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ALGEBRAIC INDEPENDENCE OF SOLUTIONS
OF DIFFERENTIAL EQUATIONS

OF THE SECOND ORDER

MICHEL BRESTOVSKI

We deal with second order algebraic differential equations obtained
by equating exact and logarithmic derivatives. Under the assumption
that such an equation has no "first integral" (which is proven in partic-
ular cases), it is shown that two generic solutions can be algebraically
independent only if they satisfy a "very special" relation. Whence is
deduced the existence of an infinite algebraically free set of generic
solutions over a constant differential field.

1. Introduction. Let P be a differential polynomial with coefficients
in an ordinary differential field k of characteristic zero (in short: d.f.).
Suppose that P is of the order N > 0 and irreducible (i.e. P is in
k[X,X',...,X(ΛΓ)] and is irreducible in this UFD). We are concerned
with the following algebraic questions, which are to be made more
precise later.

I. Does the equation P = 0 admit a "first integral" (within the frame
of differential algebra)?

In this paper, we prove that the answer is negative for equations
of order 2 in a certain class; furthermore, if such an equation is "the
minimal equation" over k of a non-constant element x (see infra for
definitions), then it remains so for x over any d.f. extension K of k
over which x is not algebraic (see Theorem 1 and Corollary).

As a consequence, the adjunction of such an element to k introduces
no transcendental constant; in classical terms, this means that the
general solution of this second order equation is not even parametrized
by one arbitrary constant.

II. Suppose P = 0 has these properties. What can be said in terms
of algebraic independence over k, of the solutions of P = 0 in some
differentially closed extension ofkt e.g. in a differential closure k ofkΊ
(See Section 3.)

In case A: is a finite d.f. extension of the prime d.f. Q, this problem
is related to the classification of countable differentially closed fields,
which is discussed in [8].
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We consider second order equations P = 0 of a certain class (which
contains the previous one, so that the requirements mentioned in II
are fulfilled in the small class) and we prove that, if P = 0 is the
minimal equation of x and y over /c, then the algebraic dependence
of x and y over k must be of a "very special" kind (see Theorem 2).

The result enables us to construct, in a differential closure C of a
d.f. C of constants, a countable set of solutions of the given equation,
which are algebraically independent over C

A key tool in this study is the exterior algebra of the vector space
of the so-called Kahler differentials and the fact that, in the case of a
d.f. extension K/k, it can be provided with a structure of differential
A^-vector space (Section 6).

We give relevant definitions, state our results precisely and make
some comments.

2. Forking. Given a d.f. k and an element x in some extension of
k, the set t(x/k) of all differential polynomials with coefficients in k
which vanish at x is called the type ofx over k. If we denote by k[X]d

the (differential) ring of these differential polynomials, t(x/k) is easily
seen to be a prime differential ideal of k[X]d. Conversely, every prime
differential ideal p of k[X]d is the type over k of some element x (take
x to be the coset of X in the residue-domain k[x]d = k[X]d/p; the
quotient field k(x)d is an extension of k and obviously t(x/k) = /?);
this is the reason why prime differential ideals of k[X]d are also called
types (in one variable) over k, the description of which is therefore of
particular interest.

For P in k[X]d, we denote by (P)d the differential ideal generated
by P in k[X]d. Recall the differential ring structure on k[X]d; if P is
of order TV, then its derivative is:

(1) P' = P* + X(N+VS(P) + Σ X ( / + 1 )3;Λ
ι=0

where P* is the polynomial obtained from P by replacing each coeffi-
cient by its derivative, <9, is the usual (k-linear) derivation with respect
to XW and S(P) = dNP is the separant of P. Now suppose P is irre-
ducible and let I(P; k) be the set of all F in k[X]d such that S{P)nF
is in (P)d for n large enough; then it is known ([5], [6] or [9]) that
I(P\ k) is a type over k, and conversely, every type over k is of this
form. The proof also yields the following properties: both (P)d and
I(P\k) contain no non-zero elements of order less than N and their
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elements of order N are divisible by P; also /(P; k) is the smallest type
over k which contains P but not S(P).

Let p = /(P; k) be a type over k and x an element in some extension
of k\ x is a solution ofp if t(x/k) contains p\ if they are equal, x is a
generic solution ofp. If P(x) = 0, we call x a zero ofP\ if in addition
S(P)(x) Φ 0, x is non-singular. Since the irreducible P associated
to /? is unique (up to multiplication by a non-zero element in k), we
shall refer to P (resp. to P = 0) as ίΛe minimal polynomial (resp. /Ae
minimal equation) of the type /? or, of a generic solution x of p; in this
case, the degree of transcendency (t.d.) of k(x)cι over k is the order
of p (i.e. of P). Note that a zero of P need not be a solution of/? and
that the additional condition that x is non-singular is sufficient but
not necessary; actually, the question of determining when a singular
zero of P is a solution ofp constitutes the so-called Ritt Problem (see

[6]).
Here is our first result.

