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EQUIVARIANT ORIENTATIONS
AND G-BORDISM THEORY

STEVEN R. COSTENOBLE AND STEFAN WANER

We outline a new geometric theory of orientations under the action
of a group G and formulate bordism theories for (7-oriented manifolds.
These theories extend the classical G-bordism theories (graded on
Z), as well as the RO((7)-graded oriented G-bordism theories which
describe bordism of G-manifolds with restricted local representation
structure. The theories we obtain account for oriented and unoriented
bordism of G-manifolds with and without restricted local represen-
tation structure. We further obtain spectral sequences converging to
these theories through adjacent family constructions.

1. Introduction and statement of results. The literature contains di-
vergent views both on the notion of equivariant dimension and on
equivariant orientability for smooth actions of transformation groups.

As to the former, one has firstly the classical G-bordism groups
[D2, S2] graded on Z, where one regards the dimension of a smooth
G-manifold as an integer in the usual sense. Secondly, one has the
RO(G)-graded G-bordism theories of Pulikowski, Kosniowski and the
authors [P2, Kl, Cl, Wl], where one considers G-manifolds modelled
on a fixed virtual representation of G, and regards the dimension of
a G-manifold as the element of RO(G) determined by this virtual
representation.

As regards equivariant orientability, there are several notions in the
literature. Stong [S3] considered equivariant oriented bordism of ori-
ented manifolds in which the group action preserves the orientation.
This idea, which goes back to work of Conner and Floyd [CF] who
studied oriented manifolds with actions by maps of odd period, ap-
pears in much of the subsequent work on oriented G-bordism. (See for
example [Rl], [R2] and [W4].) One also has the folklore requirement
that the fixed-sets, together with their normal data, be "coherently"
oriented, a weak version of this having appeared in work of Sebas-
tiani and Rothenberg-Sondow [SI], [RS], in order to define equivari-
ant connected sums. (See also [B2; §VL8].) The point here is that one
wishes to avoid having to restrict to orientation-preserving actions.

63



64 STEVEN R. COSTENOBLE AND STEFAN WANER

In RO(G)-graded bordism of G-manifolds modelled on a single rep-
resentation, the folklore requirement amounts to a reduction of the
structure group of the normal bundle [Wl-2]; one requires that the
change-of-coordinate maps have equivariant degree one in a suitable
sense.

In [CMW] May and the authors of this article present a compre-
hensive theory of orientations of G-manifolds in terms of categorical
constructions which essentially rigorize the folklore view above. The
authors in [CMW] regard the "dimension" of a G-manifold as an ob-
ject called a "groupoid representation", discussed in §2 below; this is
a categorical construction that captures the interlocking structure of
the local representations of subgroups of G.

By way of recent applications, this theory has been shown, in
[CWW], to provide a setting in which oriented equivariant cutting and
pasting constructions are well-defined and in which oriented equivari-
ant vector field bordism can be studied. It turns out that one of the
determining invariants is the "equivariant Euler characteristic" which
is defined in terms of the categorical constructions used in the formu-
lation of orientation theory.

It is our purpose here to apply equivariant orientation theory to the
study of G-bordism and thereby provide a link between Z-graded G-
bordism and G-bordism modelled on a single (virtual) representation.
Specifically, we show that the RO(G)-graded G-bordism theories (in
both the oriented and unoriented cases) extend to theories graded on
a ring of "virtual groupoid representations", with classical unoriented
Z-graded G-bordism as a special case. We also show that the existence
of "universal" groupoid representations in each dimension leads to
a theory of Z-graded oriented G-bordism which is new. Further, we
provide in §6 a generalization of Kosniowski's [K2] inductive exact
couple and show the existence of a spectral sequence converging from
various forms of free G-bordism to the theories we construct.

This paper is organized as follows. In §2 we summarize equivariant
orientation theory so as to render this paper somewhat self-contained.
The theory of oriented G-manifolds and their fixed-set data is dis-
cussed in §3, and our G-bordism theories constructed in §4. In §5 we
construct explicit representing Thorn spectra for oriented G-bordism
theories, taking the view that these are an important calculational tool,
and in §6, we describe a spectral sequence associated with ascending
chains of families of subgroups. In §7 we construct the Z-graded the-
ories, and specialize the spectral sequence results to these.
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2. Groupoid representations. We summarize the geometric theory of
G-orientations given in [CMW], and refer the reader there for more
detailed arguments. At first we allow the transformation group G to
be an arbitrary compact Lie group, but we specialize to finite groups
in §5 when we use transversality results which fail for general compact
Lie group actions.

Let G be a compact Lie group; subgroups will be assumed to be
closed. Let 9 be the category of orbit spaces G/H and G-maps be-
tween them, and let h& be its homotopy category. Note that & and
h& coincide when G is finite.

Recall that a groupoid is a small category each of whose maps is an
isomorphism. A groupoid is skeletal if each of its isomorphism classes
consists of a single object.

DEFINITION 2.1. A groupoid over h^ is a small category Ψ together
with a functor φ: ^ —• h& which satisfies the following properties. For
each object a e h&, let W(a) denote the subcategory of Ή consisting of
those objects and morphisms which map under φ to a and its identity
map.

(a) Each category Ψ(a) is either empty or a groupoid.
(b) (Source lifting property, SLP) For each object y e f and each

morphism β: a —• φ(y) in h&, there is an object x e Ή such that
φ(x) = a and a morphism γ: x -> y in & such that φ(γ) = β.

