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HYPERBOLIC GEOMETRY IN ̂ -CONVEX REGIONS

DIEGO MEJIA AND DAVID MINDA

A simply connected region Ω in the complex plane C with smooth
boundary <9Ω is called A>convex (k > 0) if k(z9dΩ) > k for all
z £ Ω, where k(z,dΩ) denotes the euclidean curvature of dΩ at
the point z. A different definition is used when dΩ is not smooth.
We present a study of the hyperbolic geometry of /c-convex regions.
In particular, we obtain sharp lower bounds for the density AΩ of the
hyperbolic metric and sharp information about the euclidean curvature
and center of curvature for a hyperbolic geodesic in a /c-convex region.
We give applications of these geometric results to the family K(k, a)
of all conformal mappings / of the unit disk D onto a /c-convex region
and normalized by /(0) = 0 and /'(0) = a > 0. These include precise
distortion and covering theorems (the Bloch-Landau constant and the
Koebe set) for the family K(k,a).

1. Introduction. We study the hyperbolic geometry of certain types
of convex regions called /c-convex regions. It should be emphasized
that our approach is geometric rather than analytic. Our work is a
continuation of that of Minda ([11], [12], [13], [14]). The paper [11]
deals with the hyperbolic geometry of euclidean convex regions, while
[12] treats the hyperbolic geometry of spherically convex regions. A
reflection principle for the hyperbolic metric was established in [13];
this reflection principle leads to a criterion for hyperbolic convexity
that was employed in [14] to give a more penetrating analysis of certain
aspects of the hyperbolic geometry of both euclidean and spherically
convex regions.

Roughly speaking, a region Ω in the complex plane C is /c-convex
(k > 0), provided k(z9 dΩ) > k for all z e dΩ. Here k(z9 dΩ) denotes
the euclidean curvature of dΩ at the point z. Of course, this only
makes sense if dΩ is a closed Jordan curve of class C 2 . This condition
is actually sufficient for a region to be /c-convex, but not necessary.
Precisely, a region Ω is (euclidean) /c-convex if \a - b\ < 2/k for any
pair of distinct points <z, b e Ω and the intersection of the two closed
disks of radii l//c that have a and b on their boundary lies in Ω. For
example, an open disk of radius l//c is /c-convex as is the intersection
of finitely many such disks. Thus, for a region to be /c-convex it must
possess a certain degree of roundness.
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In his Ph.D. dissertation Mejia [10] investigated the hyperbolic ge-
ometry of k-convex regions. Actually, he did even more; he also stud-
ied the hyperbolic geometry of /c-convex regions Ω when Ω c P (P
denotes the Riemann sphere) is k-convex relative to spherical geom-
etry or when Ω c D (D is the open unit disk) is /c-convex relative to
hyperbolic geometry on D. Independently, Flinn and Osgood [3] in-
troduced the notion of hyperbolic /c-convexity for a region Ω c D and
studied some of its properties in the special cases k = 1,2. In subse-
quent work we will treat the hyperbolic geometry of both spherically
/c-convex and hyperbolically /c-convex regions. Most of the results of
this paper extend to spherically /c-convex regions by using the same
methods of proof, but for hyperbolically /c-convex regions some new
tools are needed, especially in case 0 < k < 2.

Now, we outline the basic results of the paper. In §2 we present a
discussion of a few elementary euclidean geometrical properties of /c-
convex regions that are crucial to our study of the hyperbolic geometry
of such regions. In §§3 and 5 we give two different sharp lower bounds
for the density /lΩ(z) of the hyperbolic metric of a /c-convex region Ω
in terms of the geometrical quantity SQ(Z), the distance from z to
<9Ω. In §4 we show that one of these lower bounds, namely, λςι(z) >
l/δςι(z)[2 - kδςι(z)] > 0, actually characterizes /c-convex regions. As
consequences of these lower bounds, we obtain various results for the
family K(k, a) of all holomorphic functions / such that / is univalent
in D, normalized by /(0) = 0 and /'(0) = a > 0 and /(D) is /c-convex.
In particular, we establish a sharp distortion theorem for \f'{z)\ and
determine the Bloch-Landau constant for the family K(k,a). The
reflection principle for the hyperbolic metric is used to establish a
criterion for hyperbolic convexity in /c-convex regions in §6; this result
is best possible for an open disk of radius l//c. Several applications
of this criterion are given in §§7 and 8. We obtain sharp information
about the euclidean curvature and center of curvature of a hyperbolic
geodesic in a /c-convex region Ω. The center of curvature must always
lie in C\Ω, and a sharp lower bound is given for the distance from it
to Ω. This leads to both a sharp upper bound on the modulus of the
second coefficient of a function in K(k, α), together with all extremal
functions, and an analytic characterization of the family K(k,a). For
k = 0 and a = 1 all of these results for K(k, a) become well-known
facts for the family K of normalized convex univalent functions.

