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DEGREES AND FORMAL DEGREES
FOR DIVISION ALGEBRAS AND GL*

OVER A p-ADIC FIELD

LAWRENCE CORWIN, ALLEN MOY AND PAUL J. SALLY, JR.

We compute in the tame case, the degrees of the irreducible repre-
sentations of a division algebra and the formal degrees of the discrete
series of GL(w) over a p-adic field and compare them.

1. Introduction. Let F be a p-adic field of characteristic zero, and
let G = GLn(F). Throughout this paper, we assume that (n9p) = 1 (the
tame case). The discrete series of G consists of (equivalence classes of)
irreducible, unitary representations of G whose matrix coefficients are
square integrable (modZ), where Z is the center of G. The discrete
series splits into two distinct classes ([HC2], [J]):

(1) Supercuspidal representations: irreducible unitary representa-
tions whose matrix coefficients are compactly supported (modZ);

(2) Generalized special representations: irreducible unitary repre-
sentations whose matrix coefficients are square integrable (modZ),
and which are subrepresentations of representations induced from a
proper parabolic subgroup of G.

The supercuspidal representations of G were constructed by Howe
[H2]. The first proof of the fact that all supercuspidal representa-
tions of G are contained in Howe's construction was given by Moy
[M]. The generalized special representations of G were characterized
by Bernstein-Zelevinsky ([BZ], [Z]). We note that the Bernstein-
Zelevinsky construction uses the supercuspidal representations of
GLW(F) where m\n (m < n). Since (m,p) = 1 in the present case, the
requisite supercuspidal representations can be obtained from Howe's
construction.

The key to the study of the supercuspidal representations of G is the
notion, due to Howe [H2], of an admissible character of an extension
of degree n over F. In fact, the supercuspidal representations of G
are parametrized by (conjugacy classes of) admissible characters of
extensions of degree n over F, and generalized special representations
are parametrized by (conjugacy classes of) admissible characters of
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extensions of degree m over F where m\n, m < n. (See [M] for
additional details.)

Now, let Dn be a division algebra of dimension n2 over F9 and
let Dx = Dx, be the multiplicative group of Dn. The irreducible
representations of Dx were constructed as induced representations by
Corwin [Co] and Howe [HI]. In these constructions, the inducing
representations are obtained from (conjugacy classes of) admissible
characters of extensions of degree m over F where m\n (including
m = ή).

The proof by Moy [M] that Howe's representations exhaust the
supercuspidal representations of G uses the abstract matching theo-
rem. The abstract matching theorem was proved by Deligne-Kazhdan-
Vigneras [DKV] and Rogawski [R]. Recall that, iϊEjF is an extension
of degree n, then Ex can be embedded in both G and Dx. In fact, any
compact (mod center) Cartan subgroup of G (and Dx) is isomorphic
to Ex for some extension of degree n.

THEOREM 1.1 {Abstract Matching Theorem, [DKV], [R]). There is
a bijection π' <-• π between irreducible representations of Dx and the
discrete series of representations ofG with the following properties:

(1) Ifθπr and θπ are the characters ofπ' and π respectively, and γ
is a regular element in a compact (mod center) Cartan subgroup Ex,
then

θπ<(y) = (-i)n-ιθπ(γ).

(2) If the formal degree of the Steinberg representation [B] is nor-
malized to be equal to one, then

d(πf) = d{π),

where d(πf) is the ordinary degree of the finite-dimensional representa-
tion π' and d(π) is the formal degree of the infinite-dimensional repre-
sentation π;

(3) Ife(πf, ψ), e(π, ψ) are the e-factors ofπ1 and π respectively, then
e(π', ψ) = (—1)/I"1e(π, ψ). Here, ψ is a suitably chosen additive char-
acter on F.

REMARKS 1.2. (1) Moy's proof [M] that the supercuspidal represen-
tations constructed by Howe and the generalized special representa-
tions constructed by Bernstein-Zelevinsky exhaust the discrete series
of GLW(F) uses the abstract matching theorem in an essential way.
Thus, it is only after we use the abstract matching theorem that we
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can assert that the concrete matching by admissible characters is ac-
tually bijection.

(2) The abstract matching theorem gives no indication as to which
representations of Dx correspond to the two distinct types of discrete
series representations of G.

(3) Recently, Howe-Moy [HM2] have given a proof of the com-
pleteness of Howe's construction without the use of Theorem 1.1.

To sharpen our focus, we introduce the following distinction. If
E/F is an extension of degree m, m\n, m < n, and θ is an admissible
character of Ex, we say that θ is subadmissible (for n). Thus, the term
admissible character will be used only for extensions E/F of degree
n. The conjugacy classes of admissible and subadmissible characters
parametrize the irreducible representations of Dx. As indicated above,
the supercuspidal representations of G correspond to admissible char-
acters, and the generalized special representations of G correspond to
subadmissible characters. Thus, it is natural to conjecture that, if πf

θ

is the irreducible representation of Dx corresponding to an admissible
(resp. subadmissible) character, then the discrete series representation
π of G which corresponds to π'θ by the abstract matching theorem is
supercuspidal (resp. generalized special).

This last assertion is indeed the case, and it is the purpose of this
paper to give a proof using the degrees of the representations. To this
end, we consider the following sets:

(1.3) A\ = {π'θ e (Dx)~\θ is admissible};

A2 = {π'θ e (Dx) * \θ is subadmissible}.

Here π'θ is the representation of Dx constructed from θ by Corwin
and Howe, and (Dx) ~ is the unitary dual of Dx. In a similar fashion,
we define

(1.4) A\ = {πθ e Gd\θ is admissible};

A2 = {πθ 6 Gd\θ is subadmissible}.

