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ADELES AND THE SPECTRUM OF
COMPACT NILMANIFOLDS

JEFFREY FOX

Let G be a nilpotent Lie group and Γ a discrete cocompact sub-
group of G. A basic problem in harmonic analysis is to determine
the structure of L2(G/Γ). We apply adelic techniques to determine
the decomposition of L2(G/Γ). To do so, we first develop a "ratio-
nal" Kirillov theory for the adele group GΆ Once this is done, the
decomposition and multiplicity formulas follow from elementary con-
siderations.

Let G be a locally compact group and Γ c G a closed subgroup such
that G/T is compact. For x e G, we can define Λ(JC), a unitary operator
on L2{G/Γ) by (λ(x)f)(y) = f(x~ιy). The representation x --> λ{x) is
called the quasi-regular representation of G. A fundamental problem
in representation theory is to decompose λ into irreducible representa-
tions. A theorem of Fell [F] says that λ will be discretely decomposable
and each irreducible will occur with finite multiplicity. Thus we can
write:

(0.1) L2(G/Γ)=
πeSp(Γ)

where 0 < dim(Kπ) < oo for each π e Sp(Γ). The first task is to
determine Sp(Γ) as a subset of G and then to determine dim(P^),
the multiplicity with which π occurs in L2(G/Γ). When G is a solv-
able Lie group, one may use the reduction procedures of Howe [H2],
Auslander-Brezin [B], and Fox [Fo]. In principle, then, the multiplic-
ities can be computed, but the answers seem unsatisfying, and much
work needs to be done in this area. For nilpotent Lie groups, the
problem was first addressed by Moore [M], and later solved by Howe
[HI] and Richardson [R]. The answer found by Howe and Richardson
generalized the classical Frobenius reciprocity theorem for compact
groups and provided a useful computational answer to the problem.
Some time later, Corwin and Greenleaf [C-G] gave a beautiful so-
lution, expressed in terms of canonical data attached to Γ and the
representation π, when Γ satisfied some mild side conditions.
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In spite of the above work, and perhaps because of the success of
the above authors, an important question remained unanswered. The
question was first formulated for unipotent groups by Moore [M], and
its importance was later emphasized by Howe [HI]. To describe the
problem we need to recall the notion of the commensurability class
of a discrete group Γ. We say that Π is commensurable with Γ2 if
Γi Π Γ2 has finite index in both Γi and Γ2. We will write {Γ} for the
class determined by Γ. The approach taken by the above authors is to
pick a Γ out of the class {Γ} and then determine the decomposition
of L2(G/Γ). The approach we shall take is to formulate and solve the
problem for the class {Γ}; from that solution the decomposition of a
particular L2(G/Γ) will follow as a simple corollary.

For nilpotent Lie groups, Moore formulated the problem and proved
the fundamental theorem necessary to complete the solution. The
class {Γ} uniquely determines and is determined by, the structure of
an affine algebraic group defined over Q on G. Let Gq be the Q ra-
tional points of G. If QA is the ring of adeles of Q and Gf\ the QA
points of G then we can embed Gq diagonally into Gf\. The resulting
quotient space, G(\/Gq, is compact. Thus, L2(Gf\IGq) is discretely
decomposable. Moore has determined Sρ(Gq) and showed that the
multiplicity of each irreducible representation in SP(GQ) is one. Once
this decomposition is available, the local information follows readily,
in principle. The representations of Gt\ can be constructed as infinite
tensor products, and it is as a consequence of this construction that the
local information is obtainable. However, to use the adele machinery
effectively, we need a description of the representations occurring in
L2(Gf\/Gq) that does not involve the infinite tensor product construc-
tion.

If G is a nilpotent Lie group, models for the representations of G^
that occur in L2(Gf\/Gq) can be constructed by applying the adele
functor systematically, thereby obtaining a "rational" Kirillov the-
ory for these groups. Once this is done, the multiplicity formulas
of Howe-Richardson and Corwin-Greenleaf follow from elementary
considerations. Moore's multiplicity one theorem also follows from a
straightforward computation once the "rational" Kirillov theory has
been constructed.

In §1 we describe the rational Kirillov theory for (?A and give a
simple proof of Moore's multiplicity one theorem. In §2, we use the
multiplicity one result to obtain the Howe-Richardson multiplicity for-
mula and outline how the Corwin-Greenleaf results fit into the adele
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picture. We then obtain a sharp upper bound on the rate of growth
of multiplicities (in terms of Plancherel density) for the generic rep-
resentations of Goo occurring in L2(Goo/Γ). It should be noted that
by using Pukanszky's parameterization of all orbits occurring in g*, it
would be possible to produce a polynomial bound for all representa-
tions occurring in L2(Goo/Γ). (Consult [C-G2] for a very accessible
description and application of this parameterization.)

