otherwise the representation γ
is of uniform infinite multiplicity. In either case γ is quasi-equivalent
to the regular representation ofΆ/AQ,AQ the kernel of A —> Sp(n/nθ).

Proof. In either eventuality, we know by the observation in the proof
of Theorem 3.2, that the representation γ factors to a representation
of A/AQ. The image C of A in Sp(n/n^) is a connected subgroup of
a split Cartan subgroup, so C = (U+)s. The group AQ may act on
nθ—actually only on Ker θ\nθ—but that is completely irrelevant to the
representation γ. As a representation of A/AQ, γ is nothing more than
the action of A/AQ on L2(n/m) given by

where A/AQ acts on n/m by s = dim A/AQ independent positive char-
acters, s < \ dimn/n0, δ = δn/m and m is an ^4-invariant real polariza-
tion for θ. All of the claims of the proposition are evident from those
specifications.

REMARK 3.5. Several people have suggested to me that the full rank
situation in Proposition 3.4 is rare—perhaps even restricted to the case
that N is Heisenberg. That is not so as the following example reveals.
Let n be spanned by X, Y, Z, W satisfying [X, Y] = Z, [X, Z] = W. Let
A be generated by expRΓ where T acts on n by [Γ,X] = X, [Γ, Y] =
-27,[Γ,Z] = -Z,[T, W] = 0. Then for θ = W\ we have A = Aθ

and neither nθ = RY + RW nor ker0|n 0 = RY is an ideal in n. But
A —> Sp(n/τi0) is of full rank.
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4. Orbital spectrum formula—co-normal case. In this section we
prove one of our main results—the orbital spectrum formula for co-
normal algebraic exponential solvable homogeneous spaces. Let G =
AN be a Levi decomposition of the algebraic exponential solvable
group G and take H = A. Our goal is to prove

THEOREM 4.1. The orbital spectrum formula is true for the co-
normally induced representation I n d ^ l , that is

(4.1) I n d ^ l = Γ πφdμ(φ)
Ja-L/A

where μ is the push-forward ofLebesgue measure on α 1 .

Proof. We employ the strategy of [15]. We prove the result in three
stages: (i) N abelian, (ii) N Heisenberg, and then (iii) N arbitrary
simply connected nilpotent. In each case A is a simply connected split
abelian Lie group, acting semisimply on n.

(i) N abelian. Then N is just a vector group and AN/A is an abelian
symmetric space. The orbital spectrum formula for abelian symmetric
spaces was proven in [17, Expl. 8 (iii)].

(ii) N Heisenberg. Let Z = Cent N. Consider first the case that A
fixes Z pointwise. Then we have a natural map A —> Sp(n/j) Let B be
the kernel. B is a connected subgroup of A which is central in G. Let
C be the image of A in Sp(n/i). C is a connected subgroup of a split
Cartan subgroup of Sp(n/3). Set r = ^dimn/3,5 = dim C,s < r. We
have r > 0 (otherwise N is abelian), and we may take s > 0 (otherwise
G is a direct product G = Ax N and the theorem is evident).

Now we employ the extensive machinery of Theorem 3.1, i.e. the
Mackey parameterization of a co-normally induced representation.
We write

πya = σ®γ xγ, γ eN generic (i.e. γ\z φ Id),

γ a Weil representation of A, σ e A.

Theorem 3.1 tells us that if

?= / nγ(σ)σdμγ(σ),
JA

then

(4.2) Ind^l = Γ Γnγ(σ)πγ^dμγ(σ)dμN(γ).
JN JA
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Next we avail ourselves of several well-known facts regarding the Weil
representations γ—namely γ(B) = 1 and

7 =
_ Γ oo, s < r,

Also the measures μγ are Lebesgue measure.
To prove the equality of formulas (4.1) and (4.2) we must prove

equality (a.e.) of the spectra and multiplicities, and equivalence of
the measures. We consider the spectra first. It is clear from (4.2)—
and general principles of the Orbit Method (see [6], [13])—that the
representations πγ$σ in (4.2) correspond (generically) to the represen-
tations πφ,φ e 6 where we fix Z o G 3,Z0 Φ 0, choose an ^-invariant
complement u to 3, and set

To prove equality of the spectra we must show that (generically) we
have

(4.3) G 6 = G α±.

First let φ e α 1 . Set θ = φ\n and t = Θ(ZO). Suppose t Φ 0 (a generic
condition). Choose n e N such that n θ = tZ$ (i.e. n 0(u) = 0).
Then I claim # p | α G b x . In fact if n = expJSΓ, l E n , then for JF G b

n ^(FF) = ^(ΪF) - Θ([X, W] + \[X, [X, W]] - + .-.)•

The latter is zero because $?(α) = 0 and [b,n] = 0. Hence n - <p e &.
The proof of the reverse inclusion is more difficult. We must take

φ = ψ + tZξ, ψeb±ca\ tφO,

and show that it can be conjugated into an element of o 1 c j * . We
diagonalize the action of A on the invariant complement u, u = X) uα

eua, Wea,aea*.