In this case, we have the supercuspidal representations (resp. gener-
alized special representations) constructed by Howe (resp. Bernstein-
Zelevinsky). Gd denotes the discrete series in the unitary dual of G.

Now, letting d(π) denote the ordinary or formal degree of a repre-
sentation, we set

(1.5) A\ = {d(πf

θ)\π'θ e A\}; Δ'2 = {d{π'e)\n'e e A'2};

(1.6) Δj = {d(πθ)\πθ e A,}; Δ2 = {d(πθ)\πθ e A2).
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If we assume that d(Steinberg) = 1, then (2) in the abstract matching
theorem implies that Δ'j uΔ'2 = Δj UΔ2. We show in Theorem 4.1 that

(1.7) A\ n Δ ' 2 = Δ i n Δ 2 = 0, Δ'{=Δι, and Δ'2 = Δ2.

Since the trivial representation of Dx is in Ar

2, it follows that, under
the abstract matching, representations in A\ correspond to supercus-
pidal representations of G and representations in A'2 correspond to
generalized special representations of G. It is interesting to note that
the conductors of the representations UQ and πf

θ appear naturally in
the expressions for the formal degrees. This will be discussed in §4.

One of the more important consequences of (1.7) is worth observing
here. Using the standard Frobenius formula for induced characters,
we are able to give explicit formulas for the characters of the repre-
sentations π'θ G (Z> x)^. It follows from (1) of the abstract matching
theorem that these are (up to a sign) explicit formulas for the charac-
ters of the discrete series of G on the elliptic set. The distinction pro-
vided by the formal degrees tells us which of these are supercuspidal
characters and which are generalized special characters. In turn, this
allows us to analyze the differences between the two different classes
of characters. This analysis is carried out in [CS].

In the case n = p, Carayol [C] has determined the formal degrees
of the supercuspidal representations of G and the degrees of the cor-
responding representations of Dx. He has also observed the relation-
ship between the formal degree and the conductor of a representation.
Waldspurger [W] has computed the formal degrees of the discrete se-
ries of G with a normalization which differs from ours. His techniques
for obtaining these formulas are also different, but there are significant
points of contact between some aspects of our computations and those
of Waldspurger. In §4, we will give more detail about the relationship
between our work and that of Carayol and Waldspurger.

In §2, we compute the formal degrees of the supercuspidal and gen-
eralized special representations of G. While the formal degrees of
the supercuspidal representations are computed directly from their
construction as induced representations in §2.1 and §2.2, the formal
degrees of the generalized special representations are derived in §2.3
and §2.4 using the Hecke algebra isomorphisms proved in Howe-Moy
[HM2]. This requires a discussion of the minimal A^-types associated
to generalized special representations.

Section 3 contains the calculation of the degrees of the irreducible
representations of Dx. Again, the degrees are computed from the
inducing construction.
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Finally, in §4, we prove the statement of (1.7). In addition, we make
several observations concerning the relationship between degrees and
characters, the appearance of the conductor in the expression for the
degree of a representation, and the comparison of the formal degree
of a generalized special representation with the formal degree of the
associated supercuspidal representation. It is worth noting here, that
our development hinges to a great extent on the fact that (n,p) = 1.
However, if the formal degree of a generalized special representation
is divided by an appropriate power of the associated supercuspidal
representation, the resulting expression does not depend on the ad-
missible character which parametrizes these representations. There is
hope that such an expression pertains in the case when p\n.

Some of the results in this paper were announced in [SI]. We adopt
the usual notation: ffF is the ring of integers in i7, &F the maximal
ideal in (9F, and ώF a prime element in <?>F. The F-conductor of a
multiplicative character φ on Fx will be denoted by /F{φ).

2. Formal degrees for the discrete series of GLn. In this section,
we compute the formal degrees of the supercuspidal and generalized
special representations of G = GLΛ(F). As mentioned in the Intro-
duction, the formal degrees of the supercuspidal representations are
computed directly from their construction as induced representations,
while the formal degrees of the generalized special representations are
computed by using isomorphisms of certain Hecke algebras. It turns
out that the actual computations are remarkably similar for the two
cases.

2.1. Degrees of the inducing representations. Let E/F be an exten-
sion of degree n ((n,p) = 1), and let θ be an admissible character of
Ex/F ([H2], [M]). The irreducible supercuspidal representations of
G may be parametrized by (conjugacy classes of) admissible charac-
ters of extensions of degree n over F. In fact, given 0, one constructs
a compact (mod center) open subgroup Kθ of G and an irreducible
representation σθ of Kθ such that

(2.1.1) πθ = lnd%βσθ

is an irreducible supercuspidal representation of G. Moreover, all
irreducible supercuspidal representations can be constructed in this
way ([H2], [M]).

Given an admissible character θ of Ex/F, the construction of Kθ

and σθ proceeds as follows. According to Howe [H2], there is a unique
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tower of fields

(2.1.2) E = EtDEt-ιD ' DEιDE0 = F,

and characters χ, φ\9...,φt of Fx,E*,...,Ef respectively such that
θ = (χ o NE/F)(φ\ o NE/EI) ''' {Φt) Each character φk is generic over
Ek_\ (see [H2], [M]). For simplicity, we abuse the notation and write
φk = φk°NE/Ek, so that

(2.1.3) θ = χ φ { φ t .