THEOREM 1. Let C be a d.f of constants. Let f,g,A,B e C[X],
where B/A is a linear combination of logarithmic C-derivatives: B/A =
Σw=i cί(9hi/hi), with C[ in C linearly independent over Q and hi non-
constant rational functions in C(X), and let F = X'f+ g. Then over
any d.f extension K of C, the only type of order 1 which contains
P = AFf -X'B isI{X'\K)

(Here, d stands for 8Q.) The proof will be given in Section 5.
To interpret this, we introduce the notion of forking. Let K/k be

a d.f. extension and p a type over k\ an extension of p over K is a
type q over K, the restriction of which to k is p: q Π k[X]d = p\ q is
non-forking if it has the same order as p. It is not difficult to find the
non-forking extensions of/?: they are the I(Q K) for all irreducible
factors Q over K of the minimal polynomial ofp. When q is a forking
extension of p (i.e. of lower order), we also say that q forks over k.

A non-algebraic type (i.e. of positive order) p clearly admits at least
one forking extension, namely: I(X - x;k(x)d), where x is a generic
solution ofp. As the property of being a forking extension is transitive,
we are led to contemplate the maximal number of successive forking
extensions of/?, which is called the forking rank RU(/?) ofp (and
was first introduced in a broader model-theoretic context by Lascar
[7]). If/? is of order N, we have 1 < RU(/?) < N for N > 0, while
RU(/?) = 0 for N = 0. Moreover, an induction on the order proves
that the forking rank is preserved under non-forking extensions.
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COROLLARY. Let k be a d.f and C its constants. Let P be as in
Theorem 1 and suppose P is irreducible over C.

Then P is irreducible over k, p = I(p\k) is of order 2, but its fork-
ing rank is 1. Moreover, the finite system of equations and inequations
5^{X) = (P(X) = 0,X' Φ 0) defines the generic solution of the restric-
tion I{P\ C) ofp to C.

Proof. Since P is with constant coefficients, so is each irreducible
factor of P over k (up to multiplication by a non-zero element in k);
hence P remains irreducible over k.

Theorem 1 proves that for any extension K of k, the only type over
K of order 1 that can be a forking extension of p is I(X'\K)\ but this
is not an extension oϊp since its restriction to k is I(X'\ k). Therefore
p has no forking extension of order 1, which means RU(p) = 1.

But we have more, for if x is a zero of P, then P is in t(x/k), so
by Theorem 1, t(x/k) is either I(Xf;k) or algebraic or a second order
type which contains P. Now, if in addition x is transcendental over
k and non-constant, t(x/k) is of order 2, contains P and therefore
its minimal polynomial divides P\ but P is irreducible, so eventually
t(x/k) = p. In other words: a transcendental element over k which
satisfies <9"{X) is a generic solution of/?. The following known result
is needed for the end of the proof and elsewhere.

LEMMA I. If an element is algebraic over a d.f of constants, then it
is constant.

Finally we see that the condition x' Φ 0 ensures that x is transcen-
dental over C; therefore a non-constant zero of P is a generic solution
of/(P;C). D

It is well known that a linear (homogeneous) equation L = 0 of or-
der N admits a fundamental system of N solutions (their wronksian is
non-zero) such that the solutions of L = 0 are the linear combinations
with arbitrary constant coefficients of these N solutions. Let A: be a
d.f. in which the coefficients of L lie, and let / be the type over k of
minimal equation L = 0; it is easy to find iV successive forking ex-
tensions of /, e.g. by adjoining successively N constants algebraically
independent over k. In other words, the forking rank equals the order.

The same is true for a type of order N which contains some linear
polynomial of order N+n, for its general solution is then parametrized
by N + n constants among which exactly iV can be supposed alge-
braically independent over k.
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Nevertheless, Poizat remarked in [9] that the type of minimal equa-
tion X" = Xf/X (which is "integrated" in X' = logX+ constant) has
forking 1, although it is of order 2. According to Theorem 1, the
same holds for the following equations which generalize the latter:

3. Constants. Another consequence of Theorem 1 is the "stability"
of constants; however this is a more general property.

PROPOSITION 1. Let p be a type over k, of order N > 1, and x a
generic solution of p. IfRU(p) = 1, then the constants ofk(x)d are
algebraic over the constants C ofk.

LEMMA 2. Let K/k be a d.f extension, %'/C the corresponding ex-
tension of their constant subfields. Then Ψ and k are linearly disjoint
[or free) over C.

That is: if a constant cofK is algebraic over k, then c is algebraic
over C. Indeed, let cn +λn-\Cn~ι H h^o = 0 be the minimal equation
of c over k (Λ, e k)\ differentiate it: λ9

n_xc
n"x + + λ'o = 0, which

must be trivial by minimality of n, i.e. λf

n_{ — = λf

Q = 0.
Thus, it is enough for proving Proposition 1 to show that any con-

stant c of k(x)d is algebraic over k. If c were transcendental, then k{c)
would be a d.f. extension of k9 and t.d. k(c)/k = 1. Now (k(c))(x)d =
k(x)d and we have: N = t.d. k(x)d/k = t.d. k(x)d/k(c) +t.d. k(c)/k,
so that t.d. {k(c))(x)d/k(c) = N - 1, which means that the type of
x over k(c) is a forking extension of its type p over k. But, since
RU(/?) = 1, this may happen only once: when x is algebraic over k(c),
i.e. when N — 1 = 0, a contradiction.