(c) (Divisibility) For each commutative triangle in K& of the form

φ{y)
φ(γ) yι ^ φ(γf)

φ(χ) -y φ(xf),

there exists a morphism δ: x -> x' in g7 such that φ(δ) = β and
γ1 o δ = γ.

We say that ^ is a skeletal groupoid over h^ if each category g"(α)
is skeletal, and that ^ is a faithful groupoid over h^ if the functor φ is
faithful. A ra<z/? η:W—>%"of groupoids over h& is a functor ?/ such
that φ1 o η = φ. We note that any groupoid Ψ over h^ retracts onto a
skeletal subgroupoid of g7.

If X is a G-space, define the fundamental groupoid n[X\ G) as fol-
lows. The objects of π(X\ G) are the G-maps x: G/H -» X, where ίΓ
ranges over the (closed) subgroups of G; equivalently, x is a point in
X77. A morphism x -> y, y: G/AΓ -• X, is the equivalence class of a
pair (σ, ω), where σ: G/H -• G/ic: is a G-map, and where ω: G/i/ x
/ -• X is a G-homotopy from * to y oσ. Two such maps are equivalent
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if there are G-homotopies j : σ1 ~ a1 and k: ω ~ ω' such that

k(a, 0, 0 = x(a) and fc(α, 1, ί) = J> ° ./(α, 0

for α G G/i7 and t e I. If G is discrete, then a — & and j is constant.
Composition is evident. The projection functor φ: π(X G) —> A^ is
given by sending x: G/if —• X to the underlying orbit space G/H,
and the morphism (σ, ω) to σ.

Fix a small category G£% of orthogonal G-vector bundles over ob-
jects in h'g so that G^ contains an isomorphic copy of each G-vector
bundle over an orbit, and so that G3§ is closed under external Whitney
sums and pullbacks over maps in &. A morphism in G3§ is a map of
G-vector bundles; let hG3§ be its homotopy category. The base-space
map φ: hG3§ —• h^ gives G3§ the structure of a groupoid over h&.

Similarly, let GΨ38 be the category of virtual orthogonal G-bundles,
that is pairs (E,F) of objects in G33\ thought of as formal differences
of G-bundles. In order to describe the morphisms in GΨ33\ let B
and B1 denote the base-space G-orbits of the pairs (E,F) and (Ef,F')
respectively. A morphism (E,F) —• (Ef,Ff) in GW§ over a G-map
σ: B —> B1 is then an equivalence class of pairs of morphisms (f:E@
L -> E' Θ V\ g: F θ L -> F ' θ L;) in G ^ over σ, with q: L ^ B
and #': L' —• 2?'. The equivalence relation is given by two forms of
elementary equivalence:

l {f^S) ^ {f ®h,g® h) for arbitrary A in G ^ covering σ;

2. (/: E ® L -> E' ® L',g\ F ® L -> F1 ® L') « (A: E ® K -^
E1 ® K',k: F ® K -* F' ® Kf) if there are isomorphisms L = K and
Z/ = K' such that the diagrams

E®L > E'®L' F®L > F θ l '

and

E ® K > E'®K' F®K

commute.

We then take the smallest equivalence relation, containing these
relations, making composition well-defined. (Details appear in [CW].)
When the base spaces B and B' coincide, morphisms (E, F) —> (Ef, Ff)
are in one-to-one correspondence with stable G-bundle maps E®Ff —>
Ef®F, where we allow stabilization using arbitrary representations of
G. Let hGW§ be the homotopy category of GW8\ φ: hGΨSS
makes this a groupoid over
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DEFINITION 2.2. An {orthogonal) representation of the groupoid &,
or &-representation, is a map of groupoids p: & —• AG^; thus p as-
signs a G-vector bundle over G/H to each object x of ί? such that
^(x) = G///, functorially up to homotopy. Similarly, a virtual repre-
sentation of& is a map /?: ^ -> hGΨ&.

Strictly speaking, a representation is a natural isomorphism class
of such maps, just as a group representation is a conjugacy class of
homomorphisms, but we will usually think in terms of a particular
representative map.

EXAMPLES 2.3. (a) A real G-module V determines a representation
V of any groupoid <g. On objects JC, V(JC) = G/H x F if p(χ) = G/H;
on morphisms α: x —> y, one takes V(α) = σ x 1 if p(α) = σ. We
usually take the groupoid underlying V to be h^ itself. Similarly,
any virtual representation [V — W] determines an associated virtual
groupoid representation [V — W].

(b) If p: E —• B is an orthogonal G-vector bundle, then/7 determines
a π(J?; G)-representation P: pulling p back over G-maps x : G//f —> 5,
we obtain a system of G-vector bundles P(x) —• G/H, and the G-
covering homotopy property gives the action of P on morphisms in
π(B G). A similar construction can be made with virtual G-vector
bundles.

(c) If p and μ are groupoid representations, then the virtual groupoid
representation p - μ is the object-by-object difference.