What is most striking about the adelic approach to the multiplic-
ity problem is the simplicity of the constructions and the ease with
which the various multiplicity formulas follow from the adelic infor-
mation. In particular, Moore's infinity tensor product construction is
not needed.

The author would like to thank Richard Penney and Roger Zierau
for conversations from which he profited greatly. The author would
also like to thank the referee for many detailed comments that im-
proved both the clarity and accuracy of this paper.

1. Rational Kirillov theory. Our basic references will be WeiPs two
books, [W-l] and [W-2]; from [W-2], we only need the first two chap-
ters, which discuss the ideas of adelic geometry. Also, the reader might
consult Tamagawa's brief survey of adeles ([T], p. 113). We now recall
some definitions and notation. Given a prime p of Q, we can define
a valuation | \p on Q. If x = pnf with b el and α, b relatively prime
to p, then \x\p = p~n. If we complete Q with respect to | | p , we obtain
Qp, a locally compact field. If | | is the usual absolute value on Q,
then we will call | | the valuation at the infinite prime and write | |oo
In this case, Qoo = R, the real numbers. For p, a finite prime Qp will
denote the closure of ϊ in Qp. Thus, lp is a compact open subgroup
of QP9 which can also be described as ϊp = {x e % \ \x\p < 1}. Given
x € Q, we have the product formula:

(1.1) Π

(Here, the product is over all primes, including the infinite one.)
We now recall the construction of the "ring of adeles" of Q (see

[W-l], p. 59). Let P be a finite set of primes that includes the infinite
prime, and let Q(P) = Y[peP Qp x Y[p^p lp with the product topology.
If Λ c P2, then Q(Λ) is an open subring of Q(P2) We set tyA =
Up Q(P) w i t h t h e inductive limit topology and call QA the adele ring of
Q. Given x e QA we will write x = (x^, xPι,...) if we need to exhibit
x in terms of coordinates. Given q e Q, we can write q = p\x --p2e.
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Thus, ifp^p\,...,pewe have q elp. It follows that we can consider
Q to be diagonally embedded in Q^. With this embedding, Q is a
discrete cocompact subgroup of QA. We can also view Qp as being
embedded in Q^ by Q P - { J C G QA\x = (0,0,. . . , ^ , 0 , 0 , . . . ) } . The
statement that strong approximation holds for Q is simply that Q + Qp

is dense in Q^ for any p ([W-l], p. 70). If we define Qy = {x €
QA\XOO = 0}, then Q^ ~ Qoo x Q/ as topological spaces. If ψ is a
character of Q^, then ψ = ]\p ψp, with ψp a character of Qp; and for
all but a finite number of /?'s (to be abbreviated a.e. /?), ψp\τp = 1. A
character ψ of Q^ is called basic if ψ is non-trivial but ψ\q = 1. Note
that strong approximation says that a basic character is determined by
its restriction to typ (which is ψp) for any prime p. (See [W-l], part
1, for more information on the above constructions.)

In [W-2], Chapter 1, Weil constructs the adele functor from the
category of algebraic varieties defined over Q to the category of topo-
logical spaces. The construction is very similar to the construction of
QΛ (we refer the reader to [W-2] for details and also to [T]). For G,
a unipotent algebraic group defined over Q, it will be useful to phrase
the construction of GA in terms of restricted direct products. Moore
([M], pp. 163-64) gives a detailed account of this construction, a
review of which follows.

Let Gq be the Q rational points of G and Qq the Lie algebra of Gq.
Let X\,..., Xn be a basis of 0Q over Q, and let L be the Z-span of
X\,..., Xn\ so L is a lattice in gq. By the Campbell-Baker-Hausdorίf
formula, there exists a polynomial P: Qq x Qq —• Qq such that exp(X)
exp(X) = exp(P(X, Y)). It follows that for Gqp multiplication is given
by the same polynomial, but extended by continuity to Qqp x Qqp. Let
Lp be the closure of L in Qqp. If the coefficients of P are in Έp (which
will happen for all but a finite number of primes), then P: LpxLp —•
Lp and e x p ^ ) = Kp is a compact open subgroup of Gqp. If we
change the basis, then only a finite number of the Kps will change;
thus, we say that the Kp's are defined for a.e. p. Now we can form the
restricted direct product of the Gqp with respect to the Kp's. Let S be
any finite set of primes containing those primes for which Kp is not
defined. Let G(S) = ΠpeS Gqp x Y[p^s

 KP w i t h t h e product topology.
Then GA = Us ^(^) w ^ ^Q inductive limit topology.