This is the Howe factorization of θ. It is unique in the sense that the
conductorial exponents of the characters are unique, and /E{Φ\) >

fE(Φ2)> >/E(Φt)>l
We set

(2.1.4) nk = [E:Ekl ek=e(E/Ek), fk=f(E/Ek),

In particular, n0 = n9 nt = 1, e0 = e(E/F) = e, and f0 = f(E/F) = f.
If A = /k(Φk)> the iE-conductor of φk, we define integers ik, k =
1,2,..., t, as follows. For k = 1,2,..., t - 1,

n i ^ / / A / 2 ' ^ e v e n '
< 2 1 5 ) '* ~ I tA - D/2. A odd.
If /εiΦt) = jt > 1, define /, as above, and, if /ε(Φt) = jt = l> set
ϊ, = 1.

REMARK 2.1.6. (1) When jt=l, E/Et-\ is unramified [H2].
(2) The relationship between the ^-conductor of φ^ (= φ^ o NE/Ek)

and the ^-conductor of φ^ is /ε{Φk) ~ 1 = ek(/εk(Φk) ~ 1)
Now, writing ^ = <ffc, and ^ = ^ . , we define

MfM)
Mr i^k) ' ' ' Mr. (<9ιλ

(2.1.7)

where there are ek blocks in each row and column. We regard 1 + fk

h

as a subgroup of G for any positive integer h (see [M]).
The inducing subgroup for π# is then defined as

(2.1.8) KΘ = E*(\ + / / ! , ) ( ! +<L-2') . (1
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if A(Φt) =jt > l,and

(2.1.9) ^ = £ X Λ : , _ 1 ( 1 + ^ _ 1 ) ( 1 + / ^ 2

I ) (1+/ 1 ' 2 ) (1+/ O " ) ,

if MΦt) = ; " / = ! , where Kt-X = GLΛ,_,(<?,_,).
The inducing representation may be written as a tensor product

(2.1.10) σθ = KtΦKt-i <8> <g>/Ci <8>χ,

where χ is a character of Fx which can be removed by a twist for the
purpose of computing formal degrees. From the construction of κk

([H2], [M]), we have, for 1 < k < t,

(2.1.11) deg(κk)=l, j k even,

deg(^) = [(1 + / £ , ) : (1 + 4 ' 0 ( l +4'! .+J)] l / 2, j k odd.

If yr > 1, the above formulas are still valid for άe%(κt), and, if j t = 1,

(2.1.12) det(/c,)=

where qt-\ =
We now compute deg(σe) from the above data. We set qk =

1 < k < t, so that (qζ")ek = {qffk)Ck = qf"k.

LEMMA 2.1.13. [(1 + / £ , ) : (1 +4'*)(1 + ^ V ) 1 = Qfnk-'/<lfnk-

Proof.

LEMMA 2ΛΛ4. If θ is an admissible character for Ex/F{[E: F] = n),
and σθ is the representation ofKθ given by (2.1.10), then

β) = tfW), where

β(θ) = (f/2)
k: jk odd

(2) deg(σ,) = qmmjl\-\qi_x - 1)], where

β(θ)=
k: 7A odd
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Proof. This is an immediate consequence of (2.1.11), (2.1.12) and
Lemma 2.1.13.

2.2. Normalization of volumes and formal degrees of supercuspidal
representations. In order to use the abstract matching theorem for pur-
poses of comparison between representation of Dx and G, we must
normalize measures so that the formal degree of the Steinberg repre-
sentation is equal to one (Theorem 1.1). We begin by recalling the
basic formula for formal degrees ([HC1], p. 5). If π is a representa-
tion of G which is square integrable (modZ), and Z o is a cocompact
subgroup of Z (i.e. Z/ZQ is compact), then

f(2.2.1)

where v is a unit vector in the space of π, and dx is a Haar measure
on G/ZQ. The formal degree deg(π, G/ZQ), in fact, depends on the
normalization of dx.

In the case of the Steinberg representation, it is well known ([R])
that

1 n~l

(2.2.2) deg(St,G/Z)vol(KZ/Z) = - \[{qk - 1).
k=\

It should be observed that, in imposing this normalization, we
are simultaneously normalizing Haar measures on G and Z so that
volG(K)/vo\z(K n Z) = volG/z(KZ/Z).

For our purposes, it is convenient to get an analogue of (2.2.2)
for any cocompact subgroup Z o of Z. To this end, we impose the
normalizations

1 n~ι

(2.2.3) (i)

(ii) volz(KnZ) = 1;

(iii) voizb(tfnz0) = i.

We then have

1 n~{

(2.2.20 deg(St,(7/Zo)vol(*Zo/Z0) = - \[{qk - 1).
k=\

In particular, if ZQ is the discrete subgroup of G given by Z o =
), then (2.2.3), (iii), gives counting measure on Z o . This will
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be used below in determining the formal degrees of the generalized
special representations.

We now turn to the formal degrees of the supercuspidal represen-
tations of G. If Kθ and σθ are defined as in (2.1.8) (or (2.1.9)) and
(2.1.10), and πθ is given as the irreducible supercuspidal representa-
tion induced from σθ, then it is easy to see ([S2]) that a non-trivial
matrix coefficient of σθ may be extended to G by defining it to be zero
on the complement of Kθ, thus yielding a matrix coefficient of πθ. It
follows that deg(7Γ0,G/Z) = deg(σθ)/vol(ZKθ/Z). So, to complete
our calculation for deg(π#, G/Z), we must determine \ol(ZKθ/Z) rel-
ative to the normalization (2.2.2).

Define

K(e)

and let Z ^ be the subgroup generated by

_oj _ ^ o

o o

0 0 0
ιf

where / = f(E/F) and there are e = e(E/F) blocks in each row and
column. Then Z ^ normalizes K^ and KQ is a subgroup of Z
for any admissible character θ.