REMARK. Proposition 1 has not drawn full consequences of the
strong property RU(p) = 1. As a matter of fact, we know that the
forking rank of a non-forking extension of p is also 1, so the conclusion
remains true for any generic solution of any non-forking extension of p
over an extension K ofk. The distinction between these properties will
be made more accurate by defining "weak" and "strong orthogonality
to the constants."

Recall that a d.f. K is differentially closed if every system consisting
of an equation P(x) = 0 and an inequation Q(x) Φ 0, where P and
Q are in K[X]d with Q of order less than P, has a solution in K.
For any d.f. /c, a differential closure k can be constructed, which has
"good" properties: k is differentially closed, k has the same cardinal
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as k, k is differentially algebraic over k, the constants of k form an
algebraic closure of those of k\ there is a "Nullstellensatz" similar to
the case of usual fields; two differential closures of k are λ -isomorphic
(as d.f.).... For more details, see [1], [12] or [13].

We return to orthogonality. For simplicity, we shall deal only with
stationary types, that is, such that their minimal polynomials remain
irreducible over any extension of their coefficient fields; therefore, a
stationary type has exactly one non-forking extension over any exten-
sion of its coefficient field.

Two stationary types p = I(P k) and q = I(Q k) over a d.f. k are
weakly orthogonal if, x and y being any generic solutions of respec-
tively p and #, the type of x over k{y)d does not fork over k (which
is equivalent to the symmetric requirement obtained by permuting x
and y)\ p and q are strongly orthogonal if for any differentially closed
extension K of /c, I(P; K) and I(Q\ K) are weakly orthogonal (because
of the Nullstellensatz, it suffices to consider K = k, a differential clo-
sure of k). When q = I{X'\k) is the type of transcendental constants
over k, we talk about "orthogonality to the constants." Strong orthog-
onality clearly implies the weak one, but I(Xf - l C) and /(JSΓ' C),
with C a constant d.f., provides a counterexample for the converse.

Now we see that Proposition 1 merely asserts the weak orthogonal-
ity of p to the constants, while the above Remark explains that this
orthogonality is in fact strong.

This is the point where another distinct problem arises: for a type of
order 1, the forking rank no longer has meaning since it is also 1; but
orthogonality to the constants still occurs: in [10], Rosenlicht proved
that the type of minimal equation X1 + X'/X = 1 (among others) is
strongly orthogonal to the constants.

4. Algebraic independence of solutions. In his paper [10], Rosenlicht
constructed, in a differential closure C of a d.f. C of constants, a
countable set of generic solutions of I(Xf + X1 jX = l C) which are
algebraically independent over C; this answers question II for this
type and was enough to prove the non-minimality of C over C (there
exists a differentially closed field strictly between C and C). For the
construction, it was proved that the algebraic dependence over k of
two generic solutions x and y of I(X' + X'/X = l fc) reduced to a
"very special" relation: x = y.

We prove a similar result and make similar constructions for types
of order 2, under the supplementary assumption that the forking rank
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is 1. The types we consider include those of the Corollary to Theorem
1, in which case we know RU = 1.

THEOREM 2. Let k be a d.f with constants C. Let p be a stationary
type over k, of order 2 and such that its minimal equation is of the
following form:

where F is a non-constant differential polynomial in C[X]d> Gi is a
non-constant differential rational function in C(X)d (i = 1,..., n) and
C\,...,cn in C are linearly independent over Q.

Suppose that the forking rank ofp is 1.
There exists a positive integer m such that if two generic solutions x

and y ofp are algebraically dependent over k, then F(x)m = F(y)m.

The proof is postponed to Section 7.

COROLLARY. Let C be a d.f of constants and p a stationary type
over C with minimal equation (E) as above. Suppose RU(p) = 1.
Then there exists, in a differential closure C ofC, an infinite countable
set of generic solutions ofp which is algebraically free over C.

We need first a technical lemma in order to "isolate" (see [1] or
[9]) the type P, that is, to produce a finite system of equations and
inequations which defines the generic solution of p.

LEMMA 3. Let C and p be as in the above corollary. Let P = 0 be
the minimal equation (E) ofp. Then the system <S?{X) = (P(X) = 0,
S(P)(X) φO,X'φ 0, F(Xy φ 0) defines the generic solution ofp.

Proof. See Section 7.