The non-zero weights occur in pairs ±a. Choose an order and let
a 1,..., as be the positive weights. Then

s

b = p|kerα;
1=1

b 1and {αi,...,α 5} is a basis of b 1 . Let Wu..., Ws be a dual basis (α =

&)• W e m a y s e l e c t ^0' YJ e n s o t h a t

, Yj] = -δijYj,

[Xh Yj) = ί y Z b [ΛΓ/, Λ01 = lYi> YA = 0.
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(Note that if s < r, E/=i Rχi + RYi + R Z o d o e s n o t fil1 U P n ) N o w i f

we take an element n e N of the form

n =
j

then it is easy to see that

Then we may compute

φ(n W) = 0, Web (since [b, n] = 0, ψ e b 1 ),

Thus we may select the Xj and yt so that

txiyi = 0, i = l,2,. . .,5.

That is w"1 p(α) = 0. This concludes the proof of (4.3).

Next we attend to the multiplicities. We must show that (generi-
cally) for φ in G 6 = G a1 = N α 1 we have

, f oo, s < r,
orbits in G φ n α x = <

1 2 r

? 5 = r.

When 5 < r this is easy. We know (by [17]) that the generic dimension
of G - φ Π a1 agrees with the generic dimension of the ^-orbits on
a1 <& the latter is one-half the generic dimension of the (z-orbits. On
G - a1 = G - 6, the generic functional φ = ψ + tZζ satisfy Qφ = α + 3,
so the generic dimension of G - φ is 2r. The generic dimension of the
^4-orbits on α 1 is clearly s. So we have uniform infinite multiplicity
in both (4.1) and (4.2) when s < r. To obtain equality when s = r we
perform some further computations. Take φ ea1. Write

r

n — J J exp yj Yj

One computes that
r

n'1 • φ = Σi-ξiXi + myi + XiyitW*
i=\

+ (ξi - tyi)X* + fa/ + tXi)Y* + tZξ.
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Now A - φ G aL so if g = an~ι then

g φ e a1 & n~~ι φ e a1 &

- ζi*i + myt + txϊyi = 0, i = 1,2,..., r.

This corroborates that dim G - φ Π a1 = r. But it also gives more
precisely that

Moreover as long as Hjζjrjj φ 0 (a generic condition) we have that
there are exactly 2r orbits, namely

{φ: ξjήj = ξjηj, and sgn( |, ) = βj), β, = ±\,j = l , . . . , r .

Thus the multiplicities in (4.1), (4.2) coincide. (Note: An alternate
computation may be done by starting with φ = ψ + tZζ and showing
that the condition nφ ea1- amounts to specializing the values n φ\wr

One again gets r conditions and 2r connected hyperboloids. We shall
use this type of computation in the general case (iii) below.)

Finally, it behooves me to say something about the measures. In
fact, we shall obtain the equivalence of the quotient measures in (4.1)
and (4.2) from a very general principle suggested to me by J. Rosen-
berg. Since it will be useful on other occasions, I separate it out as

PROPOSITION 4.2. Let the Lie group G act smoothly on the C°°-
manifold X and suppose X/G is countably separated. Let X\9Xι be
{locally closed) submanifolds. Let μ, be a measure on Xj in the canon-
ical measure class. Suppose that G X\ = G X^ up to sets of measure
zero. Then the push-forwards ~βj of μj under Xj —• G- Xj/G are in the
same class.

Proof. Let dg denote Haar measure on G. Consider the composite
map

G x XjΓ -> G Xjr -> G Xj/G, j = 1,2.

The canonical measure class on the first space is dg x dμj. The first
map is a submersion and so the canonical measure class dv on G Xj
is the push-forward of dg x dμj. But the orbits are locally closed
and so djίj is nothing more than the push-forward of dvj under the
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second map. Since GX\ — GX2, the two measure classes of dvx,dv2

coincide. Hence the measures dμx and d~μ2 are equivalent.
That the measures in (4.1) and (4.2) are equivalent is a consequence

of Proposition 4.2 if we use 6 and a± for X\ and X2 inside g*.
This completes the proof of Theorem 4.1 when N is Heisenberg and

A fixes the center of N. In fact the argument in this case is typical of
several in the rest of the paper. We have given all the details in this
case—we will give fewer details thereafter.

Now assume TV is Heisenberg, but A doesn't fix Z = Cent TV point-
wise. Then, since dimZ = 1 and A acts semisimply, there are two
generic open ^4-orbits in N. Hence, the generic representations of
G = AN are

τr± = I n d ^ σ y * x y±, σ e B,

where if A —> Aut Z#,2Ϊ equals the kernel (a co-dimension one con-
nected subgroup of A), and y± are fixed elements of N whose central
characters have opposite signs. By Theorem 3.1 we have

(4.4)

where μ± are Lebesgue measures and n±(σ) is given as follows. Let
C be the kernel of B —• Sp(n/j), r = 5 dimn/3,5 = dimi?/C. Then

00, s < r,

As above we must demonstrate equality of (4.1) and (4.4) in spectra,
multiplicity and measure class.

It is clear from (4.4) that the orbital spectrum is generically G 6
where

So we must show (generically) that

G-& = G a±.

