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KAPLANSKY’S THEOREM AND BANACH PI-ALGEBRAS

VLADIMIiR MULLER

By the theorem of Kaplansky a bounded operator in a Banach
space is algebraic if and only if it is locally algebraic. We prove a
generalization of this theorem. As a corollary we obtain the analogous
result for finite (or countable) families of operators. Further we prove
that a Banach algebra is PI (i.e. it satisfies a polynomial identity) if
and only if it is locally PI.

Let T be a bounded operator on a Banach space X. The classical
theorem of Kaplansky [5] states that T is algebraic (i.e. p(T') = 0 for
some polynomial p # 0) if and only if it is locally algebraic (i.e. for
every x € X there exists a non-zero polynomial p, such that p,(7T)x =
0). In this paper we prove (Theorem 1) a generalized version of this
theorem. As its corollaries it is possible to obtain the original theorem
of Kaplansky, the theorem of Sinclair [9] and also new analogical
results for finite or countable families of operators.

In the second part of the paper we deal with Banach PI-algebras
(i.e. Banach algebras satisfying a polynomial identity). PI-rings and
Pl-algebras were studied intensely from the algebraic point of view,
see €.g. [4], [8]. On the other hand Banach Pl-algebras are much less
known even though they form a very interesting class of Banach alge-
bras. They are a natural generalization of commutative Banach alge-
bras and it is possible to develop the complete analogy of the Gelfand
theory, see [6].

In this paper we prove a theorem of Kaplansky’s type for Banach
PI-algebras. This result is closely related to earlier results of Grabiner
[2] and Dixon [1].

The author wishes to thank Professor B. Silbermann for calling his
attention to the interesting field of Banach PI-algebras and fruitful
discussions about it.

Let n be a positive integer. We denote by (") the set of all complex
polynomials in » non-commutative indeterminates i.e. the free algebra
over C with n generators and with the unit element. Similarly we
denote by () = |2 | 2 the set of all complex polynomials with
countably many indeterminates.
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Let X and Y be Banach spaces. Then B(X,Y) denotes the set of
all bounded operators from X to Y; we write shortly B(X) instead of
B(X, X).

Let X be a Banach space, 1 < n < o and let T},...,T, € B(X).
We say that the n-tuple (74,...,T,) is algebraic if p(Ty,...,T,) =0
for some p € (", p £ 0. We say that (T1,..., T,) is locally algebraic
if, for every x € X, there exists a non-zero polynomial p, € 2" such
that p(Ty,...,T,)x =0.

These definitions can be used also for an infinite sequence {7;}%, of
bounded operators on X (for p € ") ¢ #(®) we have p(T;, T3,...) =
p(T,...,Ty)). Equivalently, the sequence {7}, is locally algebraic
if, for every x € X there exist n and 0 # p € 2" such that
p(Ty,...,Ty)x =0.

We start with the following generalization of Kaplansky’s theorem.

THEOREM 1. Let M be a linear space of countable (infinite) dimen-
sion, let Y,Z be Banach spaces and let R: M — B(Y,Z) be a linear
mapping with the property that for every y € Y there exists m € M,
m # 0 such that R(m)y = 0. Then there exists m € M, m # 0 such
that R(m) is a finite-dimensional operator.

Proof. Let ey, e,,... be a basis in M. Put My = {0} and denote by
M, (k = 1,2,...) the linear subspace of M spanned by the vectors
€1se..5Ef.

Let F be a finite-dimensional subspace of Z. Forj = 1,2,... denote
by Yr ; the set of all y € Y for which there exists m € M;, m # 0,
such that R(m)y € F and R(m')y ¢ F for every m' € M;_;, m' # 0.
By the assumption Jj2, Yr,; = Y so there exists k = k(F) such that
Yr is of the second category and Yz is of the first category for every
| < k. Fix a finite-dimensional subspace F C Z with the property that

k=k(F)= min k(G).

dim G<oo
We have YF,k = U?i 1 YI(:'f/l where
k-1
Y}SI)( = {y € Yy, there exists m = ¢ + Z aje; € My
i=1

k-1
such that » " |a;| < s and R(m)y € F} .

i=1
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We prove that Y Fk is a closed set for every s. Let y; € Y(s) (J =
1,2,...), yj — y. Then there exist elements m; € My, m; = ¢, +
E 1 aj,e, such that Z,: laji| < s and R(m;)y; € F. Using the
compactness argument it is possible to find a subsequence {y; }°°, and
a vector m € M such that m; — m coordinate-wise and R(m; ) —
R(m) in the norm topology. It is easy to show that

R(m)y = lim R(m;,)y) € F;

hence y € YI(;‘,)c and Y,SS,)( is closed. Therefore there exists w € Y, r > 0
and a positive integer s such that

ev|y-wl<rcYy) C Y

Leta=¢; + Zf-‘;ll a;e; be the element of M), satisfying
(1) R(a)w € F.