Groupoid representations are objects that combine "local" represen-
tation data (the objects p(x)), with orientation data (the morphisms
p(a)). In order to handle unoriented G-vector bundles, we weaken the
notion of a ^-representation as follows. Let wG& be the category of
G-vector bundles and homotopy classes of maps on base spaces in-
duced by maps of G-vector bundles; thus we remember the existence
but not the particular choices of maps of G-vector bundles. The base
space functor β: hG3δ —> h'g factors through wGSS. We now define
weak representations ofΉ exactly as we defined g'-representations,
but with hG&t replaced by wG&. The theory of weak representa-
tions closely parallels that of "strong" ones; in what follows we will
concentrate more on the strong representations.

DEFINITION 2.4. A map (ζ, η) from a ^-representation p to a Ψ1-
representation p1 is a map ζ: W -> Wf of groupoids over h& together
with a natural isomorphism η: p -* pf o ζ of functors & —
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Maps between virtual representations are defined in the same way,
replacing hG3$ by hGΨ3$.

Maps between groupoid representations arise naturally from maps
of G-vector bundles; a map (/, / ) : p —»p' of G-vector bundles, where
/ is the map of total spaces, and / is the base-space map, determines
a natural isomorphism of functors /*: P —• P' o /*, and (f*>f*) is a
map from the n(B\ G)-representation P to the π(2?'; G)-representation
P'.

For the remainder of this section, unless otherwise stated, represen-
tations may be virtual or actual.

By the product & x &' of two groupoids over hS*, we understand the
pullback of their forgetful functors to h&. The direct sum p ® p1 and
tensor product p ® p' of a ^-representation p and a ^'-representation
p' are then defined in the evident way and are ^ x ^'-representations.
When Ψ = g?', we internalize these operations by restricting along the
diagonal functor ? - ^ ? x ? .

By using these constructions, one may now define a ring structure
on the set of isomorphism classes of virtual groupoid representations
of a fixed groupoid Ή over λ^7, and we denote this ring by RO(^; G).

While all G-vector bundles determine associated groupoid repre-
sentations, the groupoid representation associated with an orientable
G-vector bundle should satisfy the following minimal requirement.

DEFINITION 2.6. A ^-representation p is orientable if it is constant
on morphisms in the sense that, for any pair of objects x and y of ĝ ,
and any pair of morphisms μ and v from x to y with φ(μ) = φ(v),
one has p(μ) = p{v). The (virtual) G-vector bundle p: E —> B is
orientable if the π(B; G)-representation P is orientable. For example,
if the components of each fixed set of B are simply connected, then
any G-vector bundle over B is orientable. Further, if W is a faithful
groupoid over h&, then any representation of W is orientable.

Fix an orientable G-vector bundle p: E —> B and an orientable
groupoid representation p.

DEFINITION 2.7. An orientation of p in dimension p is a map
(ξ, η): (π{B\ G), P) -> (^, /?). A map (/, f): p -+p' between oriented
G-vector bundles is said to be orientation preserving if (£', J/;)OC/*> /*) =
(ζ, η). If p has a given orientation in dimension /?, we shall refer to p
as an oriented p-dimensional G-vector bundle.

If we ignore orientability, we can use weak groupoid representations
to capture the local representation structure of G-bundles as follows.
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If p is a weak groupoid representation, then a p-dimensional structure
on the G-vector bundle p: E —• B is a map P ^ —• /? of weak groupoid
representations, where Pw is defined in the same way as P, \iύn%wG&
in place of hG3§.

It is desirable to have a notion of orientation that is free of reference
to a specific groupoid representation. With this in mind, the following
is proved in [CMW].

THEOREM 2.8. For each n there exists a "universal virtual groupoid
representation SOn such that each orientable virtual groupoid represen-
tation of dimension n maps into §Όn. Further, SOΠ is unique up to
isomorphism, and SOΛ e V = SO Λ + d i m v for any G-module V. D

Similarly, there are universal weak virtual representations which
we denote by OΛ, with On Θ V = On+άimV. Moreover, On is a fi-
nal object in the category of weak virtual groupoid representations
of virtual dimension n. There is a similar result for actual (as op-
posed to virtual) groupoid representations. However, one no longer
has SOW Θ V = SO w + d i m v in general. Examples of universal virtual
groupoid representations appear in [CMW].

In view of the existence of universal groupoid representations, one
can now define an oriented n-dimensional virtual (/-vector bundle as
simply an oriented SOn-dimensional virtual G-bundle.

3. Oriented G-manifolds. We now describe the theory of oriented G-
manifolds modelled on virtual groupoid representations, and consider
the implications for the fixed-set data.

DEFINITIONS 3.1. Let ^ be a faithful groupoid, and let γ e RO(^; G).
An orientation of a smooth G-manifold M in dimension γ is an ori-
entation of the stable tangent bundle %M of M in dimension γ. If
M has a given orientation in dimension γ then we say that M is a γ-
dimensional oriented manifold. Replacing orientable representations
with weak representations, we have the notion of a γ-dimensional (un-
oriented) manifold.

When M is a smooth compact G-manifold, it can be embedded in
some representation V of G, and we denote the normal bundle of this
embedding by uM(V). We define the virtual normal bundle vM of M
to be the virtual bundle vM{V) - V9 so that an orientation of M in
dimension γ is equivalent to an orientation of vM in dimension -y.

In order to describe the fixed set data associated with a given γ-
dimensional structure, we require additional information on passage
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to fixed sets in the category of groupoid representations. The following
is a summary of constructions given in more detail in [CMW].