The family K(k,a) is a special instance of the family CV{R\,R2),
0 < R\ < Z?2> of convex functions of bounded type that was introduced
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and studied by Goodman ([4], [5], [6]). Roughly speaking, a normal-
ized conformal mapping of D onto a region Ω belongs to CV(R\,R2)
if l/R2 < k(z,dΩ) < l/Rι for all z e dΩ. Our family K(k, 1), with
k < 1, corresponds to Goodman's class CV(l/k,oo). Some of our
results for the family K(k, α), such as the determination of the Koebe
domain, follow from Goodman's work. On the other hand, we deter-
mine the Bloch-Landau constant, a problem not treated by Goodman,
and find the sharp upper bound on the second coefficient. Goodman
was the first to consider the problem of determining bounds on the
second coefficient and he obtained a first approximation to the sharp
bound. In any case, all of our results are obtained as corollaries of
theorems dealing with the hyperbolic geometry of fc-convex regions,
an approach quite different from that of Goodman who used only
elementary methods.

Finally, we recall a few fundamental facts about the hyperbolic met-
ric that we shall use without further comment. For more details the
reader should consult ([1], [11], [12], [13], [14]). The density λD of
the hyperbolic metric on D is λo(z) = 1/(1 - \z\2). If Ω is a region
in C such that C\Ω contains at least two points, then there is a holo-
morphic universal covering projection / of D onto Ω. If Ω is simply
connected, then / is a conformal mapping. The density λςi of the hy-
perbolic metric on Ω is determined from λςι(f{z))\f{z)\ = λo(z). It is
independent of the choice of the covering projection. In particular, if
/(0) = α, thenλΩ(α) = l/|/'(0)|. For example, if D = {z: \z-a\ < r},
then λr>(z) = r/(r2 - \z - a\2). The hyperbolic metric has constant
Gaussian curvature -4, that is,

The reader should note that some authors call 2X& the density of the
hyperbolic metric; note that 2λςι has Gaussian curvature — 1. We shall
require two basic properties of the hyperbolic metric. The first is the
monotonicity property: If Ω c Δ, then λςι(z) < λΔ(z) for all z e Ω
and equality holds at a point if and only if Ω = Δ. The other is
the principle of the hyperbolic metric: If / is holomorphic in D and
/(D) c Ω, then λΩ(f(z))\f(z)\ < λD(z) and equality holds at a point
if and only if / is a covering projection onto Ω. When Ω is simply
connected, equality holds if and only if / is a conformal mapping
onto Ω.

2. Geometric properties of A-convex regions. In this section we intro-
duce a measure of the "roundness" of a convex set called fc-convexity.
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We establish a few basic geometric properties of fc-convex regions that
will be needed in the remainder of the paper. Most of these results
are analogs of known facts for convex regions.

Suppose that k > 0, a, b e C and \a - b\ < 2/k. Then there are two
distinct closed disks D\ and D2 of radius l/k such that α, b e ΘDj (j =
1,2). Let Ek[a,b] = D{ ΠD2. Note that the boundary of Ek[a,b]
consists of two closed circular arcs Γ\ and Γ2, each of radius l/k and
angular length strictly less than π. These arcs have constant euclidean
curvature k. We also let E0[a,b] = [a,b], the closed line segment
joining a and b, and for \a - b\ = 2/k, Ek[a, b] is the closed disk with
center (a + b)/2 and radius l/k. Then for 0 < k' < k < 2/\a - b\
we have Ek,[a,b] c Ek[a,b]. Note that Ek[a,b] is foliated by the
collection of all arcs of constant absolute euclidean curvature k' that
connect a and b and have angular length less than π, where k1 varies
over the interval [0, k].