The inclusion of the right in the left is proven word-for-word as before.
The reverse inclusion comes about as follows. Let φ — ψ + tZζ. As
in the previous situation we find n E N SO that n - φ(b) = 0. But then
we use the fact that for any φ e g*, φ\% Φ 0, if θ = φ\n, then

NΘ - φ = φ + (SΘ + n ) x = φ + (& + n ) ^

(see [1, II. 1.3] or [11, p. 271 (iv)] or [20, Lem. 2]). Hence we can
further conjugate by N to make the functional vanish on all of α.
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Regarding multiplicities, the G-orbits this time are of dimension
2(r + 1). The ,4-orbits have dimension s+l, and once again all multi-
plicities are +00 unless s = r. In that case, using the same computation
as before (except this time only sgn(ί) is fixed) we get 2r hyperbolic-
shaped ^4-orbits in G φ Π a±. Finally, an application of Proposition
4.2 gives the equality of the measure classes. This finishes case (ii).

(iii) N arbitrary simply connected nilpotent Lie group. Theorem
3.1 still applies. We have

(4.5) Indfl = Γ Γnγ(σ)πγ,σdσdμN(γ),
JN/A JAγ

where πγi(T = I n d ^ σ <g> γ x γ, da is Lebesgue measure and dμjy is
the push-forward of Plancherel measure. We can be somewhat more
precise. The stability groups Aγ are connected and reductive. Hence
by Theorem 3.2 (i) (the Alignment Lemma), there is θ e @Ί such that
Ay = AQ. Then we can describe γ virtually as in case (ii). Consider
Aθ —• Sp(n/ti0),J?0 the kernel, s = dim Aθ/Bθ. We may choose an
^0-invariant polarization m. The action of Aθ on n/nθ generates an
action of

(R+)5 = Aθ/Bθ on L 2(R r i) ? rx = dimn/m.

It is quasi-equivalent to the regular representation of Aθ/Bθ and the
multiplicity is

ω
_ ( 00, s < r u

1 2 \ s = rx.
The orbital spectrum can be related to the Mackey parameters—name-
ly it is G 6 where

6 = {φ e g*: θ = φ\n is aligned, ψ = φ\a e bj}.

So to show equality of spectra in (4.1) and (4.5) we must prove (gener-
ically)

(4.6) G& = Ga±.

In fact, this is a consequence of the following

PROPOSITION 4.3. Let G = AN be algebraic exponential solvable.
Let φ e α 1 ,0 = φ\n. Suppose A fixes θ. Let B be the kernel of the
natural map A —• Sp(n/n0). Then N - φ\a = b± in a*.

We first explain why the proposition implies equation (4.6). Let
φ e a1. Choose n so that ψ\ — n - φ is aligned. Write ψ\ = ψ\ + θ\.



132 RONALD L. LIPSMAN

Then φ = n~ι - ψ\ G cr1 says that ψ\ = -n~ι 0i|α. Then apply
Proposition 4.3 to get ψ\ G b1 c α*. Conversely, let #> € 6 . Write
φ — ψ + β,θ aligned, ψ G b x c α*. Also set $/ = 0 + 0. By Proposition
4.3, there is n so that n p' | f l = -ψ. That is π ^|α = 0. Write
ψ\ = n - φ. Then for y = γθ, we have ^i(αy) = 0. The functional
θ\ = φ\\n may not be aligned. But βγι Πa = α7l = αy = dβ. Hence
TV̂  . ̂ j = φx + (aθ + n)1. That is 9>i = n φ can be further conjugated
by an element of N so as to vanish on all of α.

Proof of Proposition 4.3. We first show that N - θ\a c b 1 . Choose an
^-invariant complement u for n^. Then N = Nθ expu. Let n e N and
write n = nθ expX, nθ e Nθ, X e u. Then for W G b, Λ^ = exp F J e
n#, we have

= θ(nθ FT) because [b,u] = 0

because Θ(W) = 0,W ea = aθ and 7 G nθ.

Now we must show that N- θ\a actually fills up all of b1. The proof
of this fact is by induction on dim n. The case dim n = 1 is trivial. So
let G = AN and assume the assertion for all groups whose unipotent
radical has lower dimension than that of n. If N is Heisenberg, the
result is true by the computation in part (ii), so we may assume n is
not Heisenberg. Next let 3 = centn and set j 0 = 3 n ker θ, an ideal in
n which is normalized by A. The hypotheses and conclusions pass to
0/30. Hence by induction we may assume 30 is trivial, i.e. dim 3 = 1
and 0(3) Φ 0. Then we let u = ker 0, n = 3 + u. Choose any eigenvector
Y G 3(2) Π u,3 ( 2 ) the second center,

[W,Y] = a(W)Y, We a.

The usual nilpotent structure theory gives us (see [9]) that the cen-
tralizer ni of Y in n is an ^-invariant ideal of co-dimension 1 in n.
Furthermore if θ\ = 0|Πl, then

n D ni D (ni)^ D nθ and dimn/ni = dim(ni)^/n^ = 1.

Suppose A —> Sρ(ni/(ni)6/1) has the same kernel B. (This will occur if
a is in the span of the weights for the action of α on n\/(n\)βr) Then
by the induction assumption N\ 9\\a = b1- which implies the desired
result.
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The other possibility is that the kernel B\ of A —> Sp(ni/(ni)^) has
dimension = 1 + dim B. In that case we may write the weights for the
action of α on Π/ΠQ as ± α i , . . . , as and

s s

b = P| kerα; b\ = |°| kerα;.
ι=l /=2

At this point it is no loss of generality to put b = {0}. Then dim bi = 1.
Set 6 = kerαi so that

α = bi e t .