Suppose then that 7 is a representation of the groupoid g7 over h%β\
Let H c G and let N be the normalizer of H in G. We can first form
the representation γ\N by pulling W back along the map e: h^V —>
h& defined by sending N/K to G xN {N/K) = G/K, and pulling 7
back along the map hNWS —• hGWS defined similarly. Having done
this, we can pull back again along the map /: hJV' /%* —> hJV given by
considering an N///-space to be an N-space with trivial action by H.
The resulting functor i*e*& —• hNΨ3§ specifies N-bundles over H-
trivial base spaces. Each such bundle is the direct sum of its fiberwise
//-fixed points, and the fiberwise complements to the fixed points.
The //-fixed point bundles can be taken as defining the N///-groupoid
representation γH.

For the complementary representation, we consider another functor
e\hJIT -+ hJirizr given again by sending N/K to (N/H) xN (N/K) =
N/HK. The composite i o e, is not the identity, but there is a natural
transformation p: 1 —> ioe, given by projecting N/K —> N/HK. If we
take the complementary bundles to γH and pull back along e, what we
get is not a map into hNΨ3§ over hjV, but we can fix this by pulling
each bundle back along p. This gives the N-groupoid representation
that we call γjj. We should interpret this as a functor into the category
of virtual bundles without //-trivial summands, where stabilization
only involves representations without trivial summands. We can also
pull yH back in this way in order to consider it as an JV-representation.

If g7 is a skeletal groupoid, then so is Ψ1 = e*W, and this allows
us to define a map e*i*Wf —> W over hJV given by pulling back the
map induced by / o e along /?, using the source lifting property. This
is covered by a map yH ®7H -* 7? which tells us how a y-orientation
of a G-bundle ζ over an //-fixed space may be rebuilt from a γH-
orientation of ξH and a y//-orientation of the complementary bundle

6/.
If M is oriented in dimension 7, then, using inward normals to

the boundary, dM inherits an orientation in dimension 7 - 1. Fur-
ther, each MH inherits the structure of an oriented 7//-dimensional
JV(//)///-manifold, while the normal bundle v{MH, M) of MH in M
has the structure of a 7//-dimensional ΛΓ(//)-bundle.

EXAMPLE 3.2. Let G = 1/2 and let L denote the one-dimensional
nontrivial real representation of G. If m and n are greater than one,
let G act on the complex projective space M = CP(L2m 0 R2") by



(7-BORDISM THEORY 71

translation of planes. The fixed set of M is MG = CPm~ι II CPn~ι

with normal representations L2n and L2m on the respective compo-
nents. The fundamental groupoid π{M\G) has a skeleton consisting
of a single object over the free orbit and two objects over the trivial
orbit. An orientation of M in §O2(m+n_i) consists of the following:

(a) A nonequivariant orientation of M.
(b) An equivariant identification of the tangent plane at a chosen

point in each component of MG with L2n Θ R 2 ^" 1 ) or L2m θ R 2^" 1)
respectively.

(c) Compatibility of the orientations in (a) and (b) with given non-
equivariant identifications of L2n θ R 2 ^" 1 ) and L2m θ R 2 ( w - 1 ) with

R2(m+«-i)? these being part of the data in SO2(m+«_i).
Given (a), there are now four choices for (b) satisfying (c). These

choices restrict to four distinct orientations of the fixed-set, and force
unique corresponding orientations of the normal bundle to the fixed
set. Notice that a nonequivariant orientation alone does not determine
an orientation of the fixed-set, while a collection of orientations for
all the given data (fixed-sets and normal bundles) need not specify an
equivariant orientation, as they may not satisfy (c).

Given two copies of M and a fixed point in each, lying in corre-
sponding components, one can now take an equivariant connected
sum using any two orientations of M. If we change one of the orien-
tations at one of the fixed points without altering the nonequivariant
orientation, we can form a second connected sum which is nonequiv-
ariantly homeomorphic to the first, but possesses a different involu-
tion. This illustrates the inadequacy of nonequivariant orientations
alone, and is what led Rothenberg and Sondow, and others, to con-
sider local versions of the theory we have described here.

4. Bordism of oriented manifolds. Continuing the discussion in §3,
we describe the associated oriented and unoriented G-bordism groups.
When the groupoid representations considered have the form V - W
for fixed G-modules V and W, these groups coincide with those in
[P2, Kl, Wl, Cl].

If N is an oriented y-dimensional manifold, define -N to be the
oriented y-dimensional manifold obtained by reversing the orientation
on the trivial summand of vN(V) θ R = vN(V θ R). Equivalently, we
reverse the orientation on τ# θ R - R by reversing the orientation of
one of the trivial summands.

DEFINITION 4.1. Say that two closed oriented y-dimensional mani-
folds, M and N9 are cobordant if there is an oriented γ+1 -dimensional
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manifold W such that d W is isomorphic, as an oriented y-dimensional
manifold, to MII —N.

As usual, we can define cobordism of oriented y-dimensional mani-
folds over a given G-space X. The resulting group of bordism classes is
the yth oriented bordism group Ω^(X). Substituting unoriented mani-
folds for oriented ones gives the yth unoriented bordism group ul^(X).
(Here γ is a weak virtual representation.) These extend naturally to
theories defined on pairs of G-spaces, and we denote the corresponding
reduced theories by Ωf(X) and $tf(X) respectively.