DEFINITION. Suppose k e [0,oo). A region Ω c C is called k-
convex provided \a - b\ < 2/k for any pair of points a,b e Ω and
Ek[a,b]cΩ.

Observe that 0-convex is the same as convex. Henceforth, we shall
employ the term "k-convex" only when k > 0. We will always use
"convex" in place of "0-convex". Also, if 0 < k' < k and Ω is k-
convex, then Ω is simultaneously Λ:'-convex. In particular, a λ>convex
region is always convex and so simply connected. For k > 0 it is
elementary to see that an open disk of radius l/k is Λ -convex, but is
not /c'-convex for any k' > k. Also, if Ωi, . . . , Qn are Λ:-convex, then
P|Ω7 is Λ>convex. Finally, if Ωi c Ω2 C is an increasing sequence
of λ>convex regions, then |J Ω ; is Λ -convex.

The next result gives an important sufficient condition for a region
to be Λ -convex. Later (Corollary 2 to Theorem 8) we shall see that any
Λ -convex region can be expressed as the increasing union of regions
of the type indicated in the following proposition.

PROPOSITION 1. Suppose that Ω is a simply connected region in C
bounded by a closed Jordan curve dΩ that is of class C2. Ifk(c, dΩ) >
k > 0 for all c e dΩ, then Ω is k-convex.

Proof. The hypotheses imply that Ω is convex [16, p. 46]. First,
we show that if Ί) is any closed disk that is contained in Ω, then the
radius of Z) is at most 1/Λ;. Suppose Z) = {z: \z - a\ < r}, where
a e Ω, and δ = δςι(a). Then r < δ so it suffices to show δ < l/k.
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Suppose that c e <9Ω n {z: \z - a\ = δ}. Since the circle \z - a\ = δ
lies inside of or on d Ω and these curves are tangent at c, it follows
that k < k{c9dΩ) < l/δ [7, pp. 28-30]. _

Next, we show that Ek[a,b] is contained in Ω. Consider any pair
of distinct points α, b e Ω. Since Ω is convex, [α, b] c Ω. Because
Ω is open, there exists k' > 0 such that Ek,[a,b] c Ω. Let K =
sup{fc': Ek,[a,b] c Ω}. Note that Eκ[a,b] is contained in the closure
of Ω. Since k1 < 2/\a - b\ for all admissible k\ we must have K <
2/\a-b\. ifK = 2/\a-b\> then the closed disk with center (a+b)/2 and
radius ί/K lies in Ω. From the first part of the proof we obtain XjK <
l/k, or k < K. Then Ek[a,b] c Eχ[a,b], so Ek[a,b] is contained in
Ω. The other possibility is that K < 2/\a-b\. If Γi and Γ2 are the two
circular arcs of radius \/K that bound Eχ[a,b], then at least one of
them must meet <9Ω. Without loss of generality assume that Γi meets
<9Ω at the point c. Since Γ\ lies inside of or on d Ω near c, it follows
that k < k(c,ΘΩ) < K [7, pp. 28-30]. Thus, Ek[a,b] c Eκ[a,b], so
in this case Ek[a, b] is again contained in Ω.

Finally, we show that Ek[a,b] c Ω. Let L be the straight line
through a and b. Select distinct points a1, br € ( Ω Π I ) \ [ Λ , b] such that
[a,b] c [a',bf]. Then Ek[af,bf] is contained in Ω. Since Ek[a,b] c
int Ek[af, b']9 the proof is complete.

It is not difficult to show that the converse also holds, that is, if
Ω is /:-convex, then k(z,ΘΩ) > k for all z € 9Ω, provided dΩ is a
C2-closed Jordan curve.

Recall that if Ω is convex, then for any a e Ω and c e dΩ the
half-open segment [α, c) c Ω. The next result gives a refinement of
this fact for /^-convex regions.

PROPOSITION 2. Suppose Ω is a k-convex region. Then for any a € Ω
and c e dΩ, Ek[a, c]\{c} c Ω.