Any ψ € a* can be written uniquely ^ = ψ\ + ψι, ψ\ e b1, ψ2et± =
Rαj. Apply the induction hypothesis to conclude:

3n\ E N\ such that n\ -θ\\ι = ψ\.

N o w w e m a y c h o o s e a n e i g e n v e c t o r I E U Π ( n \ n i ) so t h a t [X, Y] =

There are two possibilities.
(a) m - Θ(X) = 0. Then for x ?y e R

nx - θ(cxpxXcxpyY -W)
aι(W)xX - ax(W)xyZ0)

This shows N • θ\a = α*.
(b) i! Θ(X) φ 0. Then for x e R

/i! 0 ( e x p x X -W) = nX' θ{W + ax{W)xX)

showing once again that N - θ\a — α*. This completes the proof of
Proposition 4.3, and with it the demonstration of equation (4.6).

Next we consider multiplicities. In the aligned format φ = ψ + θ,
the stabilizers are gφ = aφ+nφ (see [12, Lem. 4.2]). (In that reference,
the Levi components are assumed compact, but reductive is all that
is necessary.) But aφ = % (since α is abelian). Moreover, Nθ - φ =
Ψ + (aθ + n)λ saYs that dimΠβ/nφ = dimα/α^. Hence the generic
dimension of (/-orbits is dim α/α^ + dimn/nθ + dimn^/n^ = 2(r\ + r2)
where

rx = dimn/m = \ dim n/n^, m an ̂ -invariant polarization for 0,

r2 = dim Ufl/n^ =
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Now we must show that (generically) for φ in G 6 = G a1 = N a1

we have

#^-orbits in G φ n a1 = { °°' s K Γu

But we can reason as in the Heisenberg case. The generic dimension
of the orbit intersections G-φΠa1- agrees with the generic dimension of
A -orbits ^ the latter is one-half the generic dimension of the G-orbits
meeting α 1 , i.e. r\ + r2. The generic ^4-orbit obviously has dimension
s + r2. Hence the equal dimension case occurs precisely when s = r\.
Thus we have proven equality of multiplicity when s < ru that is
uniform infinite multiplicity. So now we may assume s = r1# We
must show that generically there are 2Γl ^4-orbits onG φΠa1. Now it
follows from the duality between α/α^ and ne/nφ that there is no loss
of generality in assuming α = a#. The portion of the orbit intersection
arising from A/Aθ corresponds to that generated by Nθ/Nφ and the
components are not affected. Moreover, as in the Heisenberg case, we
may, without loss of generality, assume be is trivial. Hence we are
reduced to proving

LEMMA 4.4. Let G = AN be algebraic exponential solvable, θ e n*.

Suppose A = Aθ and A —• Sp(n/n^) is a bijection onto a split Cartan

{see Rem. 3.5). Let r = d im^ = ^dimn/rifl, φ 6 Pφ{θ),Ψ = φ\a-

Then for generic ψ, we have 2r A-orbits on G - φ Π α 1 .

Proof. Let n = nθ + u, an ̂ -invariant decomposition. As usual, by
induction, we may assume dim 3 = 1 and 0(j) Φ 0. Then n = 3+ker θ is
also an ̂ 4-invariant decomposition. Fix Z o G 3 so that Θ{ZQ) = 1. The
skew form BΘ{X, Y) = Θ[X9 Y] is non-degenerate on u. We diagonalize
the action of α on u, namely u = X) ua where

[W9X] = a(W)X9 Xeua,Wea,ae α*.

The non-zero weights occur in pairs ±α. If we fix an order we have
r positive weights a\9...9ar and they are linearly independent. Let
W\9...9Wr be the dual basis. We select eigenvectors Xj = Xaj9 Yj =
X-aP so that

[WhXj] = δijXj, [Wh Yj] = -δijYj,

[Xh Yj] = δijZ0 mod 3,

[Xj9 Xj] = \Xh Yj] = 0 mod rι^.

The generic ψ we have in mind are those for which ψ[ = ψ{Wi) Φ
0, i = 1,2,..., r. Then the ̂ 4-orbits on the G-orbit intersections with



EXPONENTIAL SOLVABLE HOMOGENEOUS SPACES 135

a1 are specified by examining the conditions under which the elements

n = Yl exp xjXj exp yj Yj
j

satisfy n θ = ~ψ (since Nθ - φ = φ). In fact the argument comes
down to the

Claim. n~x θ{Wj)=xjyj.
If this is so, it shows that there are 2r hyperbolic components which
constitute the ^4-orbits in G φ Πa1. Now to prove the claim, note
that, modulo n^\j, we have

(4.7) n Wj = Wj+yjYj-XjXj + xjyjZo + ,

where the concluding dots stand for sums of bracket terms of the form

in which λ e R and each t// is one of the eigenvectors. In fact such a
bracket must lie in nά, a = Σ aj if Uj G uaJ. If a Φ 0, θ kills the term.
If ά = 0 we observe that the only expression with k = 2 not killed by
0 is accounted for in (4.7). Thus k > 4 and A: must be even. In fact
θ kills those also. For example consider

We have [X-a> [Xβ> %-β] = 0 mod n#, therefore

This proves the claim, and so concludes the proof of Lemma 4.4.
Finally we obtain the equivalence of the measure classes from Propo-

sition 4.2 as expected. To apply it we need to observe that & is (gener-
ically) a manifold. This is true because of [12, Lem. 4.2 (iii)]. If we
set Zχ{A) = {n e N: ana~ι = n, Vα e A}, then 6 is fibered by

bj >6

i
ZN{A) x n*/N.

n*/N is generically affine, and for each θ in a cross-section, one obtains
all other aligned functionals in the orbit of θ by forming ZN(A) θ.