If M is an oriented y-dimensional manifold and N is an oriented
J-manifold, then M x N is an oriented γ x J-manifold. This induces
a natural exterior product

and similarly for the unoriented case.
As an example, there is a distinguished element D(V)/S(V) —• Sv

in Ω$(SV). Multiplication by this element induces a map

Ωf(X) - Clf+V{ΣVX).

Following torn Dieck [Dl] and others [BH, Wl, Cl] we take the col-
imit, and define the yth stable oriented G-bordίsm group to be

Ω(

taken over all finite G-subspaces of a universe lί. %y (X) is defined in
an analogous way.

The usual geometric arguments show that Ω^+J,(-) and 0X +̂5<c(-) are
integer graded G-homology theories for any γ. The stable versions
form RO(G)-graded theories in the sense of [W5] (with all suspension
isomorphisms) for each γ.

We interpret the stable bordism groups as bordism groups of stable
manifolds, where a stable manifold is the equivalence class of a map
/ : (M,dM) -> (D(V),S{V)). Here M is a G-manifold and V is a
representation of G. The equivalence relation is generated by con-
sidering / to be equivalent to / x 1: M x D{W) -• D{V ® W). This
interpretation can be useful in transferring geometric arguments about
geometric bordism to arguments about stable bordism. Note that, in
the nonequivariant case, transversality says that any stable manifold
is the class of an actual manifold, and this manifold is unique up
to cobordism. In the equivariant case we do not have such a general
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transversality result, but the results we do have [W3] show at least that
for G finite we can assume V above contains no trivial summands.

5. Representing oriented bordism. For the remainder of the paper

we restrict G to be finite. In this section we show how the homology

theories Ω^+J|1(-) and Ω y + #(-) may be represented by G-spectra.

The following classification result is shown in [CMW].

THEOREM 5.1. Given any groupoid &, there is a G-space BW such
that [X, B&]G = [πX, &]h&, where the latter indicates natural isomor-
phism classes of maps over h&. For example, BhGWS classifies virtual
orthogonal representations ofπX. Further, ifp:&-+ hGW§ is a rep-
resentation, then there is afibration Bp: B& —> BhGJW that classifies
p-orientations, in that the set of homotopy classes of lifts of a given
map X —• BhGΨ£% is isomorphic to the set of p-orientations of the
corresponding representation ofπX. u

We use this to construct Grassmannian models of various /?-dimen-
sional bundles. Let ^ be a G-universe, and let U be a G-inner product
space. If n > 0, define the Grassmannian

Gτn(U) = {(Y,u)\ue^ and Y c U is a Gw-invariant «-plane},

where G acts in the evident way. If n < 0, let Grn(C/) = 0 . The extra
coordinate u in Grn{U) is present to control isotropy; see [Wl] or [Cl]
for an explanation of this point.

Let p be an orientable virtual representation of a groupoid g?. Then
we have the fibration Bp: B& -• BhGWS mentioned in Theorem
5.1. Let η: Gτ\p\(U) -> BhGΨ& classify the groupoid representation
corresponding to the canonical G-bundle over the Grassmannian, and
let #p(U) be the pullback in the following diagram:

Similarly, if p is a weak representation of g7, let Bp: BW —
be the associated fibration, and define &P{JJ) to be the pullback in the
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diagram

Gτlp{(U) • BwG^B.

We can think of #P(U) as the space of oriented p-dimensional planes
in U\ 2?p(U) is the space of p-dimensional planes in U. By pulling back
the canonical bundle over Gτ\p\(U), the spaces #P(U) and &P(U) have
bundles over them, the first having a /^-orientation, and the last being
p-dimensional. The following is clear from the universal property of

(as given in [Wl]), and the classification property of Bp:

PROPOSITION 5.2. &p[$ί) classifies oriented p-dimensional (actual)
bundles, and&p(%() classifies p-dimensional bundles. D

Write

and define BSOG(p, V) and bSOG(p, V) similarly, using ffp. We con-
sider bOG{p, V) c BOG(p, V) and bSOG(p, V) c BSOG{p, V). When
p is orientable, there is a natural map BSOQ(P, V) —• BOg(p, V), and
the restriction to bSOgip, V) gives a map bSOβ(p, V) —> bθβ(py V),

These spaces have p-dimensional G-bundles over them, which we
call EOG (over BOG) and ESOG (over BSOG). Write TOG for the
Thorn space of EOG, and tOG for the Thorn space of the restriction
of this bundle to bOG. Define TSOG and tSOG similarly.The above
maps induce G-maps TSOG -* TOG and tSOG —• ί6> .̂

If F c fΓ, let W - V denote the orthogonal complement of V in
W. Then classification of the bundle EOG(p, V) θ {W - V) gives a
map of Thorn spaces

σw-v: Σw-vTOG(p, V) - Γ(9G(/> + (W - F), ΪF),

and this restricts to a map

_ κ : Σw-vtOG(p, V) -+ tOG(p + {W- V\ W).

Similarly, there are maps involving the oriented spaces.
Suppose now that γ is an orientable virtual groupoid representation.

Define the G-prespectra [LMS] γTOG,γtOG,γTSOG, and γtSOG, by
letting
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with the maps σ above giving the structural maps; the other three
prespectra are defined similarly. The corresponding G-spectra will be
called yMOG,ymOG,yMSOG, and γmSOG, respectively. The corre-
sponding (j-homology theories will be denoted γMθ£(-)9 and so on.