Proof. Since Ω is convex, the half-open segment [α, c) c Ω. Note
that \a - c\ < 2/k since |α — c| = 2/k would imply that there exist
a1 eΩ near a and bf eΩ near c with \a! — b'\> 2/k which violates the
definition of /c-convexity. We first show that intEk[a,c] c Ω. Take
cn € [a,c) with cn -* c. Now, cn e Ω, so Ek[a,cn] c Ω for all n.
Consequently, intEk[a,c] c U ^ l A ^ ] C Ω NOW, we establish the
full result. Select a1 e Ω such that α e (af,c). The first part of the
proof gives intEk[a'9c] C Ω. Because Ek[a,c]\{c} c i n t ^ [ α ; , c ] , the
proof is complete.
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COROLLARY. Suppose Ω is a k-convex region. Ifc,d e dΩ, then
intEk[c,d]cΩ.

Proof. Select dn e Ω_with dn -> d. ΎhenEk[c,dn]\{c} c Ω for all n.
This yields Ek[c, d] c Ω, so uΛEk[c9 d] c Ω.

LEMMA 0. Suppose D is an open disk of radius l/k, B is an open
disk or half plane such that c e dB Γ)dD and B and D are externally
tangent at c. If\a -c\< 2/k and aφD, then Ek[a, c]\{c} n B φ 0.

Proof. Let Γi and Γ2 be the two circular arcs of radius l/k that
bound Ek[a, c], then, except for the point c, one of these two arcs lies
entirely outside of Zλ Suppose that Γ\ is this arc. Since Γi cannot be
tangent to d D at c, it must intersect any disk that is externally tangent
to D at c.

PROPOSITION 3. Suppose Ω is a k-convex region. Assume a € Ω,
c e dΩ and \a - c\ = δςι(a). IfD is the open disk of radius l/k that
is tangent to the circle \z - a\ = δςι(a) at c and that contains a in its
interior, then ΩcD.

Proof. Let L be the straight line that is tangent to dD at c and let
H be the open half-plane determined by L that does not contain α.
Then Ω convex implies Ω n H = 0 . If Ω\D Φ 0, then there exists
a € Ω\D. Because Ω is open, we may even assume a e Ω\D. Note
that |α — c| < 2/k since Ω is fc-convex. Now, Proposition 2 implies
^ [ Λ , C ] \ { C } C Ω, while Lemma 0 gives Ek[a,c]\{c} Π H Φ 0 . These
results contradict Ω Π H = 0 . Therefore, Ω c ΰ .

REMARK. If Ω is convex, α e Ω, c e dΩ, \a-c\ = SQ(S), L is the line
tangent to the circle \z-a\ = δςι(a) and H' is the half-plane containing
α, then Ω c f f and L is a support line for Ω at c. Proposition 3 gives
an analog of this for /:-convex regions: ΩcD and the circle dD of
radius l/k is a support line of constant euclidean curvature k for Ω
at c.

PROPOSITION 4. Suppose Ω is k-convex. Assume a e C\Ω, c e dΩ
and \a—c\ = δςι{a). IfD is the open disk of radius l/k that is tangent to
the circle \z - a\ = δa(a) at c and that does not meet the open segment
(a,c), then ΩcD.

Proof. Let B = {z: \z - a\ < δΩ(a)} c C\Ω. Then B and D are
externally tangent at c and BnΩ = 0. If Ω\D Φ 0, then there exists
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a E Ω\D and |α — c| < 2/k since Ω is fc-convex. Lemma 0 implies
that Ek[a,c]\{c}nB φ 0 and Proposition 2 gives Ek[a,c]\{c} c Ω.
These facts contradict finΩ = 0.

3. Lower bound for the density of the hyperbolic metric in a A -convex
region. We obtain a sharp lower bound for the density of the hyper-
bolic metric in a ^-convex region. This bound is used to obtain a
precise distortion theorem and a covering theorem for the family of
conformal mappings of the open unit disk D onto Λ -convex regions.
These results are generally refinements of known facts for convex re-
gions [11].

THEOREM 1. Suppose Ω is a k-convex region. Then for z e Ω

A Ω ( Z ) - δΩ(z)[2 - kδa(z)]

with equality at a point if and only ifΩ is a disk of radius l/k.