Proof of the Corollary. Let XQ be a generic solution of p in C;
according to the lemma, this only means that XQ solves the system
S^{X) which is always possible in C since it is differentially closed.
Let m be the integer supplied by Theorem 2; by solving the system
<9\(X) = S?{X) Λ (F(X)m φ F(xo)

m) in C, we get another generic
solution X\ which is algebraically independent from XQ over C. By
induction, we build a countable set {JCO, JCi, JC2,. ••} of generic solu-
tions of p in C: xz is defined as a solution in C of the system ̂ (X) =
S*(X)Λ((F(x)m-F(x0)

m) (F{X)m-F{Xi_x)
m) φ 0). Consequently



8 MICHEL BRESTOVSKI

Xi and Xj are algebraically independent over C for all iφ j . It remains
to prove that the set {x0? XuXi,...}v& algebraically free over C. Other-
wise, let / be the minimal index such that xo,X\,..., JC/ are dependent
over C; therefore / > 2, and Xι and ΛΓ/_I are algebraically dependent
over k = C(XQ, . . . , ;c/_2)</> while both of them are transcendental over
k. Since RU(p) = 1, p has no forking extensions over k, so that xz

and Xi-1 are generic solutions of the unique non-forking extension pk

of p over k, which has the same minimal equation and satisfies as
well RU(pk) = 1. So, we may apply Theorem 2 to x = x/, y — X;_i
and p (of Theorem 2) = /?£, and we obtain: F(xi)m = i 7(x /_i)m, a
contradiction. D

REMARK. Let us point out certain particular results which follow
easily from Theorems 1 and 2. In [4], we gave Theorem 2 for the equa-
tions {X'f+ g)' = Σcih'Jhi concerned by Theorem 1, in which case
the "special" relation obtained involves only x and y (not their deriva-
tives), namely: Φ(x)m = Φ(y)m where Φ is a primitive polynomial of
/ in C[X]. For example, the condition of algebraic dependence of
two generic solutions x and y of X" = X1jX reduces to: x = y. Con-
sequently: two distinct non-constant zeros x and y of X" = X1 jX are
always algebraically independent over the constants, and also over a d.f.
k as soon as they are transcendental over k\ in fact, it can be proven
that xy x1, y, y1 are algebraically independent over k.

5. Proof of Theorem 1; Other similar results.

LEMMA 4. Let K be afield and φ, ψ be non-zero elements in K[X]
such that φ divides ψ dφ in K[X]. Then each irreducible factor ofφ
in K[X] is a factor ofψ.

LEMMA 5. Let K/C be a d.f extension with C consisting of constants.
Let φ be in K[X] and ψ in C[X], both non-zero. If φ divides ψ φ* in
K[X], then φ* = a φ for some a in K.

Proof. The first lemma is obvious. For the second, we may assume
φ* Φ 0 and ψ of positive degree. Let K be an algebraic closure of
K and C the relative algebraic closure of C in K\ by Lemma 1, C
consists of constants. Set φ q = ψ - <p* with q in K[X]\ a G.C.D. d
of q and ψ in K[X] may be chosen in C[X], for ψ has coefficients
in C. Divide ψ and q by d: ψ = ψ\ - d and q = q\ - d with ψ\ in
C[X]\ the initial equation becomes: φ q\ = ψ\ φ*\ Thus ψ\ divides
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φ, say v times: φ — ψ\ φ\. Now ψ* = 0, so that the equation yields:
φ\'q\ — ψ\'φ\\ with all the above conditions, this can happen only if
qχ = a - ψ\ for some a in K, and eventually φ* = a φ and a is in K.

Proof of Theorem 1. We are looking for an irreducible Q e K[X]d

of order 1 such that P e I(Q K). Let Q = XfNaN + + a0 with
en e K[X] and aN φ 0. Develop P: P = X"Af-X'(B-Adg-XΆdf);
from (1) in Section 2, we have: X"S(Q) = - ( X ' d β + Q*)
modulo (β)</, and therefore: S(Q)P = -P modulo (β)</, where
P = Af{X'dQ + β*) + X'(5 - ^ 9 ^ - XΆdf)S{Q) is of order 1 (or
vanishes), so that P e I{Q\K) if and only if Q divides P (or P = 0).

As a polynomial in Xf, P is of degree N + 1 and the coefficients of
the highest and lowest powers of X' are respectively Afdan-NAa^df
and AfciQ.

If P = 0, then Λ/Sfltf - NAaNaf = AfN+ιd{aN/fN) = 0 implies
that ax/fN is an element in AT; since β is defined up to a non-zero co-
efficient in K, we may assume a^ = fN. Equating then the coefficient
of X'N in P to 0, we get: d(g - aN/NfN~ι) = B/A = Σcidhi/hh

which is impossible since g, a^-u /> Λ/ are all rational functions.
If P 7̂  0 is divisible by β, then ## (resp. αo) divides Afdajy -

NAdtfdf (resp. A/aft). So α^ divides Afda^\ apply Lemma 4 to
φ = ax and ^ = ^4/: each irreducible factor of a^ in K[X] is a factor
of Af; but the latter has constant coefficients, so we may assume α#
too. Thus a*N = 0.