Let V be an algebraic variety defined over Q; then VA will be the
corresponding adele space attached to V. Given two varieties, V\
and V29 with a morphism F: V\ -» V2 defined over Q, there exists
a canonical map FA: (V\)A —• (yi)A such that the following diagram
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commutes:

( H ) Q ^ (VX)A

(1.2) F | ΪFA .

As for Q^, one can define Vp, Vf, Fp, and Ff so that F^ = Fα, x Fy
and FA = Foox Fj.

We now want to develop what might be called a rational Kirillov
theory for unipotent algebraic groups defined over Q. In what follows,
we will use no subscript to denote the Q rational object and will employ
the subscript p or A to denote the local or adele object. We fix the
basic character ψ of QA such that ^ΌoC*) = exp(2π/;c).

Let G be a unipotent algebraic group defined over Q with Lie algebra
g. Let g* be the dual of g and choose leg*. A subalgebra f) c g is said
to be a polarization for / if /([ί)f)]) = 0 and if f) is a maximal subspace
with respect to this property. We let H = exp(fj) be the subgroup of
G with Lie algebra f) and HA represent the corresponding subgroup of
GA. We can define a character of HA (trivial on H c HA) by the usual
formula; for h eHA:

(1.3) */(λ) = ψ(l(}ogA(h))).

DEFINITION 1.1. Let π(l,H) = i ^

LEMMA 1.1. Let leg*; then there exists a polarization f) for I such
that n{l,H) is irreducible. Furthermore, up to equivalence, π(l9H) is
independent ofH and depends only on the Ad*(G) orbit of I in g*. If
ff = Ad*(G) / c g*, then we will write π& for a representative of the
class determined by π(/, H).

Proof. The proof is identical to the real case, so we will omit it.
(However, one might consult [Kl], p. 71, and [Wa], p. 326.) α

As in the real case, the representations π^, ff e g*/ Ad*(G), will all
be CCR and they will possess an appropriate orbital integral formula
for the character. Before describing this, we need to recall the notion
of a standard function (cf. [W-l], Ch. VII, §2). Let C°°(GP) be the
C°°-function with compact support if p is the infinite prime and the
locally constant functions of compact support if p is a finite prime.
Let θp be the characteristic function of Kp for those /?'s for which Kp

is defined (so θp is defined for a.e. p).
DEFINITION 1.2. A function φ on GA is called standard if
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with φp e C™(Gp) and φp = θp for a.e. p. We denote by C™{GA) the
*-algebra (under convolution) of standard functions.

LEMMA 1.2. Let φ e C%°{GA)\ then φ is a finite sum of elements of
the form φx * φ2 with φt e C™(GA).

Proof. Write φ = φoo x Φf with φf = Π/^oo Φp- By ^ e Dixmier-
Malliavin factorization theorem [D-M], φ^ = J2^=\ ai * βi w ^ ah
βi e Q°((JOO). Now consider φf = Πpeoo ΦP- F O Γ e a c h »̂ ΦP

 i s I o c a l l y
constant and thus invariant under an open compact subgroup of Gp,
say Sp. Now for a.e. /?, φp = θp, so we can take Sp = Kp for a.e. p. If
we set Sf = Up SP9 then 0^ is invariant under Sf and the characteristic
function of Sf is in C£°(Gf). Now we have;

(1.4) φf*{l/γόί{Sf)XSf){g)

= f φf(gx)(l/vol(Sf)χSp(x))dx = φf(g).
JGf

If we set γ = l/vol(Sf) χ^/5 then γ e CC°°(G/) and we have:

(1.5) φ = φ o o χ φ f = J 2 )

Suppose π is an irreducible representation of GA\ then it is a con-
sequence of Lemma 1.2 that π(0) will be a trace class operator for
all φ e C™(GA) if π(φ) is a Hubert Schmidt operator for all φ e
C™(GA). To show π(φ) is a Hubert Schmidt operator, it suffices
to show that π{φ * φ*) is trace class. The point here is that we are
reduced to deciding if a positive operator is trace class, which sim-
plifies the computations. If π = ind^jQt/), then we can compute
tτ(π(φ * φ*)) using the standard computation for induced represen-
tations. Pukanszky's algorithm goes over almost word for word in the
adele setting. After introducing some notation, we will describe how
Pukanszky's algorithm can be adapted to this situation.

