ERRATA
 CORRECTION TO
 GALOIS THEORY OF DIFFERENTIAL FIELDS
 OF POSITIVE CHARACTERISTIC

Kayoko Shikishima-Tsuii

Volume 138 (1989), 151-168

The proof of Proposition 11 of this paper contains an error in the stage of proving that $C(\sigma)$ is finitely generated over C. We present here a correct proof.

Proof. Since σN is finitely generated over K and σ is strong, $N \sigma N=$ $N C(\sigma)$ is finitely generated over N. Hence, there exist elements γ_{1}, \ldots, γ_{s} of $C(\sigma)$ such that $N C(\sigma)=N\left(\gamma_{1}, \ldots, \gamma_{s}\right)$. For each element c of $C(\sigma)$, there exist polynomials F and G in $N\left[X_{1}, \ldots, X_{s}\right]$ such that

$$
\begin{equation*}
F\left(\gamma_{1}, \ldots, \gamma_{s}\right)-c G\left(\gamma_{1}, \ldots, \gamma_{s}\right)=0 \tag{1}
\end{equation*}
$$

and $G\left(\gamma_{1}, \ldots, \gamma_{s}\right) \neq 0$. Among the monomials of $\gamma_{1}, \ldots, \gamma_{s}$ in the equation (1), we choose linearly independent elements c_{1}, \ldots, c_{r} over C and rewrite (1) in the form

$$
\begin{equation*}
\sum_{i=1}^{r} c_{i} a_{i}-c\left(\sum_{i=1}^{r} c_{i} b_{i}\right)=0 \tag{2}
\end{equation*}
$$

where $a_{1}, \ldots, a_{r}, b_{1}, \ldots, b_{r} \in N$ and $\sum_{i=1}^{r} c_{i} b_{i} \neq 0$. If $\left\{\alpha_{1}, \ldots, \alpha_{t}\right\}$ is a maximal set of linearly independent elements over C in $\left\{a_{1}, \ldots, a_{r}\right.$, $\left.b_{1}, \ldots, b_{r}\right\}$, then a_{i} and $b_{i}(i=1, \ldots, r)$ are represented by

$$
a_{i}=\sum_{j=1}^{t} a_{i j} \alpha_{j} \quad\left(a_{i 1}, \ldots, a_{i t} \in C\right)
$$

and

$$
b_{i}=\sum_{j=1}^{t} b_{i j} \alpha_{j} \quad\left(b_{i 1}, \ldots, b_{i t} \in C\right)
$$

By (2), we have

$$
\begin{aligned}
0 & =\sum_{i=1}^{r} c_{i}\left(\sum_{J=1}^{t} a_{i j} \alpha_{j}\right)-c\left(\sum_{i=1}^{r} c_{i}\left(\sum_{j=1}^{t} b_{i j} \alpha_{j}\right)\right) \\
& =\sum_{j=1}^{t}\left(\sum_{i=1}^{r} c_{l} a_{i j}-c\left(\sum_{i=1}^{r} c_{i} b_{i j}\right)\right) \alpha_{j} .
\end{aligned}
$$

Since N and $C(\sigma)$ are linearly disjoint over $C, \alpha_{1}, \ldots, \alpha_{t}$ are linearly independent over $C(\sigma)$ and thus

$$
\begin{equation*}
\sum_{i=1}^{r} c_{i} a_{i j}-c\left(\sum_{i=1}^{r} c_{i} b_{i j}\right)=0 \quad(j=1, \ldots, t) . \tag{3}
\end{equation*}
$$

Suppose $\sum_{i=1}^{r} c_{i} b_{i j}(j=1, \ldots, r)$ are all equal to zero, then

$$
b_{i j}=0 \quad(i=1, \ldots, r, j=1, \ldots, t)
$$

since c_{1}, \ldots, c_{r} are linearly independent over C. Thus,

$$
\sum_{i=1}^{r} c_{i} b_{i}=\sum_{i=1}^{r} c_{i}\left(\sum_{j=1}^{t} b_{i j} \alpha_{j}\right)=0
$$

and this contradicts $\sum_{i=1}^{r} c_{i} b_{i} \neq 0$. Therefore, there exists at least one index k such that $\sum_{i=1}^{r} c_{i} b_{i k} \neq 0$. Consequently, by (3),

$$
c=\frac{\sum_{i=1}^{r} c_{i} a_{i j}}{\sum_{i=1}^{r} c_{i} b_{i j}} \in C\left(\gamma_{1}, \ldots, \gamma_{s}\right) .
$$

ACKNOWLEDGMENTS

The editors gratefully acknowledge the service of the following persons who have been consulted concerning the preparation of volumes one hundred thirty-five through one hundred thirty-eight of the Pacific Journal of Mathematics.
C. Akemann, R. A. Askey, D. Babbitt, R. Bass, S. Berberian, M. Bestvina, B. Blackadar, A. Blass, R. Blattner, M. Camberon, P. J. Cassidy, G. Chen, P. Chernoff, H. Choi, P. Cordaro, J. Cygan, C. Delzell, J. Diestel, D. Drasin, B. M. Dwork, R. Edwards, E. G. Effros, D. E. Evans, T. Fack, H. Fattorini, J. Feldman, J. Fornaess, J. Garnett, G. Gasper, H. Glover, B. Gordon, A. Gray, S. P. Gudder, R. Gulliver, U. Haagerup, D. Haile, J. Harper, J. S. Hsia, L. Husch, W. Johnson, V. F. R. Jones, M. Kaneda, Y. Kannai, M. Karoubi, H. Kosaki, M. Landstad, D. R. Larson, K. C. Lin, J. Lubow, S. Popa, R. T. Powers, L. Ratliff, J. R. Reay, J. Rogawski, J. Rosenberg, L. Rothschild, S. Sakai, P. Schaefer, J. R. Schulenberger, E. Schulte, C. Scovel, J. Shaneson, S. J. Sidney, L. Simon, W. F. Stoll, R. Strichartz, C. Sutherland, M. E. Sweedler, M. Takesaki, F. Treves, G. Triantafillou, H. Upmeier, V. S. Varadarajan, D. Voiculescu, W. Von Wahl, M. E. Walter, H. L. Wu