Proof First, assume that D is the open disk with center a and radius
l/k. Then

) ~ (l/jfc)2_|z_fl|2

For z e DyδD{z) = (l/k) -\z-a\ so that

; ( λ_ 1 1
λD[Z) - δD(z)[l + k\z - a\] δD(z)[2 - kδD(z)]'

Thus, equality holds for all points in the disk D.
Next, consider any fc-convex region Ω. Fix a e Ω. Choose c edΩ

with \a-c\ = δςι(a). Let D be the disk of radius l/k that is tangent to
the circle \z-a\ = δςι(a) ate and contains α in its interior. Proposition
3 gives Ω c ΰ . The monotonicity property of the hyperbolic metric
yields λςι(α) > A/>(α) with equality if and only if Ω = D. Since δςι(α) =
δj)(α), the preceding inequality together with the work in the above
paragraph completes the proof.

COROLLARY 1. Suppose Ω is α k-convex region. Iff is holomorphic
in D and /(D) c Ω, then for z e D

(1 - |z | 2 ) |/ ' (z) | < δΩ(f(z))[2 - kδΩ(f(z))].

Equality holds at a point if and only ifΩ is a disk of radius l/k and f
is a conformal mapping ofΌ onto Ω.
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Proof. The principle of the hyperbolic metric gives

for z G D with equality if and only if / is a conformal mapping of D
onto Ω. The theorem yields

to(/(r))[2-**,(/(*))] " A ί i ( / ( Z ) )

with equality if and only if Ω is a disk of radius 1 /k. By combining the
two preceding inequalities and the necessary and sufficient conditions
for equality, we obtain the desired result.

DEFINITION. Let K(k, a) denote the family of all holomorphic func-
tions / defined on D such that / is univalent, /(0) = 0, /'(0) = a > 0
and /(D) is a k-convex region.

The preceding corollary applied to / e K(k, a) with Ω = /(D) and
z = 0 yields a = |/'(0)| < (5Ω(O)[2 - kδQ(O)] = h(δΩ(O)), where h(t) =
t(2 - kt). Because h is increasing on [0, l/k] and δΩ(0) < l/k since
Ω is /c-convex, we obtain a < h(l/k) = l/k whenever / e K{k,a).
Also, a = I/A: if and only if /(z) = az.

EXAMPLE. Set fk(z) = αz/(l - Λ/1 -akz). Then fk e K(k, a) since
/(D) is a disk of radius l/k. In fact, fk(-l) = - α / ( l + VI -ak) and
/t( l) = α/(l - Λ/1 - α / : ) , so fk{D) is the disk with center y/Y^ak/k
and radius l/k. Also, the largest disk contained in fk(D) and centered
at the origin has radius a/(l + y/l — αfe). This example was considered
by Goodman [4].

As an easy consequence, we obtain the Koebe domain for the family
K(k,a). This result was first obtained by Goodman [4, Theorem 3].

COROLLARY 2. Suppose f € K(k,a). Then either the closure of
the disk {w: \w\ < α/(l + Λ/1 -<*k)} is contained in /(D) or else
f(z) = e-iθfk(eiθz) for some θ e R.

Proof. Set Ω = /(D). Then the preceding corollary with z = 0
produces a = |/'(0)| < SQ(0)[2 - kδςι(O)]. This inequality implies that
^Ω(O) > α/(l + Λ/1 -otk). Therefore, either δΩ(0) >a/(l + Λ/1 - otk)
or else / is a conformal mapping of D onto a disk of radius l/k that
contains the origin and is tangent to {w: \w\ = a /(I + Λ/1 -α/:)}.
In the second it is elementary to verify that / must have the form
prescribed in the statement of the corollary.
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4. A characterization of convex and /c-convex regions. We show that
the inequality for the density of the hyperbolic metric in Theorem
1 actually characterizes /c-convex regions. But first we establish the
analogous result for convex regions; we will need this in our proof
of the characterization of £>convex regions. The characterization of
convex regions was demonstrated by Hilditch [8] but not published.
Here we present a simple proof that is based on a result of Keogh [9].

THEOREM 2. Suppose Ω is a hyperbolic region in C. Then Ω is
convex if and only ifλa(z) > l/2δςχ(z) for z G Ω.