DEFINITION 1.3. Let V be a non-singular algebraic variety defined
over Q. An algebraic differential form ω on V is called a gauge form
if deg(ω) = dim(F) and ω is everywhere holomorphic and non-zero
(for a definition of holomorphic in the algebraic setting, see [L], pg.
189).

If G is an affine algebraic group defined over Q, then we have the
usual definitions of right and left invariant differential forms on G. In
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particular, we say G is unimodular if every left invariant gauge form
is also right invariant. If E C G is a subgroup of G with E and G
both unimodular, then there exists a gauge form on G/E which is G
invariant ([W-2], p. 24). A standard induction on dimension of n
shows that unipotent groups are unimodular.

Given a gauge form ω on a non-singular algebraic variety V, Weil
([W-2], p. 21) shows how to construct measures ωp on the Q^ points
of V for every p and how to match up these measures to form measure
on VA. The measure on VA is essentially a product measure, which we
denote by (ω)A. If ω is a left invariant gauge form on G, then (ω)A

is a left invariant measure on GA. It follows that GA is unimodular
if G is unimodular. For unipotent groups, the basic case to consider
is G = Q. For each finite prime /?, there is a unique Haar measure
(dX)p on Qp such that the volume of 2P is one. We take on R = Qoo,
the usual Lebesgue measure. For the gauge form ω = dX on Q, the
corresponding measure on Q^ is (ω)A = Y\p(dX)p.

If G is a unipotent algebraic group and E c G a Zariski closed
subgroup with Lie algebra g, then we can construct a global cross-
section for G/E by means of a coexponential basis. Thus, we can find
a basis X\9...,Xn of g such that X\9...,Xs is a coexponential basis
for ting and Xs+\9-.-9Xn span e over Q. Consequently, we have the
isomorphism F: Qs x e —• g defined by:

(1.6) F((ί 1 , . . ., ί J ),JΓ) = exp(/1ΛΓ1) - exp(ίΛ)-exp(Λr).

Let G be a unipotent algebraic group with Lie algebra g. The exponen-
tial map exp: g —> G is an isomorphism of varieties. As in the real case
(see, for instance, [Wa], p. 315), the pullback of a G invariant gauge
form on G to g via exp is a translation invariant gauge form on g. We
fix a gauge form on g, say dX, and let (dX)A be the corresponding
measure on QA. If we put counting measure on the discrete cocom-
pact subgroup QQ gA, then (dX)A is characterized by the fact that the
volume of QA/Q is one. The measure (dX)A is called the Tamagawa
measure on gA.

DEFINITION 1.4. If φ e C£°{GA), we define the Fourier transform
of φ as a function on g*A by:

(1.7) φ(l)= f φ(X)ψ(l(X))(dX)A.
HA

(Recall that ψ is our fixed basic character of Q^.)
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Now g*A also has a Tamagawa measure (dl)A. It is easy to see that,
with respect to this measure, Fourier inversion holds ([W-l], p. 113):

(1.8) Φ(0)= f φ{l){dl)A

Let π = ind^Qt/). We now recall Pukanszky's algorithm for com-
puting tr(π(φ)) as an orbital integral. Let f) be the Lie algebra of H
and Xχ,...9Xn basis of g such that Xι,...,Xs is coexponential for f)
in g and Xs+ι,.--,Xn spans f). Set

and let f)1 = {λ e g*\λ(X) = 0 V I G ( ) } . If 0 = Ad*(G)(/) c 0*, then
/ + \)L c ^ . As in the real case, the map L Γ x ί ) 1 - ^ ^ defined by

(1.9)

is an isomorphism of varieties. If we identify Γ with Qs by

(fi,..., ts) -> exp(ίiAΊ)

then γ has the gauge from dγ = dt\ A Λ dts. Let JΓ*,..., X* be dual
to X\,...,Xs; then if \)L, λ = Σs

i={ UiX* with ut e Q. This determines
a gauge form dλ = du\ Λ Λ t/Wy on / + I)1.

LEMMA 1.3. Let leg*, \) a polarization for I and π = ind^(χ/). If
φ E C^°(GA) is of the form φ = a * a*, then

(1.10) tτ(π(φ))= ί ί φ{Ad*(γ)(l + λ))(dλ)A(dγ)A.
J(Γ)A J(^)A

Proof See [Pu2], p. 267. α

DEFINITION 1.5. Let ωγH be the gauge form on 0 such that ωΓH =
L*(dλΛdγ).