The proof of Theorem 4.1 is now complete.
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5. Orbital spectrum formula—multiplicity-free nilpotent part. We

have explained in §2 (Cor. 2.3 & Lem. 3.4) how, in order to prove the
orbital spectrum formula for algebraic exponential solvable homoge-
neous spaces, we must handle the situation

Here G = AN is algebraic exponential solvable, N is the unipotent
radical and A is a split Levi component. The algebraic subgroup H =
AM has unipotent radical M c N and the same Levi component A as
G. The orbital spectrum formula for G, H asserts that

(5.1) Ind£l= Γ π9dμ(φ),
J(a+m)^IAM

μ the push-forward of Lebesgue measure. In this section we prove
another of our main results—that formula (5.1) is true under the as-
sumption that Ind^ 1 is multiplicity-free. This will be enough to verify
the Benoist conjecture (§6) (see Rem. 5.4 for a comment on the diffi-
culties that arise in the non-multiplicity-free situation).

We begin by recalling the method of proof of (5.1) in §4 in the case
that M is trivial. The basic requirement is the description of Ind^N1 in
terms of Mackey parameters. Theorem 3.1 supplies that description.
Then the spectrum formula is given by establishing that the Mackey
parameters agree with the orbital parameters in the orbital spectrum
formula. We follow the same track here, so we need a generalization of
Theorem 3.1 to the induced representation I n d j ^ 1. Although we shall
only need the case in which Indj^ 1 is multiplicity-free in this paper,
we prove the most general possible result. It is our hope that it will
prove useful later when the multiplicity-free assumption is removed.

THEOREM 5.1. Let G = HN be a semidirect product with N normal
type I and unimodular. Suppose M c N is a closed H-invariant sub-
group. Let NM be the support o/Ind^l . Suppose NM/H is countably
separated. Let

\nάN

M\= Γ γdμM(γ)
JNM

be the central decomposition into factor representations. Then for μM ~
a.a. γ, the space Ψy ofγ is actually an HyN-space. Suppose the resulting
representations vy ofGy = HγN are type I for a. a. γ. Let

vy = / ny{v)v d μy{v)
JGV
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be their direct integral decompositions. Here Gγ = {v e Gγ: u\N is
quasi-equivalent to γ}. Then

Ind#j£l = / / ny{υ)πvdμy{y)dμM{yX
JNM/HJG7

where nv = lnά%yv and JXM is the push-forward of βM to NM/H.

Proof. The argument is very similar to the proof of Theorem 3.1
that appears in [17]. I shall only give the main points.

First assume that G is any type I group, π a unitary representation
of G,

r®

π= γdμ(γ)

the central decomposition of π, and a e Aut(<?). Then
rθ

π a= γ -adμ(γ).

(I write group actions on the right in order to correspond to [17].)
Suppose that π and π a are equivalent. Then μ is quasi-invariant
(under a) and we may choose unitary maps

satisfying

The mappings γa are not uniquely specified (even up to scalars) if the
factor representations γ are not irreducible. However, suppose that a
fixed unitary operator Ta is chosen effecting the equivalence between
π and π-a. Then for μ-a.a. y, the "Mackey extensions'9 γa are uniquely
determined by the requirement that the infinitesimal constituents of
Ta be the maps

q{a,y) = (dμ a~ι)/dμ. Moreover the extensions are measurable
functions of γ and a.

Now apply the above generalities to

with H a group of automorphisms of N preserving M. It is clear that
for any h e H,

π h = π.
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The quasi-regular representation Indj^l acts on L2(N;M) (see §1 for
the notation). For h G 77, we set

Thf(n) = qN(h)-{'2f(h-ιnh), feL2(N;M).

Then the extension operators % are uniquely specified. Now the re-
mainder of the argument is almost identical to [17, §7]. The represen-
tation I n d ^ l also acts in L2(N;M). The latter is decomposed over
NM which we then disintegrate under the action of H. Then we let

3?vdμy{y)

be the direct integral decomposition which intertwines γ and
/ Θ nγ(v)v dμy[y). One defines

Φ: / ry.h^ Γ ny{v)Tπvdμy{y)
JH/Hγ JGγ

by

where

The symbol %v denotes the space of ny{y)πv = nγ(u)lndgγu which
is L2{H\Hy\3£v). Combining the disintegration with the intertwin-
ing operator Φ, we obtain the intertwining operator which effects the
equivalence in formula (5.2). The corroborating details are virtually
identical to [17, §7].

Now we put Theorem 5.1 to use in the case that Indj^ 1 is multiplicity-
free. Let G = AN be algebraic exponential solvable with algebraic
subgroup H = AM, M c N.

THEOREM 5.2. Suppose Indj^l is multiplicity-free. Then the orbital
spectrum formula is valid for the quasi-regular representation Ind^l,
that is

(5.2) I n d ^ l = Γ π9dμ(9),
J{a+m)±IAM

μ the push-forward ofLebesgue measure.