Denote by F' = F v V 1{R(e;)w}. Clearly dim F' < dim F + k < oo.
Put V =Yg; —Ujck YF,I It follows from the choice of the subspace
F that V is of the second category. Let v € V. Then v € Yg; and

(2) R eF

for some b e My, b =¢; + Zf;ll piei.
Further w + Av e Y for some complex number 4 # 0, i.e. there
exists ¢ = ¢, + Z, | viei € M} such that

(3) R(c)(w + Av) = R(c)w + AR(c)v € F.

This implies R(c)v € F' and together with (2) R(c — b)v € F' where
c—b= E (y, pi)e; € My._,. Since v ¢ U, Yr;, we conclude
c—b=0,c=0b.

By (2), (3) and (1) we have R(c)v = R(b)v € F, R(c)w € F and
R(c—a)w € F, where c—a € My._,. Since w ¢ ;. Yr,; we conclude
again that ¢ = g, i.e. R(a)v € F for every v € V. Thus R(a)"'F >
V and R(a)~'F is a linear subspace of the second category in Y,
therefore R(a)™'F =Y, R(a)Y C F and R(a) is a finite dimensional
operator.

REMARK. One is tempted to expect in Theorem 1 that there exists
m e M, m # 0, such that R(m) = 0. However, the following example
shows that this is not true in general. Let ¥ = Z be a separable
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Hilbert space with an orthonormal basis {#;}$°,. Define operators
R(m), me M, by

R(e))hy =hi, R(e)h;=0 (j22),
R(e2)h =0, R(ex)h, =hi, R(e)hj =0  (j23),
R(ej)hj =0d;jhj (i > 3;0;; means the Kronecker’s symbol).

It is easy to show that the conditions of Theorem 1 are satisfied and

R(m) #0 (m #0).

THEOREM 2. Let X be a Banach space, 1 < n < oo. Let T ={T;}}_,
be a (finite or infinite) sequence of bounded operators on X. Then T is
algebraic if and only if it is locally algebraic.

Proof. Suppose T is locally algebraic. We prove that it is algebraic
(the converse implication is trivial). Put M = 2", Y = Z = X. For
p € 2" put R(p) = p(T). By Theorem 1 there exist a polynomial p €
P, p # 0, such that dimp(T)X < oco. Hence (g o p)(T) = 0 where
q € 2 is the characteristic polynomial of the finite-dimensional

operator p(T)|p(1)x-

In [9], the following generalization of the Kaplansky’s theorem was
proved: Let T € B(X) be a non-algebraic operator. Then there exists
a sequence X, Xp,... of elements of X such that Zile pi(T)x; # 0
for every k > 0 and for every polynomial py,...,p; € ZD not all of
which are equal to 0.

This result can be extended to the case of more than one operator.

THEOREM 3. Let X be a Banach space, 1 < n < co. Let T =
{T;}2, be a (finite or infinite) sequence of bounded operators on X
which is not algebraic. Then there exist vectors x;, X, ... € X such that

% pi(T)x; # O for every k and for every polynomial p,.. ., p; € P
not all of which are equal to 0.

Proof. Suppose on the contrary that for every sequence Xxp, Xz, ...
of elements of X there exist k and polynomials py,...,p; € PM,
(P1,-->01) # (0,...,0) such that X p,(T)x; = 0.

Let M be the linear space of all sequences {p;}%°, of polynomials
pi € 2™ only a finite number of which are non-zero. Put Z = X and

Y={{x}Z,xieX (i=12,...), sup{llxill,i =1,2,...} < oo}.
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Then Y with the norm |{x;}%°,| sup{||x;||,i = 1,2,...} is a Banach
space. For p = {p;}?°, € M and y = {x;}2, € Y put R(p)y =
Y21 p(T)x; (in fact the sum is finite). By Theorem 1 there exist a
finite-dimensional subspace F C X, a positive integer k and polyno-
mials py,...,pr € 2N, (p1,...,pi) # (0,...,0), such that

k
Zpi(T)x, € F for every xi,...,x; € X.
i=1
Choose j € {1,...,k} such that p; # 0. Let x € X be arbitrary. If we
put x; = x, x; = 0 (i # j) then we get p;(T)x € F for every x € X,
i.e. p;(T) is a finite-dimensional operator. The rest is the same as in
the proof of Theorem 2.