Equation (1.10) can be written

(1.11) tv(π(φ))= ί

where both sides are finite or both sides are infinite. To show that the
right-hand side of (1.11) is finite, we need the following lemma:

LEMMA 1.4. Let I e β* and <9A = Ad*(GA)(l) = (Ad*(G)(l))A; then
@A is closed in g*A.

Proof. Let xn = gn / be a sequence in @A such that xn converges to
y G g*A. Let ~gn be the image of gn in GA/G. Since GA/G is compact
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([M-T], p. 462), we can assume that ~gn converges to ~g in GA/G. Since
the quotient map is open, we can find a sequence zn e GA such that zn

converges to z and gn = zn-wn with wn e G. Now Ad*(gn)Ί converges
and zn is convergent, so Ad*(z~ιgn) / = Ad*(wn) / is convergent in
Q*A. But Ad*(wn)l e 0Q C Q*A and 0Q is discrete; thus, if n > N, we
have that Ad* (wn)l is the constant sequence. Therefore, Ad* (gn)(l)
converges to Ad*(z) Ad*(wN)(l) € <?A Π

Let 0A = ^oo x <9f\ then 0^ C

Since φ = φ^x φj , we have:

and f c is also closed in

(1.12) / Φ ((OΓ,H)A= ΦOO - (CUΓ,H)OO

It follows from [Pu], p. 267, that J^ ^ * (̂ >r,/f )oo is finite. As for

the second factor, φf has compact support in jΛ. Since ^ is closed,

supp(φf)Π(ff is compact in &f\ from this, it follows that f^ φf(coγtH)f

is finite. We can summarize this with:

COROLLARY 1.1. Ifπ = ind^(//) and φ e C™{GΛ), then π(φ) is a
trace class operator.

A priori, the gauge form ωγH depends on choices of a polarization f)
for / and a coexponential basis for I). However, given two G-invariant
gauge forms, ω\ and ωi, on 0, there exists a constant c G Q such that
coy = cω2 It is now easy to check that (ωi)^ = \c\A (CU2)A where
\c\A = idele norm of c ([W-2], p. 22). Since c e Q, |c|^ = 1 and
(ωi)^ = (ω2)^. We can now summarize our constructions with the
following theorem.

THEOREM 1.1. Let G be a unipotent algebraic group defined over Q
with Lie algebra g. Given an Ad*(G) orbit (9 C g*, we can associate
with (9 an irreducible unitary representation (π = π^) of GA. Given
φ e C°°(GA), n{φ) is trace class and

(1.13) tτ(π(φ))= ί

where the canonical measure (ω)A is obtained from any rational G-
invariant gauge form on 0.
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THEOREM 1.2 (Moore). Let Gbea unipotent algebraic group defined
over Q. Let p = ind^( l ) ; then we have:

(1.14) p= 0 π,.

Proof. We use the Selberg trace formula in conjunction with Poisson
summation formula, as in [C-G]. Let F be a fundamental domain of
G in GA, so vol(F) = 1. Let φ e C™{GA). Then we compute:

(1-15) Xr(p(φ))= / yZφ(g~ιγg)d'g
γeG

= J^φ(Ad(g-ι)(X))dg

= J Σ$(Ad (g)(l))dg.

In the last line, we use the Poisson summation formula for &Q QA

and 0* c g*A (see [W-l], §2).
Let S be a set of coset representatives for Ad*(G) orbits in Q*. We

then have:

(1.16)

φ(Ad*(gλ)(l))dg

φ(Ad*(g)(l))dg.

The measure on GA/G(1) is determined by giving the discrete group
G(l) counting measure. Finally, (1.16) becomes:

(1.17) ΣYO1(GA{I)/G(1)) ί φ(Ad*(g)(l))dg.
J^ JGA/GA(l)

The measure on GA/GA(1) is characterized by vol(G^(/)/G(/)). This
measure comes from a G-invariant gauge form on G/G(l) if and only
ifvol(GA(l)/G(l)) = 1. In this case, equations (1.13) and (1.17) yield:

(1.18) tτ(p(φ))=
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2. Multiplicity formulas. In this section, we want to describe how
the decomposition of L2(GA/G) gives information about LOO(GOO/Γ)
when G is a unipotent algebraic group defined over Q. For more
information on this process, one can consult [G-G-P], [Ma], and [S].
For unipotent groups, the proofs in [W-l] carry over.