We now have

(2.2.4) vo\{ZKθ/Z) = Yθ\{Z{e)K{e)/Z)[Z^e)K{e): Kθ]~'.

Moreover, Z^K^ nZK = ZK^e\ and

(2.2.5) vol{Z^e)K^/Z)

= [Z{e)K{e): ZK{e)][ZK: ZK^]~] vol(ZK/Z).

Thus, we must compute the three indices in (2.2.4) and (2.2.5).

LEMMA 2.2.6. (1) If fE{Φi) > 1, then

where a = Σ,Uι '"*(«*-! -nk)-n+\.
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(2) IffεiΦt) = 1, then

[Z^K^:KΘ] = \GLf{q)\e\GLfl_ι{qt-l)Γι4*',

where a = Σ'k=\ **(«*-i -nk)-n+l.

Proof. (1) We have [Z^K^ :KΘ] = [K& : <*£ (1 +S/j_,) (1 + < ' ) ] .

Since 1 + ̂ k

lk_x is normal in K^e\ this last index is equal to

}
U=i

Now, the following facts lead to the stated formula for [Z^K^: Kθ].
First,

Second,

And, finally,

(2) When fε(Φt) = U we have Et/Et-.\ unramified, «,_t = ft_\,
and // = 1. Also, [<*£: 1 +// ' ] is replaced by [AΓ,_i: 1 +/?-i] =

In both cases, the transformation from

to

should be noted.
We now turn to (2.2.5).

LEMMA 2.2.7. (1) [Z^K^ ZK^] = e.
(2) [ZK: ZK^\ = \GLn(q)\/\GLf(q)\eq(»2-»f)'2.

Proof. (1) ZW has order e mod Z.
(2) Let Â i be the first congruence subgroup of K. Then K\ is a

subgroup of K^eΊ and

[ZK: ZK&] = [K: K{]~1 = \GLn(q)\/\GLf(q)\e\(<?F/0>F)J2\'(*-W.

But f2e{e - l)/2 = (n2 - «/)/2.

We are now in a position to give an explicit formula for
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THEOREM 2.2.8. Let πβ be the irreducible supercuspidal repre-
sentation induced from GQ where θ is an admissible character of
EX/F([E: F] = n). Let {nkjk} be the data from the Howe factor-
ization of θ given in (2.1.4) and (2.1.5). Then, ifvo\(KZ/Z) is given
by (2.2.2),

deg(π,,G/Z) = [f(qn

where a(θ) = Σk=\ Jk{nk-\ ~ nk).

Proof. As observed above, we have

deg(π,,G/Z) = deg(σθ)/vol(ZKθ/Z).

The result follows from (2.1.5), Lemma 2.1.14, Lemma 2.2.6, Lemma
2.2.7, and some elementary arithmetic.

2.3. Hecke algebra isomorphisms. We now consider the generalized
special representations. Let E/F be an extension of degree m, m\n,
m < n, and let θ be a subadmissible character of Ex/F. As in (2.1.2),
there is a unique tower of fields

(2.3.1) E = Et D ^ _ i D ••• DEi D E O = F,

and the associated Howe factorization

(2.3.2) θ

REMARK 2.3.3. Here we use the same conventions as above, that
is, φk is used to denote φk o NE/Ek, and the character χ of Fx which
appears in the Howe factorization of θ is twisted away for purposes
of computing the formal degrees.

Let n = am, and extend E to an extension Ef/F such that

(2.3.4) [Ef: E] = a and E'/E is totally ramified.

Thus, [Er: F] = n - am. Moreover, if e = e(E/F), f = f(E/F), and
nk> ek> fk a r e defined as in (2.1.4), we set

(2.3.5) e' = e(Ef/F) = ea, f = f(E'/F)=f, nf

k = [Ef: Ek] = ank,

ef

k = e(E'/Ek) = aek, fk= f(E'/Ek) = fk.

Note that nι

0 = n, and n\ — a.
Define θ' — θ o NE,/E. Then, we can write

(2.3.6) θ' = φ'tφ't_r--φ\,
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where φ'k = φk o NE,/E (= φk o NE/Ek o NE,/E, see Remark 2.3.3). If
AiΦk) = Jk, then /E>{φ'k) = ./£, where /M</4) - 1 = a(/E(φk) - 1),
that is,

(2.3.7) y £ - 1 =a(jk~ 1).

In analogy with (2.1.5), we set

(2.3.8) 4 = { f ,,., <*"»•. ,, , ,
I Ojt - l)/2, ./£ odd, fc= l , 2 , . . . , ί - 1 .

If /E>(φf

t) = j \ > 1, define /{ as above. If /E<{φ't) = j[ = 1, set /{ = 1.
We note from (2.3.7) that j \ — 1 if and only if jt = I.