Suppose in addition αo Φ 0, and apply Lemma 5 to φ = #o a n d
^ = i4/: <ZQ = αjSo, for some a in /:. It follows that P = Q
(XrAfd(a^/fN) + α^4/) and the identification of the coefficients of
X'N yields: d(g - aΦ/N - aN-Xf/NaN) = B/A = Σcidhi/ht, where
Φ is a primitive polynomial of / in C[X] (i.e. dΦ = / ) ; again this
equation has no polynomial solution a^- \.

Finally, if a^ = 0, then N = 1 and a\ is in K because of the irre-
ducibility of β; that is: / ( β ; K) = I(Xf; K). u

REMARK. AS already noticed, the equations involved in Theorem 1
belong to the class of those concerned by Theorem 2, namely:

(E) F' = ΣciG'JGi, with F a differential polynomial and Gz dif-
ferential rational functions such that the equation is of order 2 (and
is really of this form: we mean that at least F or one of the <?/ is of
positive order and the c, are linearly independent over Q).

In both theorems, the coefficients of F, Gi and the c, must be con-
stant. Moreover, in Theorem 1 F must be of the first order and first
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degree in X' (F = X'f+ g) and the G, must be of order 0 ((?/ written

hi).
However, Theorem 1 should also hold for "most" of the equations

in the class (E) without such restrictions; there are, of course, equa-
tions in (E) which cannot fit: for instance X1 = X"/X\ or any equa-
tion which does not involve X will be of forking rank 2. Indeed,
X1 = X"/Xf may be turned into (l/Xf) = - 1 and this provides a first
integral 1 jX1 = c — t, where t is some element of derivative 1 and c
an arbitrary constant; this proves simultaneously that RU = 2 and the
non-orthogonality to the constants.

But there is no such phenomenon in the following examples (where
/, g, hi denote polynomials of order 0):

(a) X'f = X"/X', with f of positive degree;
(b) X'f = X"/Xf - X'/X, with f as above;
(c) Same equations as in Theorem 1

in each of these cases it turns out that, without any assumption on
the coefficients of the polynomial f, the analog of Theorem 1 holds (so
that (c) generalizes Theorem 1). This is proved along quite the same
lines; for (c), Lemma 5 and 6 appear to be of no more help. As far as
Theorem 2 is concerned, see the final Remark in Section 7.

6. Technical results for Theorem 2. So far, we have not yet met those
Kahler differentials we announced but we shall make much use of
them in proving Theorem 2; here is a review of classical constructions,
followed by general results in the case of differential fields.

Let K be an algebra over a field k of characteristic 0. Recall ([2],
Ch. Ill, §10, No 2) that, if the algebra K is Z-graded, if M is a Z-graded
^-module and n an integer, a k-derivation (resp. k-antiderivation) of
degree n from K to M is a k-linear map λ from K to M9 homogeneous
of degree n, and such that: λ(ab) = bλ(a) + aλ{b) for all a and b in
K (resp. λ(ab) = bλ(a) + (~l)n'^aλ(b) for all a in K homogeneous of
degree \a\ and all b in K). If a module is not graded over Z, it will be
provided with the trivial graduation: every element is of degree 0.

We denote by Derk(K,M) the ΛT-module of ^-derivations from K
to M.

PROPOSITION 2. There exist a K-module {called the module of Kahler
differentials of K over k and denoted by Ω l ^ ) and a k-derivation

{called the exterior differential and denoted by djc^ from K to ΩL^
which have the following universal property: for any k-derivation λfrom
K to a K-module M, there is a unique K-linear map λ* from Ω l ^ to
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M which factors λ through dK/k.

K - ^ M
dK/k \ S *•* λ = λ* - dK/k

The pair {Ωι

K/k,dK/k)
 m a Y be seen as: The submodule of the dual

of the A^-module Όcτk{K,K) which is generated by the da, a e K,
where da{D) = Da for D e Όerk{K,K). Or else: ([2], Ch. II, §10, n°
11). The quotient I/I2, where / is the kernel of the canonical algebra
homomorphism from K ®k K onto K which maps a ® b onto ab.
Or else: Simply the AΓ-module generated by the symbols da, a e K,
submitted to the following relations: d(a + b) = da + db and d(ab) =
dba + adb for a and b in K, and da = 0 for all α in the image of k
inK.

Henceforth, K/k is afield extension of characteristic 0. Then ([11],
Prop. 3) ΩjL^ is a ΛΓ-vector space for which {dK/kUi)iej is a linear
basis if and only if (w/)/e/ is a basis of transcendency for K/k; hence
dim^ Ωι

κ/k = t.d. A'/ik. We shall need the following ([2], Ch. Ill, §10,
n° 9, Prop. 14).

PROPOSITION 3. Let A be a commutative ring, M an A-module and
E a bimodule over the exterior algebra A(M). Let d0 be a derivation
from A to E {i.e. do(ab) = do(a) + ado(b)) and d\ a homomorphism of
additive groups from M to E such that:

dx [ax) — ad\ (x) + do(a)x for all a in A and x in M.