Recall that if E is a vector space over Q, then £00 + E is dense in
EA ([W-l], p. 70). If G is an algebraic group defined over Q, then
strong approximation holds for G if Goo G is dense in GA.

LEMMA 2.1. If G is a unipotent group defined over Q, then strong
approximation holds for G.

Proof. Using that exp and log are isomorphisms, this follows from
the corresponding fact for vector spaces. D

Let Γ be a discrete cocompact subgroup of Goo For each finite
prime p, let Γ^ be the closure of Γ in Gp. Then Γp is a compact open
subgroup of Gp, and for a.e. p. Γp = Kp (see [M], pp. 163-64). We
can associate with Γ an open subgroup KΓ of GA by:

(2.1) * Γ = GOOX
P

Conversely, suppose we are given a family of compact open subgroups
Γp c Gp such that Γp = Kp for a.e. p (equivalently, suppose we are
given a compact open subgroup Γy = Π^ooΓp of Gf); then we can
form an open subgroup of GA, K = Goo x Γy. Let pr: GA —• G^
be the projection onto the first factor. If Γκ = pτ(K Π G), then Γκ

is a discrete cocompact subgroup of Goo. The two correspondences
Γ -• ΛΓΓ and K -*YK are inverses of each other. The proofs of these
facts are identical to Theorem 1 in [W-l], p. 84.

Now fix a Γ c Goo; then we can define a natural map T from
£2(Goo/Γ) to L2(GA/G). Strong approximation says GA = Kτ G;
thus, if x e GA, we can write x = (&χ» gf) Y with (g^, gf) e Kτ and
γ e G. If φ e L2(Goo/Γ), define:

(2.2) T(φ)(x) = T(φ)((goO9 gf) γ) = φ(goo).

ifχ = (g<χ»gf)'V = Osoo'if)'?*then (gnioo'gj1!/) = yy~ι e GnK>
so ^ ^ o o G Γ and φ(goo) = Φ(goo) τ h u s

?

 τ i s well-defined.
Next we want to show that T(φ) is in L 2 ( G A G ^ ) . Since GA = Kγ GQ

we have:

(2.3) f \T(φ)\2<[ \T(φ)\2.
JGΛ/GQ JKr/KΓnGQ
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Set Γ = ί : Γ n 6 β = {(γ,γ,...)\γ e Γ } and let h e CC(KΓ). We have by
our normalizations of measures:

= ί h(g).

Next suppose h is Tf invariant. Then 3 / e Cc{Goo) such that /(#oo) =
h(q) for all # € KΓ, thus we have:

(2.5)

(2.6)

Thus (2.5) and (2.6) yield:

(2.7) vol(r» / φ= ί T{φ).
JGOO/Γ JKΓ/Γ

Since T(\φ\2) = \T(φ)\2 we get

(2.8) / \T(φ)\2<[ JT(φ)\2=vo\(Γf) f \φ\2.
JGΛIGQ JKΓ/T JGOO/Γ

Thus T is a continuous mapping of L2(Goo/Γ) into L2(Γf/GΛ\GQ).
To see that T is onto we produce an inverse. Let ψ e L2(Γf/G{\\GQ);
then define (Sψ)(qoo) = (̂(<?oo, 1,1,...)). We note that Sψ is left Γ
invariant, for we have:

where we have used (1, γ~ι, y~',...) € Γy for all γ G Γ.
Similar computations as for T, show that S maps L2(Γf/GA\Gς>)

continuously into L2(Goo/Γ).
Recall that p is left translation by GA on L2(GA/G) and λ is left

translation by G<χ, on L2(Goo/Γ). If g = (#oo, gy) e Λ:Γ, then we have:

(2.10) p(g)T(φ) = T(λ(gΰO)φ).
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LEMMA 2.2. Let ~p denote the restriction of p to the subgroup KΓ =
Goo XΓ/CGA acting on the invariant subspace L2(Γf/GA\G). IfSp(Γ)
denotes the representations ofGoo that occur with positive multiplicity
in L2(Goo/Γ), then we have:

(2.11) p=
σeSp(Γ)

(Here σ ® \ is the representation of Kγ given by (σ ® 1 )(&»,£/•) =

Proof. This is just a restatement of 2.10. D

Let π be an irreducible representation of GA occurring in L2(GA/G).