For the Hecke algebra isomorphisms to which we referred at the
beginning of §2, we must define subgroups of G which are analogous
to those in §2.1. Thus, we define fk (in Mn(F)) as in (2.1.7), with e'k
and f'k{— fk) replacing ek and fk respectively. Let Ga = GLa{E), and
let Ba be the Iwahori subgroup of Ga, considered as a subgroup of G.
If j \ > 1, we set

/ *Λ O Q \ T ___ D / 1 i ^ t \ ( \ i ^ 2 \ ( 1 i ^ i \

If j \ — jt — 1, we write h = nt-\ — [E: Et-\], and let Pt-\ be the
(Λ,Λ,...,Λ) {a times) parahoric subgroup of G L ^ ^ ^ i ) . Then, if
j ' t = jt = 1, we define

(2.3.10) Jθ =P/_i(l + f^) " ' {\ + ^ ) ( 1 + / o ; )

If %Q is the generalized special representation constructed from 0,
we write (Ωβ,Jβ) for the minimal ΛMype associated to π# ([HM2]).
The representation Ω# is constructed in a manner which is very sim-
ilar to the construction of the inducing representations σθ for super-
cuspidal representations (see (2.1.10) ff). In particular, if j \ > 1,
Ω# = (^Jodet)®^/-! ® ®*ci, where ^odet is a one dimensional rep-
resentation on Ba, and K:̂  is defined as in [M]. If j \ = 1, we consider φt

as a character on the anisotropic Cartan subgroup of GL/z(^_1) where
qt-\ — qflf{~κ. Let κt-\ be the cuspidal representation of GLh{qt-\)
associated to φt([G]). We then let κt-\ be ®κt-ι (a times) inflated to
/Vi, and set Ω# = κt-\ Θ κt-2 ® ® tfi, where K^, 1 < fc < t - 2, is
defined as in [M]. Note that deg(^_0 = [Πjt=i(^f-i ~ UF

The following lemma is the analogue of Lemma 2.1.14 for the case
of generalized special representations.
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LEMMA 2.3.11. Ifθ is a subadmissible character for Ex/F, ([E: F]
= m, m\n, m < n), and (ΩΘ,JΘ) is the minimal K-type associated to
θ, then

(1) deg(Ω,) = qrW, whereγ(θ) = (f/2)J2k: 4 o d d « - i -n'k)J't > 1,

(2)

'h-

deg(Ω,) = ^ "

where γ(θ) = /(/2) £ «_, - n'k),j't = 1.
k: j ' k oάά\k<t

{Here, as in §2.1, qt_x =

Before stating the basic theorem on Hecke algebra isomorphisms,
we make a simple observation. Set T = {(bflnxn) and Ta = (ώ^/Λ X f l).
We can choose the prime elements ώf and CUE SO that, under the above
embedding of Ga into G, T is a subgroup of Ta. It is clear that

(2.3.12) [Ta: T] = e.

THEOREM 2.3.13 ([HM2]). The Hecke algebras JT(G/T,JΘT/T,ΩΘ)
and^(Ga/T, BaT/T, 1) are isomorphic. This isomorphism carries dis-
crete series to discrete series and preserves Plancherel measure. In par-
ticular, the generalized special representation πθ of G corresponds to
the Steinberg representation ofGa, and ([HM2]), (5.2))

(2.3.14) deg(πθ,G/T)vol(JθT/T)

t, Ga/T) vol(BaT/T).

Our goal is to determine the values of the factors in the formula
(2.3.14). First of all, the degree of the minimal AMype Ω# is given in
Lemma 2.3.11. Second, from (2.2.1) and (2.3.12), it follows that

(2.3.15) deg{St,Ga/T)γol(BaT/T)

= e~x deg(St,Ga/Ta)vo\(KaTa/Ta)

x[vol(BaT/T)/vol(KaTa/Ta)],

where Ka = GLa{fE). From the normalizations given by (2.2.3), we
obtain

(2.3.16) vol(BaT/T)/vo\(KaTa/Ta) = vol(Ba)/vol(Ka).
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Thus, to determine deg(π#, G/T) from (2.3.14), we must compute the
volumes vo\(JθT/T) = vol(Jθ)9 and vol(Ba)/vol(Ka) relative to the
normalization of Haar measures given by (2.2.3) and (2.2.2').

2.4. Formal degree of generalized special representations. The com-
putation of vol(/^) is similar to those contained in Lemma 2.2.6 and
Lemma 2.2.7. In the present case, JQ is compact, whereas, in §2.2, the
subgroup Kθ is compact modZ. Here, we define

where we have ea copies G L y ( ^ ) along the diagonal (aef = am = n).
In analogy with (2.2.4) and (2.2.5), we have

(2.4.1) [K: Jθ] = [K: *<">][*<">: Jθl

and

(2.4.2) vol(Jθ)=vol(K)/[K:Jθ].

LEMMA 2.4.3. (1) If ft > 1, then

: Jθ] =

where γ = Σί=\ Ί K - i -n'k)-n +
(2) Ifj\ = 1, then

[KM: Jθ] = \GLf(q)Γ

whereγ = ^ = 1 i'k{n'k_x-n'k)-n+a, andh = nt-\ = [E: Et_x] = ft_x.

Proof. As expected, the proof is similar to that of Lemma 2.2.6.

(1) If j \ > 1, then, since Ba and (1 +/k

k+ι) are normal in Jθ, k =

t-\

The proof now proceeds as in Lemma 2.2.6 with the observation that

[Ba: 1 +//'] = [Ba: 1 +/,][/,://'] = (qf - l)aqf°W-1).

(2) If ;*; = 1, [Ba: 1 + //'] is replaced by
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We need three more observations before giving the formula for
deg(π#, G/T). First, from (2.2.2'), we have

(2.4.4) dtg(St,Ga/Ta)vo\(KaTa/Ta) = - \[{qfk - 1).
k=\

Second, an easy calculation yields

(2.4.5) vo\(Ba)lvo\(Ka) = [Ka: Ba]

Finally, from (2.2.3)

(2.4.6) vo\(K)/[K: K^ae)] = [| GLf(q)\aeg^n'2^-f)]/[n(g" - 1)]

since [K: #(<")] = \G\n(q)\\GLf(q)\-aq-^a^ae-1^2^ (see the proof
of Lemma 2.2.7(2)).