REMARK. Theorem 1 unifies some of the results of Kaplansky’s
type (cf. problem of Halmos [3]). On the other hand there are some
results of this type which do not fit into this frame (see e.g. [10] where
bounded analytic functions are used instead of polynomials or “ap-
proximative” results of Kaplansky’s type [7], [11]). Another example
will be the result for Banach Pl-algebras which we prove in the fol-
lowing section.

Let 4 be a Banach algebra with the unit (we shall always assume that
a Banach algebra has a unit element although this assumption is not
essential). We say that A is PI if there exist a positive integer n and
a non-zero polynomial p € " such that p(a,,...,a,) = 0 for every
ai,...,a, € A. We say that A4 is locally PI if for every sequence {a,}%,
of elements of A there exist n and a non-zero polynomial p € 2"
such that p(a;,...,a,) = 0 (both n and p depend on the sequence

{ai};ﬁl )-
THEOREM 4. Let A be a Banach algebra with the unit. Then A is PI
if and only if A is locally PI.

Proof. The implicatign PI = locally PI is trivial. Suppose that 4 is
locally PI. Denote by 4
A={{a}®,, a;€4, i=1,2,...,sup{|la;|,i=1,2,...} < oo}

Then A with the norm ||{a;}2,|| = sup{||a;||,i = 1,2,...} is a Banach
space. Further 4 = % | 4, where

A, = {{a;}2, € 4, there exists p € 2", degp < n,
n~' <Ip| < n, plai,...,a,) = 0}
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(we denote by degp the degree of a polynomial p and |p| denotes the
sum of moduli of coefficients of p).

Since A, is a closed subset for every n, Baire’s theorem implies that
there exist a positive integer n, y € 4 and r > 0 such that

{aed,a-yp|<r}cd,.
Let 2 = {z,}%, € A,. Then p(zy,...,z,) = 0 for some p € P,
p #0, degp < n, i.c. the set
C= {Z,‘I,...,Z,‘k, 0< k <n, il,...,ik € {1,...,}2}}

is linearly dependent and ) .- a.c = 0 where a. denotes the coeffi-
cient of p standing at the term ¢. Therefore }_ .- ac(Czyq1—Zn41€) =
0. Let C = {cy,...,cs}. Denote by

es(xl, v ,xs) = Z (—I)Signaxd(l) T xd(s)
oES;
the standard polynomial (the sum is taken over all permutations of
the set {1,...,s}). Clearly,
€s(C1Zns1 = Zn41C1s -+ -5 CsZnp1 — Zn,Cs) = 0,
i.e. there exists a non-zero polynomial p, € £+t such that

Pn(Zz1,...,2y41) = O for every sequence {z;}2, € Ap.Leta = {ai}2, €

A be arbitrary. Then j + Ad € 4, for all complex 4, |A|||a|| < r, i.e.

pn(1+2ay, ..., Yne1 +Aapy) = 0.
We can write

pn(Vi+Aay, ..., Yne1 +Apyy)
=pn(yla---aJ’n+l) +Aq(l)(y19'°-’yn+laal,---’an+l)

4o deep—lgleem=l(y y a1, An)

+ Adegpnpn(al, ceey an+1).
Since this expression is equal to O for all 4 such that [A||a|| < r, we
conclude that p,(ay,...,a,.1) = 0 for every (n + 1)-tuple ay,...,a,,1

of elements of 4. Thus A4 is a PI-algebra.

REMARK. In [2], S. Grabiner proved that a nil Banach algebra (i.e.
consisting of nilpotent elements) is nilpotent (i.e. A" = 0 for some »).
The previous theorem is closely related to this result.

An algebra A is called algebraic if every element a € 4 is algebraic,
i.e. p(a) = 0 for some non-zero polynomial p € (1), An algebra
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is called locally finite if every finite subset of 4 generates a finite-
dimensional subalgebra.

Clearly, a locally finite algebra is algebraic.

As an easy corollary of the previous theorem we can obtain the
following result of Dixon [1] that the converse implication is true for
Banach algebras.

COROLLARY 5. Let A be a Banach algebra with the unit. Then A is
algebraic if and only if A is locally finite.

Proof. If A is algebraic then A is locally PI and thus PI by Theorem
4. An algebraic Pl-algebra is locally finite (see [4], X/12, Theorem 1).
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