If xd\(x) + d\(x)x = 0 for all x in M, then there exists a unique
derivation d of the 1-algebra Λ(Λf), the restrictions of which to A and
M are respectively do and d\.

Put in this proposition: A = K, M — Ω j ^ and E —
which is usually denoted by Ω ^ ^ e already have do — dK/k, so that
it suffices to build a map d\ (and this is done in [3], §2, n° 10) meeting
the above conditions. Whence is deduced the extension ofd = dK/k

into a k-derivation {still denoted by d) of degree 1 such that d2 = 0, of
the exterior algebra ΩK/k. We have the formula: d(v du\/\ Άdun) =
dv Λdui Λ Λdun, for all v9u\9...,un in K.

We turn to the Case of Differential Fields. Let K/k be a d.f. ex-
tension; we simply write d for dK/k. The following, quoted from [11]
(Prop. 2), makes Ω l ^ a "differential ^-vector space."
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PROPOSITION. There exists an endomorphism Dι of the additive
group Ωι

κ,k with the following properties:

Dι(uω) = ufω + uDιω and
( ' Dι(du) = d{u') for u in K and ω in Ωι

κ/k.

Now, putting A = K, M = Ωι

κ/k, E = Ωκ/k, d0 = " ' " (the given

derivation on K extending that of k) and d\ = Dι in Proposition 3, we

see that there exists a unique derivation D of degree 0 ofΩK/k which

extends "' " and Dι. Since D is a derivation, it verifies:

(3) D(ω\Λ Λωn)

ι Λ • # Λ ω , _i Λ (DlCύi)

for ω b . . . , α ) n in Ω ^ .

We arrive now at a key proposition for proving Theorem 2. First
here is a preliminary result of linear algebra.

LEMMA 6. Let E be a vector space over a field K. Suppose that
elements a^...,an not all zero in K, ω o , . . . , ωn in E and λo,...,λn in
K satisfy:

n n

^2 aiωi = 0 in E and ] P α, A, = 0 in K.
/=0 ι=0

Then we have the following in An(E):

Λ Λ &j Λ Λ ωn = 0.
ι=0

The proof is straightforward.

PROPOSITION 4. Let K/k be a d.fi extension. If elements uo,...,un

in K are algebraically dependent over the constants C ofk, then:

Λ ••• t\dun)

^ ϊ Λ Λ dun J .

The interest lies in the following fact: the algebraic dependence
over k of n + 1 elements in K is equivalent to the vanishing of a
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(n + l)-form; assuming the dependence to be over the constants of k,
we obtain a relation in Ωn

κ,k (i.e. An(Ωι

κ,k)).

Proof. By virtue of formulae (2) and (3), we calculate:

D(uodu\ Λ •• Λdun)

= u'oduι Λ ••• Λdun

n

+ Wo ^2 du\ Λ Λ dUj-\ Λ duΊ Λ έ/w/+i Λ Λ dun

ι = l

{convention: duf means d(uf)).
On the other hand, since WQ> . . . , un are algebraically dependent over

C, there is a polynomial F inn + l variables and with coefficients in c
such that F(uo,..., un) = 0; we choose such an F of minimal degree.
Now apply to this relation the given derivation " ' " and the exterior
differential d:

diF(uo,...,un)i/i = O inK and
/=o

n

J29iF(uQ,...,un)dui = 0 in Ωι

κ/k,
ι=0

(d[F is the partial derivative of / with respect to the zth variable). Let
E = Ωι

κ/k, di = diF(u0,..., un), cθi = dui and λt = u\ (i = 0,..., n)\
because of the minimality of the degree of F and the O-characteristic,
not all a, are zero. Therefore, we may apply Lemma 6, which yields:

-1)'w' du0 Λ'-ΛduiΛ'-Λ dun = 0.
z=Ό

Comparing this relation to that obtained at the beginning of the
proof, the result follows from some computations that we skip.

REMARK. Proposition 4 generalizes Lemma 1 of [10], which corre-
sponds to n = 1. We shall also need this slightly improved version of
Proposition 4 of [11].

PROPOSITION 5. Let K/k be a field extension, u\,...,un non-zero
elements in K and v in K. Let C\,...,cn in K be algebraic over k and
linearly independent over Q.
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Ifc\ du\/u\ H V cndun/Un = dυ in Ω l ^ , then U\,...,un andυ

are algebraic over k (i.e. such a relation is necessarily trivial).