Proof. We begin with the observation that the commuting algebra
of the representation Indj^l contains that of I n d ^ l . Indeed both
representations may be realized in L2(N;M). Furthermore,
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The assertion about commuting algebras follows immediately. Hence
the quasi-regular representation I n d ^ l must be multiplicity-free if
I n d ^ l is.

Next we show that the multiplicities in the orbital spectrum formula
are generically 1. That is we prove:

φ E (α + m)1 => AN φd(a + m) 1 = AM φ (generic φ).

We know that θ e m1 ^ i V θ n m 1 = M 0 is true generically [3].
We shall prove the corresponding result for all φ G (a + xn)1 whose
restriction θ to n satisfies N θ Π xn1 = M θ. So suppose φ is of this
form and

an - φ G (a + m)1, aeA,neN.

Then n - θ(m) = an θ(a m) = an φ(xn) = 0. Hence there exists
m G M such that n θ = m θ. That is n = mnθ,nQ e Nθ. Then
an φ = a m ^ ^ e (α + m) 1 , which implies

no - φ(a + m) = αmn^ $?(αm (α + m))

= an p(α + m) = 0.

T h a t is n θ φ G (α + m ) 1 . B u t N θ - φ = φ + (aγ + n ) 1 . T h u s if n β - φ - φ
vanishes on all of α, it must be that ΠQ - φ = ̂ , i.e. ŵ  E iV .̂ Hence
an - φ = amnβ 9? = am φ.

We have demonstrated the multiplicity portion of Theorem 5.2,
actually without recourse to Theorem 5.1. We need Theorem 5.1 for
the spectrum portion. Indeed in all previous cases (several times in
[17] and also in §4), we used Orbit Method procedures to easily read
off from the Mackey parameters of a direct integral what the orbital
parameters 6 must be. Then we were reduced to showing G & = GΛ)1-.
In this case it is not so easy to read off 6. In fact I claim it is

6 = {φ=ξ + θ:θem1,θ aligned and ξ(aθ) = 0}.

First we shall prove that G& = G (a + rn)1, and then we shall show
why Theorem 5.1 says the spectrum of I n d ^ l is actually G β.

If φ G 6, then Nθ - φ = φ + (α^ + n ) 1 . Hence we can conjugate φ
by an element of NQ which leaves its restriction to n untouched and
renders it zero on all of α. Conversely suppose φ G (α+m)-1. Assuming
we can align φ by an element m of M, it is clear that m φ €&. The
alignment claim is justified by

LEMMA 5.3 (Refinement of Alignment). Let G = AN be algebraic,
H = AM an algebraic subgroup (so A preserves M). Suppose that
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1 is multiplicity - freef and genetically on NM the stability group
Ay is reductive. Then for generic γ e NM we may find a functional θ
in the orbit @y ofγ which is aligned and in m 1 .

Proof. We consider the (generic) functional θ em1 which satisfies
N - θ Dm1 = M - θ. By Theorem 3.2 (i) we know there is n e N
such that n θ is aligned. That is Gθ = AΘNΘ. The content of this
new lemma is that we can select n from M. To see this we first note
that Hy = AyM because Hy = Hf)Gγ = AM n AγN = AγM. Next
we assert that Hγ = HΘM. In fact if h e Hγ, then h θ = n - θ ϊoτ
some n e N. But h θ e m 1 so n θ = ra θ for some m e M (by the
multiplicity-free assumption). Therefore h = hm~ιm e HΘM. Now
we reason as in [12, §4]. We have Λy = Gγ/N = Gtf/Λfe. Choose a Levi
component /? G^ = JNΘ. But we also have Aγ = i/y/Af = Hθ/Mθ. So
the Levi component of Hθ is isomorphic to /, and it is no loss of
generality to take it to be J,HΘ = JMΘ. By the maximal reductivity
of a Levi component of H, H = AM, there must exist w G M so that
J CuAu~ι. Then exactly as in [12], it is straightforward to verify that
u - θ is aligned.

It remains to show that the spectrum of I n d ^ as described by
Theorem 5.1 corresponds to the representations πφ whose orbits G φ
meet β. Now we know that there is a unitary operator

which commutes

In<l with Γ γθdμM(θ).

Moreover, by the Refinement of Alignment Lemma (Lemma 5.3) we
may assume that θ e m 1 is aligned, i.e. Aγβ = Aβ. Furthermore we
can realize jβ by induction via an ^-invariant polarization b = bβ c
n of θ. Now since L2(N;M) is multiplicity-free, there is a unique
representation y# of Aβ so that

/•Θ

(5.3) Indj^l = / π
Jm^/AM

γθ, π7θ = lnά^NγΘ x γΘ

We may realize J# as L2(N;B;χθ) with iV acting by right translation.
The action of A in Indj^l is by conjugation (with suitable modulus).
Its infinitesimal components under Ψ give precisely the actions of Aβ
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via fβ. But the action of Aθ on %?$ by conjugation satisfies the same
equivariance relation with respect to γβ. Hence it must be that

]
for some unitary character ψ0 of Aθ. It is clear from the Orbit Method
[6], [13] that to prove the orbital parameters of these representations
are precisely Θ we must show the
[6], [13] that to prove the orbital
are precisely Θ, we must show the

Claim. ψθ=\.