Since GA = Goo x Gf and Goo is a type 1 group, there exist irreducible
representations πoo, πy of Goo, Gf such that π = ^ x ^ y . Theorem 1.2
and formula (1.12), tell us that π is the only irreducible representation
of GA occurring in L2(GA/G) with the oo-f actor being πoo If πf\rf =
Σ τ € Γ / μ ( π / 5 τ ) τ , then π\Kr = Σ τ e f M^TXTTOO ® τ). If we consider
just the trivial representation of Γy, then we have that πoo ® 1 occurs
in L2(JΓf\GjilG) with multiplicity μ(π/91). We can summarize the
above discussion with the following lemma.

LEMMA 2.3. Let G be a unipotent algebraic group defined over Q.
Let T be a discrete, cocompact subgroup of Goo and Γy = Πp^oo ^P
the compact subgroup of GA corresponding to Γ. Let π = Uoo x πy
έe <ZH irreducible representation of GA that occurs in L2(GA/G). If
m(πoo) denotes the multiplicity of πoo in L2(Goo/Γ) and μ{πf) denotes
the multiplicity of the trivial representation ofTf in itf\τf, then:

(2.12) m(πoo) = μ(πf).

In particular, for an irreducible representation πoo of Goo to occur in
L2(Goo/Γ), it is necessary that π = πoo x πy for some π of Theorem
1.2.

Since we have such a nice model for π^ = ind^(//), we can easily

use Lemma 2.3 to compute the decomposition of L2(<?oo/Γ). We see

that ind^jQf/) = ind^(//) x ind^Qf/), so the representation πy of

Lemma 2.3 is an induced representation. Thus, we can apply the

Mackey subgroup theorem to compute:

(2.13) π / | Γ / =
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We need to remark on two points in equation (2.13). First, since
the subgroup Γy is open in Gy, we have that Γy and Hf are regularly
related, Γy\Gγ///y being discrete. Let G be the projection of G c Gf\
into Gf c GA, thus G = {(1,JC,*,...)\xe GQ}. It follows from [W-l],
pg. 83, Corollary 1, that G is dense in Gf, thus we have Gy = Γy G.
Therefore, (2.13) says:

(2.14) μ(πf) =
xeHf/Gf\Γf

xeG

Now Γy is a compact group, so we can use the classical Frobenius
reciprocity theorem for compact groups to conclude:

(2.15) H o m Γ / l , i n d ^ _ l n Γ / ( / / f ) c , H o m , / / / X - l n Γ / ( l ? U / f ) .

In what follows, we will assume that x is the identity. Thus, we are
in the situation where:

(2.16) ψol(logf(.))\HfΠΓf=l and ψ o/(logi4( ))k Q = 1.

If γ e Hq, then we have ^ o/(log^y)) = ^/o/(logy(y))"1; and if
y € Hf nΓf, then ^ / ( l o g y ^ ) ) " 1 = 1 by 2.16, so ^ooθ/(logoo(y)) = 1.
Thus, we see that:

(2.17) (Xi)f\Hfnrf=l i f fU/Jool^nr^ l .

Consequently, we have:

2.18 d i m H o m x / / x - , n Γ 1, // x =\ .
; ; t θ otherwise.

We can summarize the discussion with the following theorem.

THEOREM 2.1 (Howe-Richardson). An irreducible representation π of
Goo occurs in L2(Goo/Γ) if and only if there exist I e Q*Q and a rational

polarization H for (χ^ such that π = ind£~((*/)«,) and{χι)oo\HoonΓ =
1. The multiplicity ofn^ in L2(GOO/ΓOO) is given by the number of ra-
tional double cosets in // 0 0\G 0 0/Γ such that (Xι)%o\χHooχ-ιrir
= 1.

We now indicate briefly how the results of Corwin-Greenleaf [C-G]
fit into the present picture. We restrict ourselves to the case where
Λ = log(Λ) is a lattice in g; such Γ's are called lattice subgroups.
In this case, log(Γp) = Ap C gp is a compact open 2P module of gp
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([M], p. 161), so TlpAp = Af is a compact open subgroup of g/.
Let φ e C£°(GA) be given by φ = φ\ x φ2, with φ2 the characteristic
function Γy (which we identify with the characteristic function of Af
via the exponential map). We have:

(2.19) tv(π(φ)) = txiπcoiφx)) tc(πf{φ2)).

If P is the projection onto the space of Γf fixed vectors in H(πf),

it is well known that P = vol(Γy)"1 πf(φ2). Thus,

tr(πf(φ2)) = vol(Γ7) tr(P) = vol(Γ/)/z(π/) = v o l ^ m ^ ) .