In [11], the C\ were lying in k, but our version is easily obtained
by regarding the algebraic closure k of k in K and using the ΛMinear
map from ΩL^ into Ω* ^ which is induced by the universal property

of ΩL Λ and merely replaces dKjk by

7. Proofs of Theorem 2 and Lemma 3 to its Corollary. We first prove
Lemma 3. Let x be a solution of S?{X) and suppose that x is not a
generic solution of/?. Yet, x is a solution of/?, for the type q of x over
C contains JP but not S(P), so that q contains p (as already noted in
Section 2). Therefore, we are reduced to looking for the types q over
C which strictly contain p. Clearly q cannot be of order 2 and cannot
be algebraic either since this would make x algebraic over c, hence
constant (Lemma 1) while x satisfies <5*{X). Thus q is of the first
order and t.d. C(x)d/C = 1. By computing the minimal polynomial
P of p and then S(P), we see that S(P)(x) Φ 0 implies Gt{x) φ 0 for
all /; now F(x) and l/G/(x) are algebraically dependent over c; apply
Proposition 4: Dι(dF(x)/Gi(x)) = d(F(x)'/Gi(x))9 which we rewrite:
Gi(x)fdF(x) = F(x)'dGi(x). Multiply both sides by C//G/(x), sum
over i and take the fact that x satisfies P(x) = 0 and F(x)' Φ 0 into
account; it yields: dF(x) = ΣcidGi(x)/Gi(x) in ΩQJC) / C Apply
Proposition 5: dF(x) = 0 in Ω L , , c , that is: F(x) is algebraic over
C, hence constant, a contradiction. D

Proof of Theorem 2. Set # = fc(x,j>)</ and of = dKjk. Since the
minimal equation of x over k is (E), which has constant coefficients,
it remains the same under restriction to C so that x satisfies the system
S"(X) mentioned in Lemma 3: in particular GJ (JC) Φ 0 for all /, and
F(x) Φ 0; also t.d. C(x)d/C = 2 so that the three elements u0 =
l/(F(x)'Gi(x))9 ux = Gi(x) and u2 = F(x) in C(x)</ are algebraically
dependent over c. Apply Proposition 4:

(dGj(x)AdF(x)\ (Gi{x)'dF(x)^F(x)fdGi(x)\

V F(x)'Gf-(x) / α V î W^/W /

= ,/G/(χyrfF(x)
V F(x)'Gi{x)
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by developing. Sum over / and use equation (E) for x:

dGj(x)ΛdF(x)\ _ τ Γ r n (dGj(x)ΛdF(x)
i ) 2CiD\

= d(dF(x)) = 0,

since d2 = 0. Doing the same with y instead of x, we get

0 i n Ω > .

For short, we write ω{x) and ω(y) for the 2-forms inside parentheses
in (i). We have ω(x) = φ{x) dx Λ dx' and ω(y) = φ(y) dy A dyf, with
Φ = Σci(doF ' d\Gi - d0Gi dιF)/F'Gi in C(X)d; as it is written, φ
may involve X", but equation (E) gives φ(x) = ψ(x,x') and φ(y) =
ψ(y,y')> where

^β ) is a rational function in C(X,X').

Note that ψ is not identically zero; since x and x1 (resp. y and y1)
are algebraically independent over k, it follows that ω(x) Φ 0 (resp.
ω(y) φ 0) in Ω ^ .

Now if JC and y are algebraically dependent over ky then dim^ Ωι

K/k

= t.d. A:/k = 2, so d i m ^ Ω ^ ^ = 1 and ω(x),ω(y) are proportional:

(iii) ω{y) = cω(x), with c Φ 0 in K.

Recall (i) and apply D to (iii): 0 = D(ω(y)) = D{cω(x)) = c'ω(x) +
c.O. Hence, c is a constant of K\ but AT is algebraic over k(x)d9 so
by Lemma 2, c is algebraic over the constants of k(x)d which are
algebraic over C (Proposition 1 and RU(/?) = 1 ) . So c w algebraic
over C (as will be all constants ofK) and dc = 0.

On the other hand, the dependence of x and y is expressed by

(iv) dy = a dx, for some a Φ 0 in K.

Apply d and Dι to (iv):

(v) 0 = da/\ dx, and

(vi) dy1 = a' dx + a dx1, whence

(vii) dy Λ dy1 = a2 dx Λ </*'.
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Compare (vii) to (iii):

(viii) a2/c = ψ(x,x')/ψ(y,yf).

Compute logarithmic exterior differentials of both sides: 2 da/a =
dψ{x,xt)/ψ{x,x')-dψ(y,yt)/ψ{y,y'), make the exterior product with
dx and use (iv), (v) and (vi): 0= (d\ ψ(xyx')/ψ(x,xf)-adι ψ(y,y')) dx
Λ dx\ that is

α = dιψ(x,x')/ψ(x,x')

dιψ(y,y')/ψ(y,y')'

Replacing this value of a in (viii) finally yields:

c = dχψ{x9x')2lψ{x9x'γ

dιψ(y,y')2/ψ(y>y')3'

Now there are two possibilities: either the rational function
(d\ψ)2/ψ3 in C(X9X') is a constant in C, in which case the relation
(x) becomes: c —\\ or this function is not constant.