We shall achieve that by invoking Fujiwara's recent derivation of an
explicit (that is distribution-theoretic) Plancherel formula for Indj^ 1
(see [7] [8]). We readjust our notation slightly to conform to that of
Fujiwara [7], Set:

a = aτ, the corresponding anti-distribution

(i.e. conjugate linear),

γθ =
o.β the corresponding anti-distribution,

aθ:F^f FΊjrήdm, FeJ%.
JM/MΠB

It's well known that for any test function h, unitary representation π,
and (anti-) distribution /?, the (anti-) distribution π{h)β is a smooth
function. Fujiwara's Plancherel formula is: VΛ e 9f{N)

(5.4) (τ(A)α,α)= / (γθ(h)aθ,aθ)dθ
Jm-L/M

(see [7]). Now if we translate h by an arbitrary group element and
throw that term to the other side, we obtain that the infinitesimal
components of the distributions τ(Λ)α are γθ(h)aθ. Fujiwara com-
putes these distributions explicitly:

(5.5) τ(Λ)α = f\ fh(n) = / h{nm) dm [7, p. 322],
JM

Vθ(h)aθ = ωh

θ, ωh

θ{n) = ί fh{nθb)χθ{b) db
JB/MΠB

[7, p. 347].
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But, by the definition of the action of fβ, it must be that the infinites-
imal components of a fh are γβ(a)oήj. Now we compute

ί h{aΓιnam)dm
JM

[
whose infinitesimal components are

JBI

fa'h{nb)χΘφ)db
B/MΠB

ΓB/MΠB

while

γ(a)con

θ(n) = ^

= ΨoWήψia) ί fh(a-ιnab)χθ(b)db
JB/MΠB

= Ψo(a)δ-f(a)δ-}MnB(a) ί fh(a-ιnba)χθ(b)db.
1 JB/MΠB/B/MΠB

Thus to prove ψβ = 1, it suffices to show

- UN,B UB/MΠB'

The latter is

ς*—1/2 j*—1/2 <?—1/2 c—1/2 c—1/2

°N/MnB°B/MnB = °N,M 0M/MnB0B/MΓ)B'

So it must be shown that

/r z:\ ί-1/2 c-1/2 ,

VJ-0/ °M/MΓ)B°B/MnB — 1 #

But this follows directly and immediately from Fujiwara's expanded
form of his Plancherel formula (5.4). If one employs (5.5), formula
(5.4) becomes

hM{e) = f f f hM{mb)χΘ{b) db dm dθ
Jm±/M JM/MΠB JB/MΠB

where

hM(n)= I h(nm)dm.
JM

The equation (5.6) is an easy consequence—it is also proven in [8, p.
34].
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This concludes the derivation of the spectrum in Theorem 5.2. Fi-
nally, the identification of the spectral measure is carried out as usual
by means of Proposition 4.2. We simply apply it to the submanifolds
(α + m) x and m x . (Note G - &/G « mx/M.)

REMARKS 5.4. (i) When Ind^l is multiplicity-free, Theorem 5.1
says that for a.a. γ e NM> there is a unique irreducible representation
u(γ) of AγN extending γ so that I n d ^ l = J®M/A Ind^JVy dγ. The
content of Theorem 5.2 is that u(γ) is the canonical Duflo extension
[5] [14]. A similar result is established in [16, §4]. It is probably true
whenever Aγ is reductive.

(ii) Theorem 5.2 certainly applies to the case of symmetric spaces.
It has been suggested to me that it may not apply to anything else.
That is the condition Indj^ 1 multiplicity-free could imply that N/M
is symmetric. That is false. The homogeneous space in [3, Expl. 3,
p. 60] is not symmetric, but it is multiplicity-free. And it is easy to
concoct a one-dimensional split action on it.

(iii) Our hope is to use the techniques developed herein to obtain
the orbital spectrum formula for the quasi-regular representation of an
arbitrary algebraic exponential solvable homogeneous space. Clearly
Corollary 2.3, Lemma 2.4, and Theorem 4.1 and 5.2 go a long way
towards that goal. I believe Theorem 5.2 can be extended to the case
that Indj^l has finite multiplicity, where Fujiwara's results are still
quite explicit. If Ind^ l has finite multiplicity (see [3] or [17]), then
only finitely many extensions enter into the Plancherel formula of
Ind^A/1. But it may be difficult to compute the orbital parameters of
these extensions—that is to establish a result analogous to the claim in
the above proof. Even worse, it is possible to give examples wherein
Indj^ 1 has infinite multiplicity, but I n d ^ 1 has either finite or infinite
multiplicity. These are the chief impediments to extending Theorem
5.2 to arbitrary algebraic exponential solvable homogeneous spaces.
They can be overcome if N is abelian or Heisenberg. But for general
N and M (where L2(N;M) is not multiplicity-free), the computation
of the orbital parameters and multiplicities of the extensions fo, and
thus the homogeneous spaces L2(AN;AM), has not been completed.

6. Benoist's conjecture. Suppose G/H is a symmetric space, mean-
ing here that G is a connected Lie group and H is the stabilizer of
an involutive automorphism σ of G. Suppose G is type I. Then it is
purely formal that the spectrum of Ind#l is contained in the closed
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set
Gσ = {πeG:πσ^π}.

By Benoist's conjecture I mean the following (see [2]).

Conjecture 6.1. Suppose G is exponential solvable. Then the sup-
port of the spectral measure of Ind#l is precisely Gσ.