THEOREM 2.4.7. Let E/F be an extension of degree m, m\n, m < n,
and write n — ma. Let θ be a subadmissible character on Ex /G, and
let π<9 be the generalized special representation constructed from θ. Let
e = e(E/F), f = f(E/F), and {nk,jk} be the data from the Howe
factorization ofθ given in (2.1.4) and (2.1.5). Then

deg(πθ,G/T) = [f{qn - l)/(qn/e -

where a{θ) = E L i Λ(«*-i - «*)•

Proof. We have

x vol(KaTa/Ta)[vol(Ba)/vol(Ka)]

from (2.3.14), (2.3.15) and (2.3.16). The values of the various factors
in the above expression are given in Lemma 2.3.11, Lemma 2.4.3,
(2.4.4), (2.4.5) and (2.4.6). Some elementary arithmetic gives us

dtg(πθ,G/T) = Kn/ea)(q" - \)/{qfa - i)]ί(//2)(«'(β)+2α-ea-«)>

where a'(θ) = E L , # K _ i ~ «*)•
The final formula is obtained by using (2.3.5) and (2.3.7).

REMARK 2.4.8. When a = 1, then m = n and the formula in
Theorem 2.4.7 reduces to the formula in Theorem 2.2.8. Note that
the normalizations of measures given in (2.2.3) shows that, in the
calculations leading to the formal degrees of both the supercuspidal
and generalized special representations, Haar measure on G is given
by (2.2.3), (i).
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3. Degrees for the representations of Dx. This section contains the
calculation of the degrees of the irreducible representations of Dx =
Dx. Since Dx is compact mod Z# (Z# the center of Z), Z# ~ Fx),
these representations are finite dimensional. Moreover, as pointed
out in the Introduction, the irreducible representations of Dx may
be constructed as induced representations, and the inducing represen-
tations are determined by admissible or subadmissible characters of
extensions E/F of degree m, where m\n.

Let @D be the integers in D, &>£> a prime element in D, and set
gpr

D — ώr

D(fr>, r > 1. Let Fn be an unramified extension of degree n
over F which is embedded in Zλ The residue class field Fn of Fn is
also the residue class field of Z), and \Fn\ = qn. We may choose ώj) so
that ώn

D is a prime element of F. We set KQ = #£, and Kh = 1 + ^ ,
h> 1.

Now, let E be an extension of degree m over Z7, where m\n, and, as
in §2, write e = e(E/F) and / = f(E/F). Contrary to the situation
in §2, there is no need here to separate the cases m = n and m < n.
We write

(3.1) n = ma,

noting that we may have a = 1. Let θ be an admissible or subadmis-
sible character of Ex jF with Howe factorization given by (2.1.2) and
(2.1.3) (or (2.3.1) and (2.3.2)). As usual, we twist away the character
χ for the purpose of computing degrees.

Using the notation in (2.3.5) without referring to an auxiliary ex-
tension Ef, we set

(3.2) e'k = ae(E/Ek), fk=f{E/Ek), rik = a[E: Ek] = ank.

In particular ΠQ = m.
For the Zs-conductor of φk, we write /E(φk) = j k , and define /ϋiΦk)

= j ' k , where

(3.3) j k - 1 =af(jk - 1).

As in (2.3.8), we set, for 1 < k < t,

(3 4) i' = / J'k/2' j'k e V e n '
k I (Λ-i)A Λodd.

We set j ; + 1 = 1 and /'/+1 = 0.
Let π'θ be the representation of Dx corresponding to θ. In order

to compute deg(π^), we recall a few facts about its construction. We
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embed E (and hence Ek) in Z>, and let Dk be the division algebra

(3.5) Dk = {xe D\xy = yx for all y e Ek}, 0<k<t.

Note that Do = D. Now, define

(3.6) HΘ = Df{Ki. Π Df_x)(KVt_x Π Dx_2) ( ^ Π Dx)(Ki{).

Then ([Co], [HI], [M]), there is an irreducible representation σ'θ of Hθ

such that

(3.•7)

From

(3.,8)

[Co], [M], we can write

— w1 fo
— AVj v̂ y

® κ\.

For the remainder of this section, we write fk = f(Ek/F), k =
0,1,..., t. This should not be confused with the notation fk = f(E/Ek)
as used in §2. Note that fk-\\fk.

LEMMA 3.9 ([Co], [M]). Let σ'θ be the representation ofHθ given in
(3.8). Then, for 1 < k < t,

if fk is even,

g iffk i s

where _
-i t i'k,

Now, for the degree of π'θ, we have

(3.10) deg(π^) = [Dx : //^deg(σ^), and

(3.11) [DX:HΘ] = [DX:HΘKO][HΘKO: HΘKX][HΘKX: Hθ],

We calculate each of the three indices in (3.11) separately.

LEMMA 3.12. [Dx : HΘKO] = / .

Proof First note that [Dx: HΘKO] = [Dx/K0: HΘKO/KO]. Let v be
the usual valuation on Dx. Then v\ Dx —• Z has kernel Ko. Under
this map, v(Hβ) is generated by v(ώt)9 where ώt is a prime in Z>,.
Since ώt must commute with the unramified piece of Eu v(ώt) = f.
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LEMMA 3.13. [HΘKO: HΘKX] = (q« - \)l{qnle - 1).

Proof. We have [HΘKO: HΘK{] =JHθK0/(ώt)K{: HθK{/(ώt)K{].
Now HθKo/(ώt)Kι is isomorphic to F*, and HθKι/(ώt)Kι is isomor-
phic to the multiplicative group of the residue class field of Dt. But,
Dt is a division algebra of index a over Eh and the residue class field
of Et = E has order qf.

