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KAPLANSKY'S THEOREM AND BANACH PI-ALGEBRAS

VLADIMIR MULLER

By the theorem of Kaplansky a bounded operator in a Banach
space is algebraic if and only if it is locally algebraic. We prove a
generalization of this theorem. As a corollary we obtain the analogous
result for finite (or countable) families of operators. Further we prove
that a Banach algebra is PI (i.e. it satisfies a polynomial identity) if
and only if it is locally PI.

Let T be a bounded operator on a Banach space X. The classical
theorem of Kaplansky [5] states that T is algebraic (i.e. p(T) = 0 for
some polynomial p Φ 0) if and only if it is locally algebraic (i.e. for
every x e X there exists a non-zero polynomial px such that px(T)x =
0). In this paper we prove (Theorem 1) a generalized version of this
theorem. As its corollaries it is possible to obtain the original theorem
of Kaplansky, the theorem of Sinclair [9] and also new analogical
results for finite or countable families of operators.

In the second part of the paper we deal with Banach Pl-algebras
(i.e. Banach algebras satisfying a polynomial identity). Pi-rings and
Pl-algebras were studied intensely from the algebraic point of view,
see e.g. [4], [8]. On the other hand Banach Pl-algebras are much less
known even though they form a very interesting class of Banach alge-
bras. They are a natural generalization of commutative Banach alge-
bras and it is possible to develop the complete analogy of the Gelfand
theory, see [6].

In this paper we prove a theorem of Kaplansky's type for Banach
Pl-algebras. This result is closely related to earlier results of Grabiner
[2] and Dixon [1].

The author wishes to thank Professor B. Silbermann for calling his
attention to the interesting field of Banach Pl-algebras and fruitful
discussions about it.

Let n be a positive integer. We denote by 3?^ the set of all complex
polynomials in n non-commutative indeterminates i.e. the free algebra
over C with n generators and with the unit element. Similarly we
denote by ^(°°) = \J£=X &W the set of all complex polynomials with
countably many indeterminates.
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Let X and Y be Banach spaces. Then B(X, Y) denotes the set of
all bounded operators from X to Y; we write shortly B(X) instead of
B(X,X).

Let I b e a Banach space, 1 < n < oo and let Tu..., Tn e B(X).
We say that the /i-tuple (Γ 1 ? . . . , Tn) is algebraic if /?(Γ l 5..., Tn) = 0
for some /? e ^ n \ p Φ 0. We say that (Γ 1 ? . . . , Tn) is locally algebraic
if, for every x e X, there exists a non-zero polynomial px e 3?^ such
thatpx(Tu...,Tn)x = 0.

These definitions can be used also for an infinite sequence {7/}^ of
bounded operators on X (for/7 e ^ n ) c ^ ( o o ) we havep(Γ1 ? Γ2,...) =
p(T\,...,Tn)). Equivalently, the sequence {7/}?^ is locally algebraic
if, for every x e X there exist n and 0 ψ p e ^ n ) such that
p(Tu...,Tn)x = 0.

We start with the following generalization of Kaplansky's theorem.

THEOREM 1. Let M be a linear space of countable {infinite) dimen-
sion, let Y,Z be Banach spaces and let R: M —• B(Y,Z) be a linear
mapping with the property that for every y G Y there exists m e M,
m Φ 0 such that R(m)y = 0. Then there exists m e M, m Φ 0 such
that R(m) is a finite-dimensional operator.

Proof. Let eu e^... be a basis in M. Put MQ = {0} and denote by
Affc (k = 1,2,...) the linear subspace of M spanned by the vectors
eu...,ek.

Let F be a finite-dimensional subspace of Z. For/ = 1,2,... denote
by Y/ry the set of all y € Γ for which there exists m e Mj, m Φ 0,
such that i?(m)j; e F and R(mf)y $ F for every m' e A//_i, m' ^ 0.
By the assumption (J^ j YFJ = Y so there exists /: = /:(F) such that
YFk is of the second category and YFj is of the first category for every
/ < k. Fix a finite-dimensional subspace F c Z with the property that

fc = k(F) = min fc(G).
V GCZ V ;

dim G<oo

We have YF>k = \J™=1 Y^k where

γ^k = J y G IV^, there exists m = e^ + ^2 aiei G ^

k-\ Λ

such that ^2 \ai\ ^ 5 a n c i R{™)y ^ F > .
ι=l J
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We prove that Y^k is a closed set for every s. Let y7 G Y^\ (j =
1,2,...), yj —• y. Then there exist elements nij G Mk, rrij = ek +
Σ t i 1 <*//£/ such that Y%~\ \<*ji\ < s and R(mj)yj G F . Using the
compactness argument it is possible to find a subsequence {yjr}%x and
a vector m e Mk such that mJr —• m coordinate-wise and R(mJr) —•
ϋ(m) in the norm topology. It is easy to show that

hence y G Γ ^ and Y ^ is closed. Therefore there exists w G Ύ, r > 0
and a positive integer s such that

Let α = ek + Σ*f~ι ajβi be the element of Mk satisfying

(1) R(a)weF.