To compute m(πoo), we only need apply the character formula for
tτ(π(φ)). Since Γ is a lattice subgroup, this is particularly easy, since
φ = φ\ x φ2 and φ2 = vol(Λy) (characteristic function of Λ^ in g*).
(See [W-l], p. 107.) We then get:

(2.20) tr(π(φ)) = / φocdμ^ / φfdμf

If we break ^/ΠΛ| into a sum of Tf orbits and evaluate the resulting
integrals, we obtain the formula of Corwin and Greenleaf ([C-G], p.
12). We omit the details.

Next we will use the trace formula (1.12) to obtain a sharp upper
bound for the rate of growth of the multiplicities of representations
in the spectrum of Γ. When the representations are square-integrable
mod the center, the estimate becomes exact and gives the Moore-Wolf
multiplicity formula [M-W].

LEMMA 2.4. Let XΪ9...9Xn be a Jordan-Holder basis for g. Thus,
ifΰi = sρanq{Xu...,Xi}, then g/ is an ideal of Q. Let l\9...9ln be
the corresponding dual basis ofg*. There exist complementary subsets
S, T of{ 1,2,...,«} and an Ad* (G) invariant Zariski-open dense subset
WofW = spanQ{//|7 G T} such that ifV = span{/;|j e S}, then:

(1) for almost every Ad* (G) orbit & c μ*, @ΐ\W has only one element
{if (9 Π W = {/}, then we will write <9χ for 0)\

(2) for all I ^W, there exists a polynomial map P \ \ V - + W with
0\ = graph(P/); and

(3) the map I —> P\ is rational in I.

REMARK. Almost every orbit means a non-empty Zariski open sub-
set of g*.

Proof. See [Pul], p. 55. α
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The basis X^ i e S for V determines a gauge form on F, which we
denote by dX. Let R^: <9\ —• V be defined as follows:

(2.21) *,((*,/>/(*)))=*.

Then we can consider the gauge form on ff\ defined by R*(dx) = ω/.

LEMMA 2.5. The gauge form ωj = Rj(dx) is a G invariant form on

Proof, [Pul], p. 54. D

COROLLARY 2.1. The canonical measure on {@{)A is given by (coι)A.

Let 7Γ/ be the irreducible representation of GA associated with (9\. If
φ e C°°(GA), then it follows from Corollary 2.1 that:

(2.22) tr(πι(φ)) = φ(x + Pι(x))(dx)A.

If φ = φcc x φj-, then (2.22) becomes:

(2.23) tτ(π,(φ)) =

+ Pι(x))(dx)f.

It is well known that there exists a polynomial function / —• Pf{l)
on W such that ([C], Theorem 2):

(2.24) tτ(π0O(φoo)) = \Pf(l)\z,1 ί $oo(x + Pι(x))(dx)oo.

It follows from (2.23) and (2.24) that:

(2.25) tr(πf(φf)) = |P/(/)|oo / Φf{x + Pι(x))(dx)f.
J(V)f

(Since (Pf)(l) is rational if / is rational, we have \Pf(l)\A = 1, where

\X\Λ = Up \Xp\P is the idele norm, or |P/(/)U = \Pfi!)\γ.)

Now suppose Γ C Goo is a lattice subgroup of G^, and set Λ =

log(Γ). Let φf be the characteristic function of Af. We saw before that

tτ((πι)f(φf)) = vol(Λ^)m(7Γoo). Since φf is the characteristic function

of Λy, φf = vo\(Af)-KA±, where KA± is the characteristic function of

Af = {λ e 2*f\ψf(λ(Af)) = 1}. Applying (2.25), we have:

(2.26) m((τr/)oo) = 1/Λ

>vol(Af)\Pf(l)\oo / A:Λ±(JC +
f
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For KA± (x + Pι(x)) to be one, we need at least that x e Vf n Aj; so
we get:

(2.27) / KAf(x + Pι(x))(dx)f < vol(AJ n Vf).
JVf

We can summarize the above with:

LEMMA 2.2. Let Γ c G^ be a lattice subgroup ofGoo. Let W be as
above. Then for every I €W we have:

(2.28) m((π/)oo) < A\Pf{l)\^ where A = vol(Λ-^ n Vf).

REMARKS. (1) It is well known that |-P/(/)|oo i s Plancherel density
with respect to the appropriate coordinates (see [C], p. 6, or [K2]).

(2) Suppose G has square-integrable representations. Then, if 3 =
center of 0, we can take V ~ j 1 , W « 3*, and />/(/) = / [M-W].
Applying formula (2.26) yields:

(2.29) m((τr/)oo = \ π - .
10 otherwise.
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