THEOREM 5.3. IfX is any based G-CW complex, there are natural
isomorphisms

and

Ωf(X) = γmSθg(X).
Moreover, the diagram

is represented by the diagram of spectra

γmSOG • yMSOG

i I
γm0G • yMOG.

Proof. For the stable results, see [BH]. For the geometric results,
see [W2], [Wl], or [Cl]. The last two references also give the relation
between the geometric and stable theories. The Grassmannian models
for the classifying spaces are needed to allow the definition of the
smaller spaces bO and bSO; these spaces are needed in order to use
equivariant transversality results from [W3]. D

The definitions of the spectra imply that we have equivalences

γMOG = Σw(γ+wMOG)

and

γMSOG = Σw{y+WMSOG).

Thus, each γ determines an RO((?)-graded theory, the theory of stable
manifolds of dimension γ + α, where a e RO(G). The geometric
theories are not quite as nice: we only have equivalences

= Σk(γ+km0G)
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and

γmSOG = Σk(γ+kmSOG),

where k el. There are maps

ymOG ->ΣW(y+wmOG)

and

γmSOG -> Σw(γ+jymSOG);

these fail to be equivalences in general, but represent stabilization. As
in [Cl], we can show

yMOG = co\imwΣ
w {y+wmOG)

and

yMSOG = co\imwΣ
w (γ+wmSOG),

corresponding to the definitions of the stable theories.

6. A spectral sequence. Recall that a family of subgroups of G is
a collection of subgroups that is closed under subconjugation. Two
families &*1 c & are adjacent if & - SF1 consists of a single conjugacy
class of subgroups. Corresponding to any groupoid ^ over h^ is the
family of subgroups φ{&) = {H\φ~{(G/H) φ 0} .

DEFINITION 6.1. Two groupoids £Γ c % are adjacent if
is a pair of adjacent families, and W is the part of & lying over SF'.
Two groupoid representations p' and p are adjacent if the underlying
groupoids %" and %* are adjacent, and if p1 is the restriction of p to
(o .

DEFINITION 6.2. If / c y are two virtual representations, then a
(y, y'ymanifold is an oriented y-dimensional manifold Λf such that
dM is (/ - 1)-dimensional, in such a way that the structure on dM
is the restriction of the (γ - l)-structure inherited from M.

This gives rise to bordism of (y, /)-manifolds in the usual way,
leading to relative (j-bordism groups Ω£ ,)(-). The usual geometric
argument shows that we have a long exact sequence

If γ and / are adjacent, notice that /-dimensional bordism is really
y-dimensional bordism with a restriction on the isotropy (as in [CF]).
If SF1 is the family associated with y', and ESF1 is the universal SF1-
space [PI], then Ωf,(X) = Ω^(E^ x X), and the exact sequence is
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actually the exact sequence corresponding to the cofibration

Since the exact sequence above is compatible with stabilization,
we can do exactly the same thing for stable bordism, getting relative
groups Ω^yj(-) and a long exact sequence. Again, this is the exact
sequence corresponding to the cofibration above.

If γ is a virtual representation, and SF is the corresponding family,
then if 0 = ^ c &[ C ••• c ^ = ^ is a sequence of adjacent
families, there is a corresponding sequence γo,..., yn = 7 of adjacent
representations. The resulting long exact sequences can be interpreted
as an exact couple, giving a spectral sequence converging to (γ + *)-
bordism, where * is an integer. This is just the spectral sequence
corresponding to the filtration of the family !F. The is2-term of this
spectral sequence is given by the relative bordism groups, which we
proceed to compute.

Let (γ, / ) be an adjacent pair of representations with corresponding
families & and &' and with <? - P1 = (H). Let % be the groupoid
underlying γ, which we may assume is skeletal and faithful. If x is an
object in &(G/H)9 let φx: % —• ftS be the groupoid of <% generated
by x, and γx = γ\ffx. Let us assume that γ(x) is the class of an
actual bundle, say G x # V. The normalizer N(H) acts on WX(G/H)
because ^x is skeletal and faithful. Let K c N(H) be the isotropy
subgroup of x under this action. The representation γx then specifies
a homomorphism K/H -> hGW${G xH V,G xH V) such that the
composite with the map hGW8{G xH V, G xH V) -+ N(H)/H is the
inclusion K/H —• N(H)/H. The restriction of these bundle maps to
GXHVH gives a map into the set of virtual self-maps of this bundle,
where now we can restrict the stabilization to allow only addition of
representations with no trivial summands. We can also think of this
as a map K/H -> hKWS{K xH VH,K xH VH) (using the restricted
notion of stabilization here). Now notice (since G is finite) that there
are short exact sequences of groups

xH VH,K xH VH)

1 1 I
SOf

H -, VSe

where SOH(VH) is the identity component of the group OH(VH) of
//-isometries of VH, and SOH is the colimit of the groups SOH{W)

as W runs through all representations of H without trivial summands
(Oh is defined similarly). This gives us an action of the group
hK38(G xH VH, G xH VH) on the classifying space BSOH(VH). From
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this we get an action of K on the space hKΨ£% XHKBBSOH(VH), where
we write hKB for hK3§{G x # VH, G X # VH), and so on. Further, we
have short exact sequences

1 - π0OH(VH) -> hKX(KxHVH,KxHVH) - K/H -> 1

1 I II
-> hKtPSB(KxHVH9KxHVH) -+ K/H -> 1

From these, since 71QOH(VH) —> πoOJj is a split inclusion (the quotient
being those components corresponding to irreducible representations
of H not appearing in VH), we see that the inclusion hK3$ -> hKΨ38
is also split, with the same quotient. Therefore, if we use the homo-
morphism K -> hKW§ -> Λ ^ ^ to get an action of K on BSOH(VH),
the A^-space hKWS xhKB BSOH(VH) above is really the product

πΌ0H/πoOH{VH) x Λ50^(K^) = π0(σH/OH(VH)) x

This is the action used in the statement of the following proposition.