Denote by Ff = F V V?=i W*/)w} Clearly d imF' < dimF + k<oo.
Put V = yFί^ - U/<£ YFJ- It follows from the choice of the subspace
F that F is of the second category. Let v G V. Then v G YF^k and

(2) Λ(ft)t; G F

for some b e Mk, b = ek + Y^=\ βiei-

Further w + λv G IV ^ for some complex number λ Φ 0, i.e. there

exists c = ek + J^Ii y^i G Af̂  such that

(3) R(c)(w + λv) = R(c)w + λR(c)v G F.

This implies R(c)v G F' and together with (2) R(c - b)υ e Ff where
c - b = Σ^Γ/ίy/ - jS/)e, G AΓfc_i. Since i; ^ |J/<A: ^F',/' w e conclude
c-b = 0,c = b.

By (2), (3) and (1) we have R(c)v = R(b)υ G i7, R(c)w e F and
i?(c-a)w G F, where c-ae Mk_{. Since i(; ^ \Jι<k Yfj w e conclude
again that c = α, i.e. /?(α)ι; G F for every υ G F. Thus R(a)~ιF D
V and R(a)~ιF is a linear subspace of the second category in F,
therefore R(a)~ιF = Y, R(ά)Y c F and Λ(α) is a finite dimensional
operator.

REMARK. One is tempted to expect in Theorem 1 that there exists
m G Λf, m Φ 0, such that R(m) = 0. However, the following example
shows that this is not true in general. Let Y = Z be a separable
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Hubert space with an orthonormal basis {A/}^. Define operators
R(m), m e M, by

R{ex)h{=hu

R(e2)hι=0, R(e2)h2 = hl9 R(e2)hj = 0 (j > 3),

R(ei)hj = δijhj (i > 3;<5// means the Kronecker's symbol).

It is easy to show that the conditions of Theorem 1 are satisfied and
R{m) φθ(mφ 0).

THEOREM 2. Let X be a Banach space, 1 < n < oo. Let T = {7}}"=1

6e α (/ϊmte or infinite) sequence of bounded operators on X. Then T is
algebraic if and only if it is locally algebraic.

Proof. Suppose T is locally algebraic. We prove that it is algebraic
(the converse implication is trivial). Put M = ̂ n \ Y = Z = X. For
p e ^ n ) put R(p) = p(T). By Theorem 1 there exist a polynomial p e
&>W9 p φ 0, such that dimp{T)X < oo. Hence (q op)(T) = 0 where
q G ̂ ( 1 ) is the characteristic polynomial of the finite-dimensional
operator p(T)\p(T)x.

In [9], the following generalization of the Kaplansky's theorem was
proved: Let T e B(X) be a non-algebraic operator. Then there exists
a sequence X\,X2, .. of elements of X such that Y%=\Pi(T)Xi Φ 0
for every k > 0 and for every polynomialP\,...,Pk e^1^ not all of
which are equal to 0.

This result can be extended to the case of more than one operator.

THEOREM 3. Let X be a Banach space, 1 < n < oo. Let T =
{Ti}%\ be a {finite or infinite) sequence of bounded operators on X
which is not algebraic. Then there exist vectors X\,X2,...eX such that
YJi=\Pi(T)Xi Φ 0 for every k and for every polynomial p\,... ,Pk e ^ w )

not all of which are equal to 0.

Proof. Suppose on the contrary that for every sequence JCI,JC2,...

of elements of X there exist k and polynomials P\,...,Pic £ ̂ n \
(Pi,... ,Pk) Φ (0, . ,0) such that £tiPi(T)Xi = 0.

Let M be the linear space of all sequences {Pi}%x of polynomials
Pi G <^ ( Λ ) only a finite number of which are non-zero. Put Z = X and
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Then Y with the norm IK-xJ^H sup{||jcf ||, / = 1,2,...} is a Banach

space. For p = {Pi}^x G M and y = {Xi}fLx G Y put R{p)y =
ΣH\Pι(T)Xi (in fact the sum is finite). By Theorem 1 there exist a
finite-dimensional subspace F c X, a positive integer k and polyno-
m i a l s pΪ9...,pke ^{n\ (pi,... ,Pk) Φ ( 0 , . . . , 0) , s u c h t h a t

k

i G F for every x 1 ? . . . ,xk e X.