Before calculating the remaining index, [HΘK\: //#], we establish
some notation. Define, for j > 0,

{ fl - feί if *iLi < J < * 7

* k+ι-J

{ J
n if i'k+ι <j<i'kandfkϊj\

Note that /^+1 < i'k from the properties of the Howe factorization;
and that βo = n - af.

LEMMA 3.15. Let βj be defined as above. Then [HΘK{: Hθ] =

y'ι~] βj

Proof. Since K^ c //#, we have

i

j : HθKJ+ι].

7 = 1

Suppose /^+1 < j < i'k. We have

[HθKj: HθKJ+ι] = [Kj/KHl{HθnKj+ι): 1].

For j > 1, Kj/Kj+ι = ̂ / ^ έ + 1 = F r t , and the elements of //^ Π
correspond, under this isomorphism, to

The number of such elements is equal to q^ί if fk\j and 1 if fk \ j .
Hence, if if

k+ι <j< i'k, we get

[HθK \ HθKj+\] = < w

»-Aί iϊfj\j,

COROLLARY 3.16. Let E/F be an extension of degree m, m\n, and
let θ be an admissible or subadmissible character ofEx/F. Let π'θ be
the irreducible representations ofDx associated to θ. Then

(3.17) deg(^) = [f(qn - \)l{qn'e - i^q^ΣL-WgΣ'j:' A
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For the computations below, it is convenient to define

a{ \ fek otherwise;
_ J 0 if j ' k is even or fk \ i'k( 0

a2ίk) = \
{ fek otherwise.

Then, we have a(k) = a\(k - 1) - a2{k), 1 < k < t. We observe that
a\(t) = n/e, and that a\(0) is defined.

Set

(3.19) y(fc) = (l/2)(α1(fc)-α2(fc))+ ^ j»7 , \<k<t.

To compute y(fc), we consider four cases. Note that fk\j'k - 1 always.

(I) J'k+\ even> A even- H e r e> α i (^) = «2(^) — 0, and /^_j is odd.
The number of multiples of fk in [i'k+vi'k - 1) is (l/2fk)(fk - j ' k + ι ) .
So

= n(i'k - 4 + 1 ) - ( / 7

(II) Λ + i o^ i 4 even. Then /^ is odd, so that fk\ϊk+vfk \ ι\.

This gives a\(k) = fet

k,a2(k) — 0. The number of multiples of fk

in Vk+vA - ι) i s (l/fk)U'k - j'k+i), an odd n u m b e r , ^ also divides

j ' k + { - 1 = 2i'k+χ. Thus, the number of multiples of fk in [fkJrl - 1,

y'£ - 1) is 1 + {l/fk)Uk ~Λ+i) ? a n c ^ ̂ e n u m b e r of multiples of fk in

p i | - 1) is (l/2fk)U'k -ϊk+x) + 1/2. We then have

" (fe'k)(l/2fk)(fk - Λ+1) -

(Ill) 7^+1 even, j k odd. Here / f c + 1 is odd, so that fk is odd. There-

fore, Jk\i'kJk t /^+pαi(fc) = 0, α2(fc) = fe'k. The reasoning is sim-

ilar to that in (II) above, but here we lose a multiple of fk. We get

= (l/2)(j'k-fk+ι)(n-n'k)-(n/2).

j ' k + x odd, fk odd. We must consider subcases here.

If fk\i'k and fk\i'k+v then ax(k) = a2(k) = fe'k, and the number

of multiples of fk in the relevant interval is (l/2fk)(jk - j ' k + ι ) - This
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If fk\i'k, but fk f i'k+v then α,(fc) = 0 and a2(k) = fef

k, and

the number of multiples of fk in the relevant interval is

(ί/2fk)U'k-j'k+i)- (1/2). Thus,

γ(k) = (1/2)01 " Λ

The cases / * + 4 ' /jtl^+i' a n d Λ t i'k, Ik \ i'k+x a r e similar, and
give γ(k)= 1/2(4 ~ fk+i)(,n - n'k).

We now sum the y{k).

LEMMA 3.20. (a) If j\ is even, then

\
k=\ U=l

(b) Ifj\ is odd, then

=l

Proof, (a) Here, case (II) occurs once more than case (III),

(b) If j[ is odd, case (II) and case (III) balance out.

We now have, from (3.17), (3.18) and Lemma 3.20,

( 3 . 2 1 ) d e g ( τ ^ ) = [f(qn - l ) / ( g n / e - l ) ] t f [ Σ L y W + j f o M .

Note that a\(0) = 0 if j \ is even, and a\(0) = n if j \ is odd. Also,
a\(t) — af, and βo = n - af in all cases. It follows that

(3.22) £

and that

(3.23) d e g « ) = [f{g"-ι)/(qn/e -
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Now, from (3.2) and (3.3), we see that

k=\ k=\
t

= nj\ -n- n'oj[ + n\ + Σ Λ « - i - n'k)
k=\

1)](*Λ*-I - ank)

k=\
t

= -n + a + a(n0 - nt) - a2f(n0 - nt) + (a2f)J2Jk(^k-ι ~ nk)
k=\

t

= -a2fm + a2f+ {a2f)Σjk{nk_x - nk).
k=\

Thus, the exponent of q in (3.23) is

(3.24) \
L k=\ J

THEOREM 3.25. Let E/F be an extension of degree m, m\n, and
write n = ma (here, we may have m = n and a = 1). Let θ be
an admissible or subadmissible character ofEx/F and let πf

θ be the
irreducible representation ofDx constructed from θ. Let e = e(E/F)f

f = f(E/F), and let {nk,jk} be the data from the Howe factorization
ofθ. Then

= [f(qn - l)/{qn/e -

where a(θ) = Σ L i Jk("k-\ ~ nk).