PROPOSITION 6.3. There is a natural isomorphism

(y,y'n '

= Σ Ω ί f ί / j f ( ^ x
 *O(<*H/OH{VH)) x BSOH{VH)\

[x]enθ/H)/N(H)

where the action on the argument is the one specified above. The sum
extends over those [x] for which γπ{x) is the class of an actual bundle
of the form GxHVH. Notice that these are really free bordism groups
because of the structure ofγ**\K/H.

Proof. By classical arguments (see for example [CF]), any (7, / ) -
manifold M is G-cobordant to a normal tube around the submanifold
Λf(//) consisting of points with isotropy conjugate to H. This in turn
is determined by the N(//)-equivariant normal tube about MH. This
tube determines an actual 7V(//)-bundle over the //-fixed space MH

which has a virtual y//-orientation. There is an N{H) ///-space B that
classifies such bundles (over general //-fixed N(H)-spaces), and we
claim that

B ~ I] π0(σH/OH(VH)) x BSOH(VH)
[x]βW(G/H)/N(H)

where x runs only through the objects such that 7//(JC) is the class of
an actual bundle.
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First we say that B is the disjoint union of N(H)///-spaces Bx, one
for each class [ c] e &(G/H)/N(H) such that γH(x) is the class of an
actual bundle. Indeed, if X is an N(H) ///-space such that X/N(H) is
connected, and if X has over it a bundle of the sort that we are talking
about, then the y//-orientation of the bundle will induce, among other
things, a groupoid map n{X) —• &. By the connectivity of X, the
objects over G/H that are in the image of this functor must all be
isomorphic, in fact they must be a class [x] e ^(G///)/Λ^(//). Further,
since the bundle is assumed to be an actual bundle, it must be that
γπ(x) is Λe class of an actual bundle. Therefore B must decompose
as stated, where each Bx classifies actual 7V(//)-bundles over //-fixed
spaces, equipped with (^//-orientations.

Next we say that
Bx~N(H)xKB'x

as iV(//)///-spaces, where B'x classifies actual ίΓ-bundles over //-fixed
spaces, with (yJC)//|AΓ-orientations. Again, consider an N(H)///-space
X with a bundle of the sort classified by Bx, and consider the map
π(X) -> g^ induced by the (γx)//-orientation of the bundle. From this
map, we see that X must break up into a disjoint union of components
corresponding to the cosets of N(H)/K, and so we can write X =
N(H) Xjζ XQ, where X$ is the JC-subset of points mapping into the
object x \VLΨX. Clearly then, having a (γx)//-orientation of a bundle
over X is equivalent to having the (7jC)//|ΛΓ-orientation of the bundle
restricted to Xo> a n d so we get the equivalence that we claim.

Finally, we say that

B'x ^ π0(σH/OH(VH)) x BSOH(VH)

as Kj//-spaces, where the action is that described before the proposi-
tion. In fact, Bx must be the pullback in the diagram

Bx > BSσH

BOH(VH) > BOH.

This is a diagram of AΓ-spaces, where K acts on the bottom row via
its maps into

hK%m(KxHVH,KxHVH) and hK^{K xH VH,K xH VH)

(see the discussion before the statement of the proposition). To see
this, consider any bundle ξ over a AΓ-space X on which H acts triv-
ially, such that ζ has a (yx)//|^-orientation. Each fiber of ξ is then
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equipped with a homotopy class of virtual maps into VH, which is
the orientation of the fiber. Form three principal bundles associated
with ζ: Pa will be the principal OH{VH)-bundle formed by taking the
space of all if-isometries from VH into the fibers of ξ. Py will be
the principal SΌ^-bundle formed by taking the space of all virtual H-
isometries of V^ into the fibers of ξ preserving the virtual orientation.
Finally, let P be the principal (9^-bundle formed by taking the space
of all virtual /f-isometries of VH into the fibers of ζ. These spaces
are acted on by various groups: Pa is acted on by the group
K3S{K xH VH,K xH VH) (thinking of an //-map from VH as
the same as a AΓ-map from K xH VH), P has a similar action by
KΨ3S(K xH VH,K xH VH), and Pv has an action by the group of
orientation-preserving maps in KΨ3§(K x # VH, KXH VH). AH of these
groups have KjH as a quotient, and the projections to X are compat-
ible with these actions. Further, there are maps Pa —• P and Pv —> P
compatible with the actions in the obvious way. Now, there are univer-
sal principal bundles of the same sort over the spaces BOH(VH), BSOH,

and B(yH. Universality yields maps of principal bundles, covering
compatible K-maps of X into the three spaces BOH(Vn),BS(yH9 and
B0H. Thus, from the bundle ξ we get a AΓ-map from X into the pull-
back of these three spaces. Conversely, if X maps into the pullback,
then we obtain, from the map into BOH(VH), an actual bundle over
X, which is equipped with a virtual (yx)//|^-orientation, via the map
into BS<yH. Thus the pullback is the space Bf

x needed to classify such
bundles. Finally, it is easy to identify this pullback with the AΓ-space