The first case easily implies that there is some / in C(X) and some
a in C such that: ψ — a/(Xf + f)2. But, remembering (ii), we have:

which is an equality between an exact C-derivative and a linear com-
bination of logarithmic C-derivatives of rational functions and must
therefore be trivial. Since F is a polynomial, it follows that / is zero
and F is of order 0. Consequently ψ = a/X'2 and, since c = 1, the
relations (ix) and (iv) respectively yield:

(xi) a = — and — = —-.
X1 Ϋ X1

Note, quite generally (no matter in which case we are), that Uo =
l/Gi(x) and u\ = 1/UQ are algebraically dependent over C, so that
Proposition 4 gives: Dι(dGi(x)/Gi(x)) = d(Gi(x)'/Gi(x)); multiply
by C|, sum over /, and use properties of Dι (relations (2) in previous
section):

(xii) D^£§0pJ
and the analog for y.
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Working with (dF{x),ΣcidGi(x)/Gi(x)) as a basis for Ωl^, set:

(xm)

with w and i; in

By making the exterior product with dF(y)/F(y)f = dy/yf (since F is
of order 0) and using (xi), we get: v = 1, which we put back in (xiii)
on which we apply Dι, while taking (xii) into account; we get: u = 1.
Now (xiii) reads as follows:

i G i { y ) / G i { χ ) •

Apply Proposition 5: d(F(y) - F(x)) = 0; with (xi) this implies:
F{y)' = F(x)'9 i.e.

(xiv) F(y) = F(x) + b, where b is some constant in K

(thus algebraic over C). The final arguments are then the same as
in the other event determined by (x), so that both will be concluded
simultaneously.

In the second case (when {d\ ψ)2/ψ3 is not a constant), the left-hand
side of (x) may happen to be 1, like in the first case, but this does not
alter the fact that (x) is a non-trivial relation of algebraic dependence
over C between x, x\ y and y1. In other words: the type of y over
C{x)d forks over C; but the minimal equation of y over C is still (E),
so that t(y/C) also has forking rank 1. Therefore, y is algebraic over
C{x)d and t.d. C(x,y)d/C = 2.

Denote by Γ the d.f. C(x9y)d9 by δ the exterior differential dγ/c
and by Δ1 the "derivation" of Ω L C which is induced by that of Γ.
This latter derivation " ; " is C-linear, so the universal property of
(Ω|yC,<?) provides a unique linear form λ on the Γ-space Ω r , c such
that: λ(δu) = u\ for u in Γ. Write an equation similar to (xiii) in
ΩpyC (here u and v are in Γ and dKjk = d is replaced by dγjc = δ);
applying λ to it, we obtain u = v\ applying Δ1, we see that u is constant
(for the analog of (xii) holds in Ωf / C), hence u is algebraic over C.
Now the equation similar to (xiii) becomes:

(xv) δ(F(y) - uF{x))

A δGiiy) A δGi(x) . o l



18 MICHEL BRESTOVSKI

If the coefficients c,, uci, (/ = l,...,ύ) are not linearly indepen-
dent over Q, we choose a basis of the Z-lattice that they span and
gather together suitably the Gi(y), Gi(x). Note that every element in
this lattice is algebraic over k since u is so. Apply Proposition 5:
δ(F(y) - uF(x)) = 0, which means that F(y) - uF(x) is algebraic
over C, thus a constant b. Some calculations show that u = c:

(xvi) F(y) = cF(x) + b,

with c and b constants algebraic over C. If c = 1 (xvi) reduces to
(xiv), so we are going to prove first that, if two generic solutions and
y ofp are algebraically dependent over k and satisfy (xiv), then b = 0.

Consider the equations: (E) for x, (E) for y and (xiv); by Seiden-
berg's Elimination Theorem (see [1]), there is a finite family SF of finite
systems of equations and inequations with coefficients in k such that
x and y are solutions of the above equations if and only if b solves one
of the systems in 9~. Now, if a system in &* happened to involve only
inequations, it would have a solution b transcendental over k, which is
impossible since b = F{y)-F{x) is a constant of AT. Consequently, all
systems in & involve only equations and there are only finitely many
possible values of b. Also, the set of these possible values does not
depend on the solutions x and y originally given. Denote by b(x,y)
the constant which corresponds to such quantities x and y\ it is easily
seen that b(x9y) = b(y,x) = 0 and b(y,z) + b(z,x) + b(x,y) = 0,
which means that these constants form an additive group; but it is
finite, hence reduced to (0).

If c Φ 1, then we may replace F in (E) by F + b/(c - 1) (for (E) in-
volves only i 7 '), and this amounts to saying b = 0, so that (xvi) reduces
to: F{y) = cF(x). An argument similar to that of the previous para-
graph shows that the possible values of c form a finite multiplicative
group, thus a group of mth roots of the unity for some m. D

REMARK. Similar but weaker results hold for some classes of equa-
tions of the form (E) with non-constant coefficients and are proven
essentially with the same methods.

This paper was written while the author was invited as a Visiting
Scholar at U.C. Berkeley in 1983 .. . and delayed for extra-mathemati-
cal reasons. It is his pleasure to thank here Franςois Gramain,
Bruno Poizat and Maxwell Rosenlicht for helpful conversations.
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