4. Comparison of degrees. We are now in a position to wrap things
up in fine fashion. In particular, we prove the statements in (1.7) and
derive some consequences. We begin with a simple lemma.

LEMMA 4.1. If a, b, c, d are positive integers such that a\B and c\d,
and q is a power of a prime, then a/(qb - 1) = c/(qd - 1) if and only
if a = c and b = d.

Proof. If b = d, then a = c. So, assume b > d. It is easy to see that
(qb - \,qd - 1) = qr - 1 where r = (b9d). Let qb - 1 = (qr - l)bf,
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qd-l = (qr- l)df. Then ad! = b'c and (b',df) = 1. Thus, b'\a. Since
r < b/2, \qr - I ) 2 < qb - 1. It follows that qb - 1 < (bf)2 < a2 < b2.
But, if q > 3, g^ - 1 > b2 for all positive integers b. If # = 2, then
qh - \ > b2 when & > 4. We are left with q — 2, 4 > & > 1, and an
enumeration of cases shows that there can be no solution with these
restrictions.

Disjunction of formal degrees.

THEOREM 4.2. Let d(πf

θ) and d(πθ) be the degrees and formal de-
grees given in Theorem 2.2.&,Theorem 2.4.7 and Theorem 3.25. Let
Δp Δ2, Δj andA2 be the sets defined in (1.5) and (1.6). Then A[ nΔ'2 =
Δi Π Δ2 = Δ'j Π Δ2 = Δj Π Δ'2 = 0. 77ms, Δ;j = Δi am/ Δ'2 = Δ2.

Proof. This is an immediate consequence of Lemma 4.1 and the
fact that A\ u Δ'2 = Δ! u Δ2.

REMARK 4.3. The disjunction of formal degrees provided by Theo-
rem 4.2 uses only the factor in the degrees which is prime to p, that is,
f(qn - l)/(qn/e - 1). This factor depends only on the field E and not
on the particular admissible or subadmissible character. We expect
that Theorem 4.2 is true in an appropriate sense when p\n.

Comparison of characters.

THEOREM 4.4. (1)7/0 is an admissible character ofEx/F([E:F] = n)
and π'θ is the representation of Dx parametrized by θ, then the rep-
resentation π of G corresponding to πf

θ under the abstract matching
theorem is supercuspidal. Moreover, ifθπ>θ is the character ofπ'θ, then
θ π = (-l)n~ιθπ> is a supercuspidal character on the elliptic set in G.

(2) If θ is a subadmissible character (for n) of Ex/F, [E: F] =
m, m\n, m < n, and πf

θ is the representation of Dx parametrized
by θ, then the representation π of G corresponding to π'θ under the
abstract matching theorem is a generalized special representation ofG.
Moreover, ifSπ'θ is the character of πf

θ, then θπ = {-\)n~xθπ>θ is a
generalized special character on the elliptic set in G.

Proof. This follows from Theorem (1.1) since the trivial represen-
tation of Dx is in A'2 and the Steinberg representation of G is in A2

(see (1.3) and (1.14)).
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REMARK 4.5. (1) On the elliptic set in G, the character of a discrete
series representation π is equal to ±d(π) near 1. It follows from
Theorem 4.4 that supercuspidal characters can be distinguished from
generalized special characters by their values near 1 on the elliptic set.

(2) Theorem 4.4 tells us that representations of Dx in A\ correspond
to supercuspidal representations of G, and representations in A'2 cor-
respond to generalized special representations of G. In fact, Remark
4.3 allows us to refine this correspondence. Thus, if π'θ e A\ (resp.
A'2) and π is the corresponding representation in A\ (resp. A2), then
π is parametrized by an admissible (resp. subadmissible) character of
a field E/F which has the same ramification index and residue class
degree as the field associated to θ.

(3) In general, the concrete matching by admissible characters is
not the same as that given by Theorem 1.1 (1). It would be of some
interest to determine the exact relation between these two matchings
(see [M] for additional details).

Dependence on θ.

THEOREM 4.6. Let E/F be an extension of degree m, and let θ be
an admissible character ofEx/F. Let πθ be the supercuspidal repre-
sentation ofGLm(F) determined by θ, and let πa

Q be the generalized
special representation ofGLn(F) corresponding to πθ, where n = ma.
Then

d(πθf/d(π«)

In particular, this quotient is independent of θ. This formula may
also be found in Waldspurger [W], Theorem VII.3.2.

REMARK 4.7. It is reasonable to expect an expression similar to that
above in the case p\n even though the parametrization by admissible
characters does not work.

CONDUCTORS. When E — E\ (2.1.2) (the very cuspidal case),
Carayol [C] has shown that the formal degree of πθ determines its
conductor and, conversely, the conductor of πθ determines its formal
degree. In the general case, it follows from Moy [M] that

(4.8) CQnd(πθ) = af(ji-l) + n,

where [E: F] = m, n = ma and / = f(E/F). Thus, comparing (4.8)
with the expressions for the formal degrees in Theorem 2.2.8 and
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Theorem 2.4.7, we see that there is no direct relationship between the
conductor of πθ and the formal degree of πθ. We do note however
that, if the data from the Howe factorization is known, in particular
j { = fE(θ)9 then the formula for the conductor (4.8) is an immediate
consequence.
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