χ
 BSOH(VH) described before this proposition. D

We summarize what we have done in the following theorem:

THEOREM 6.4. If G is a finite group, γ is an orientable G-groupoid
representation, and 0 = «^c«?[ c c ^ / j f l sequence of adjacent
families of subgroups of G with 9p - ^ _ i = (Hp) and with 9^ the
family associated with γ, then there is a spectral sequence converging
to Ω^(X), with the E2 term being

XH xπQ(σH/OH(VH))xBSOH(VH)),

where H denotes Hp, and as usual γx denotes the restriction ofy to the
groupoid generated by x {the other notations are as in Proposition 6.3).
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REMARK 6.5. The E2 term is expressible as suitably structured
nonequivariant bordism of the spaces

E(K/H) xκ/H (XH x π0(σH/OH(VH)) x BSOH(VH))

(which we abbreviate henceforth as E(K/H) xK/H(XHxB)). The suit-
able structure is described as follows. In the summand corresponding
to x, the Λy//-grouρoid representation γ^\K/H is determined by the
homomorphism K/H -> hKWS{K xH VH,K xH VH) splitting the
projection onto K/H (where stabilization is now restricted to addi-
tion of trivial summands because we are taking fixed-points). How-
ever, hKc^m{K xH VH,K xH VH) = π0O x K/H = 1/2 x K/H, and
so we are really talking about a map K/H —• 1/2. When this homo-
morphism is trivial, the ^///-action on a y^|Λy//-oriented manifold
preserves nonequivariant orientation. By passage to orbit spaces, the
corresponding summand becomes the nonequivariant oriented bor-
dism group Ωn(E(K/H) xκ/H (XH x B))9 where n = dimχf.

In the case of a nontrivial homomorphism, the corresponding orbit
manifold need not be oriented, but nevertheless inherits a "pseudo-
oriented" structure as follows. Let M be a K/H-free yζ\Kj//-oriented
manifold. Then the classification of the action of K/H, together with
the map K/H -> 1/2, determines a map θ: M/K -» Bl/2. The orien-
tation on M determines a map M/K —• El/2xz/2BSO(n) over Bl/2,
where again n = dim γ£ (1/2 acts on BSO(n) as the group of covering
transformations of the double cover BSO(n) —> BO(n)). The space
E(K/H) xKjH(XH xB) also maps into Bl/2 via the natural projection
onto B(K/H). Conversely, all of this data allows us to reconstruct the
γ%\ K///-oriented free manifold M over the space XH x B. Thus, we
can interpret the relative term as oriented bordism in the category of
(nonequivariant) spaces over Bl/2, where an orientation of a man-
ifold N —• Bl/2 is a lifting of the map iV —• BO(n) classifying the
tangent bundle, to a map N -• El/2 x z / 2 BSO(n) over Bl/2.

Taking the colimit in Proposition 6.4 as VH gets large gives us the
corresponding result for stable bordism. Recall that S<yH denotes the
colimit of the groups SOJJ{W) as W runs through the representations
of H having no trivial summands. As in the remarks before Proposi-
tion 6.3, a homomorphism K/H —• hK^^(K x # VH, K xH VH) gives
an action of K/H on the space BSOH.

THEOREM 6.6. IfG is a finite group, y is an orientable G-groupoid
representation, and 0 = ^ c ^ C C ^ j is a sequence of adjacent
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families of subgroups ofG with SFn the family associated with γ, then
there is a spectral sequence converging to Ω%+*(X), with the E2 term
being

EL = Σ
[x]€V(G/H)/N(H)

where H denotes Hp, and as usual γx denotes the restriction ofγ to the
groupoid generated by x. u

7. Z-modelled oriented G-bordism. Recall that we have universal
virtual oriented groupoid representations SOW and universal virtual
weak groupoid representations OΛ, one for each integer n. Recall also
that On ©R = O π + 1 and §©„ φR = SOΛ + 1.

DEFINITION 7.1. Define Ω% = Ω^Ow, and similarly for the stable
and unoriented theories.

From the comments before the definition, these define integer-
graded G-bordism theories. It follows from the fact that On is final in
the category of weak virtual ^-dimensional groupoid representations,
that the unoriented theory we have just defined is the usual unoriented
bordism theory. Moreover, from §6 we have:

COROLLARY 7.2. //0 = F O C ^ C C ^ = U H sequence
of adjacent families of subgroups ofG, with sf denoting the family of
all subgroups, and S?p+\ - &p = (Hp), then there is a spectral sequence
converging to Ω%(X), with the E2 term being

E h = Σ aK

y^K,H^xH x
 *O(0H/OH(VH)) x BSOH(VH))9

[x]€9(G/H)/N(H)

where H denotes Hp,γ = SO^, and the rest of the notation is as in
Proposition 6.4. There are similar spectral sequences for the other theo-
ries. D

The spectral sequence that we get here in the unoriented case is
similar to the one that Kosniowski obtains in [K2] by considering slice
types.
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