If Ω = ffn C g* is the orbit corresponding to π, then it is easy to see
that

@πo = d(Ω) and <% = -Ω.

Moreover σ(Ω) = - Ω iff Ω Π fj-1 φ 0 [2]. The map Ω -> 7ΓΩ is
continuous. (J. Ludwig has announced that it is open also.) Hence
Benoist's conjecture is tantamount to asserting that the spectrum of
Ind//1 is precisely G ίj1. If G is nilpotent, this follows from [3] or
[17]. Benoist observed as much in [2, §4.3]. But he left the matter
unsettled for exponential solvable groups since there was no orbital
spectrum formula in that generality.

If one now takes into account the results of §5, then Conjecture 6.1
is true if G and H are algebraic. Our goal is to show that it is true for
arbitrary exponential solvable symmetric spaces.

THEOREM 6.2. Let G be exponential solvable, σ an involutive au-
tomorphism ofG,H = Gσ the stability group for σ. Then the quasi-
regular representation Ind#l obeys the orbital spectrum formula

πφdμ{φ)

μ = the push-forward ofLebesgue measure.

Proof. Now exponential solvable symmetric spaces have property
(MF), defined in [16]. (Benoist calls it property &>.) One of the
consequences of property (MF) is that the quasi-regular representa-
tion is multiplicity-free [2, Thm. 3.1]. But property (MF) also im-
plies multiplicity one in the orbital spectrum formula. Indeed we
have β = f) Θ q, q = the - 1 eigenspace of (the derivative of) σ. Also
H x Q —> G = HQ, Q = exp q, is a diffeomorphism of manifolds (see
[2] [16]). Hence if φ G ί)x ^ q and g - φ G q, then g = hq G HQ and

= hq~ι - (-φ) => q2 G Gφ => q e Gφ => g φ = h φ.

That is G φ Π (j1 = H φ.
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Next we prove G f)λ is the spectrum of Ind^l (the heart of the
Benoist conjecture). We obtain it in two stages—first when G and
H are algebraic, and then in general. If G and H are algebraic, then
by Lemma 2.4 we may assume H = AM c AN = G. But Theorem
5.2 applies in this event. That is because the unipotent radical is a
characteristic subgroup. Hence σ preserves N and Nσ = N nGσ —
N Π AM = M. Therefore N/M is also symmetric.

Now we drop the algebraic assumption. G is any exponential solv-
able group with involution σ,H = Gσ. Let N be the nilradical of G,
a connected normal subgroup. Consider the normal subgroup HN.
We have H c HN < G. If HN is a proper subgroup of G, then H is
subnormal. But in this case subnormal implies strongly subnormal.
That is because G/N is a vector group. In any event reasoning exactly
as in §2, we see it is no loss of generality to assume HN = G. Next
we effect a reduction to a situation which is almost the same as that
of algebraic groups.

Consider the exponential solvable group G which is the semidirect
product of H and N,

G = HN.

We have a natural projection p: G —• G = HN,p(h, ή) = hn. If we set
M = HΠN, the kernel of p is {(m, m~ι): m e M}. Let H = p~\H) =
{(Λ,m): h e H, m e M}. If we define σ(h,n) = (σh,σn) = (h9σn)9

we obtain an involution of G whose stability subgroup Gσ is exactly
H. Now it is a simple exercise to verify the following:

LEMMA 6.3. Suppose p: G\ —• G2 is a surjective homomorphism
of exponential solvable groups, Hj c GjJ = 1,2, closed connected
subgroups, p{H\) = Hi andHγ D kerp. If the orbital spectrum formula
is valid for Ind^J 1, then it is also valid for Ind^? 1.

So we are reduced finally to the following situation:
G = S N semidirect product, N<G,N nilpotent
H = S M semidirect, M c N, L2(N;M) multiplicity-free.

That is, we are in the situation of Theorem 5.2 except that an expo-
nential solvable group S has replaced the split abelian group A. But
we are also given that H = Gσ is the stability group of an involution
σ of G. These are precisely the symmetric spaces studied in [16, §4].
Moreover, Conjecture 4.4 of [16] is valid here because for any γ e N,
the stability group Sγ carries no characters of order 2. The results of
[16, §4] and Theorem 5.1 insure that in the Mackey parameters of
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Ind#l we have the representations πγ = I n d f ^ ^ y ) , where γ e NM

and u{y) = γ x γ is the canonical Duflo extension of γ. Therefore the
orbital parameters of these representations are those meeting

The change from §5 is that since the stability groups Sγ are no longer
reductive, we may not be able to align θ and keep it in xn±. So perhaps
50 ζsγ. But it doesn't matter here. We still have

For if φ e 6, then NQ - φ = φ + (sγ + n)1—hence we can conjugate
by an element of NQ to put φ in \)L = (5 + m)L. The reverse inclusion
is trivial now since no alignment is required. That is, if φ e f)-1, then
θ = φ\n E m1- and ξ = φ\B = 0. (Conceivably φ\gθ Φ 0, but that
is irrelevant.) Hence the spectrum of Ind^l has the correct orbital
parameters. The spectral measure is correct also—apply Proposition
4.2 to f}1 and m 1 . (As in Thm. 5.2, we have G G/G « m±/M.)

This concludes the proof of Theorem 6.2 and with it the third of
our main results—the substantiation of Benoist's conjecture for an
arbitrary exponential solvable symmetric space.
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