Choose j G {1,..., k} such that Pj φ 0. Let x G l b e arbitrary. If we
put Xj = x, Xi = 0 (/ Φ j) then we get Pj{T)x G F for every x G X,
i.e. pj(T) is a finite-dimensional operator. The rest is the same as in
the proof of Theorem 2.

REMARK. Theorem 1 unifies some of the results of Kaplansky's
type (cf. problem of Halmos [3]). On the other hand there are some
results of this type which do not fit into this frame (see e.g. [10] where
bounded analytic functions are used instead of polynomials or "ap-
proximative" results of Kaplansky's type [7], [11]). Another example
will be the result for Banach Pi-algebras which we prove in the fol-
lowing section.

Let A be a Banach algebra with the unit (we shall always assume that
a Banach algebra has a unit element although this assumption is not
essential). We say that A is PI if there exist a positive integer n and
a non-zero polynomial p G 3°^ such that p(a\,. ..,an) = 0 for every
a\,...9an G A. We say that A is locally PI if for every sequence {aι}^ι

of elements of A there exist n and a non-zero polynomial p G ^ ( / l )

such that p(a\9...,an) = 0 (both n and p depend on the sequence

THEOREM 4. Let Abe a Banach algebra with the unit. Then A is PI
if and only if A is locally PL

Proof. The implication PI => locally PI is trivial. Suppose that A is
locally PL Denote by A

|fl/||,/= 1,2,...} < oo}.

Then A with the norm ||{α/}^:11| = sup{||α/||, / = 1,2,... } is a Banach

space. Further A = \J^L{ An where

An = {{fl/}~! G A, there exists p G ̂ {n\ deg/? < n,

n~ι < \p\ <n, p(aι,...,an) = 0}
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(we denote by degp the degree of a polynomial p and \p\ denotes the
sum of moduli of coefficients of/?).

Since An is a closed subset for every n, Baire's theorem implies that
there exist a positive integer n, y G A and r > 0 such that

{aeA9\\ά-y\\ <r}cAn.

Let z = {zi}^{ e An. Then p(zu...,zn) = 0 for some p e ̂ n \
p Φ 0, deg/7 < n, i.e. the set

C = {ziι9...9zik9 0<k<n, /i /it e {l,...,w}}

is linearly dependent and Σ c G C oî c = 0 where α c denotes the coeffi-
cient of p standing at the term c. Therefore ΣceC <*c(cZn+\ — zn+ιc) =
0. Let C = {ci,..., cs}. Denote by

σeSs

the standard polynomial (the sum is taken over all permutations of
the set {l,...,s}). Clearly,

- znγcs) = 0,

i.e. there exists a non-zero polynomial pn e ^ ( w + 1 ) such that
^ ( z 1 ? . . . , z w + 1 ) = 0 for every sequence {z/}^! eAn.Leta = {ai}fil e
A be arbitrary. Then y + λά e An for all complex λ, \λ\\\ά\\ < r, i.e.

+λau.. .,yn+ι + λan+ι) = 0.

We can write

Pn(yι+λaι9...9yn+χ+λan+ι)

Since this expression is equal to 0 for all λ such that |A|||d|| < r, we
conclude that pn(a\9...,an+γ) = 0 for every (n + l)-tuple a\,...9an+\
of elements of A. Thus A is a Pi-algebra.

REMARK. In [2], S. Grabiner proved that a nil Banach algebra (i.e.
consisting of nilpotent elements) is nilpotent (i.e. An = 0 for some ri).
The previous theorem is closely related to this result.

An algebra A is called algebraic if every element a e A is algebraic,
i.e. p(a) = 0 for some non-zero polynomial p e &(χ\ An algebra
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is called locally finite if every finite subset of A generates a finite-
dimensional subalgebra.

Clearly, a locally finite algebra is algebraic.
As an easy corollary of the previous theorem we can obtain the

following result of Dixon [1] that the converse implication is true for
Banach algebras.

COROLLARY 5. Let Abe a Banach algebra with the unit. Then A is
algebraic if and only if A is locally finite.

Proof. If A is algebraic then A is locally PI and thus PI by Theorem
4. An algebraic Pi-algebra is locally finite (see [4], X/12, Theorem 1).
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