Proof. Minda [11] showed the necessity. Now, we establish the
sufficiency. Let f(z) = a§ + a\z + ••• be holomorphic in D with
/(D) c Ω. Set σ\{z) = #o + (fli/2)z. The principle of the hyperbolic
metric gives ΛΩ(/(0))|/'(0)| < λD(0) = 1, or \ax\ < l/λQ(a0). Then for
z G D we have

Thus, σ^D) c {w: \w - ao\ < δΩ(ao)} c Ω. It follows [9, Theorem 1]
that Ω is convex.

THEOREM 3. Suppose Ω is a hyperbolic region in C. Then Ω is k-
convex if and only ifλςι(z) > l/S&(z)[2 - kδςι(z)] > Ofor z e Ω.

Proof. We need only establish the sufficiency. The proof is given in
a series of steps.

First, we show that δςι(a) < l/k for a e Ω with equality only if Ω
is a disk of radius l/k and center a. Fix a e Ω and set δ = δςι(a),
D = {z:\z — a\ < δj. Then D c Ω s o the monotonicity property of
the hyperbolic metric in conjunction with the hypothesis gives

Hence, 2 - kδ > 1, or δ < l/k. If equality holds, then λςι(a) = λu{a)
which implies Ω = D. The inequality δςι(z) < l/k for z e Ω implies
that λςι(z) > l/2δςι(z). Therefore, Ω is convex by Theorem 2.

Second, we prove that if there exist α', έ Έ Ω with \a' - b'\ > 2/k,
then there exist a,b eΩ with \a — b\< 2/k and Ek[a,b] (jL Ω. Let m
be the midpoint of the straight line segment [a1, b']; m e Ω because Ω
is convex. Since a!,b' G Ω and \a' - bf\ > 2/k, Ω cannot be a disk of
radius l/k. Therefore, the preceding paragraph implies δςι(m) < l/k.
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S e l e c t c e < 9 Ω w i t h \ m - c \ = δςι(m). T h e n c e { z : δςι{m) < \ z - m \ <
I/A:}. By selecting α, b on [a',bf] Π {z: \z - m\ < I/A:} but close to
the two points in which [a\ b'] meets the circle \z - m\ = I/A:, we can
insure that \a — b\< 2/k and c e Ek[a, b] so that Ek[a, b] (£. Ω.

Finally, we show that Ω must be /c-convex. Suppose Ω were not
A>convex. Then the definition of A>convexity implies that either there
exist points a,b e Ω with \a - b\ > 2/k or points a,b e Ω with
\a - b\ < 2/k but Ek[a,b] <£ Ω. The foregoing paragraph shows that
the first alternative actually implies the second, so we need only show
that this second possibility cannot occur. Since Ω is open, we can
even assume that a, b e Ω, \a - b\ < 2/k but int Ek[a, b] <£ Ω. Because
Ω is convex and open, there exists k1 > 0 with Ek,[a,b] c Ω. Let
K = sup{fc': Ek,[a9 b] c Ω}. Clearly, K < k and Eκ[a, b] is contained
in the closure of Ω. But int Ek[a,b] <jL Ω, so we must actually have
K < k. Let Γi and Γ2 be the two closed circular arcs of radius \/K
that bound Eκ[a> b]. One of these arcs must meet <9Ω, say there is a
point c G Γi Π <9Ω. Now select a and β on Γi\{c} so that they are
symmetric about the normal line to Γi at c. By performing a euclidean
motion, if necessary, we may assume that c = iM9 M > 0, a = -R and
β = R > 0. Note that both λςi and δςi are invariant under euclidean
motions. Then Eκ[-R>R] is contained in the closure of Ω and iM e
dΩ. For φ = arctan(M/i?) the function

f(z) = i?tanh[(2p/π)Log(l + *)/(l - z)]

is a conformal mapping of D onto int EK[-R,R]. The density of the
hyperbolic metric for E = intEK[-R,R] is [12, p. 133]

1 / \

λE{z) = _ Z2| cos [̂ L arctan

Let z = /(Λf -δ),0 < δ < M. Obviously, δQ(z) = δ. Set g(δ) =
(J(2 - kδ)λE(i(M - δ)). Elementary computations show that #(0) = 1
and

/ / m M k8{0) = wτw ~ v
But

R + M = + M

so that g'(0) = (K - k)/2 < 0. Hence, g(δ) = 1 + (K - k)δ/2 +
O(δ2) < 1 for δ small and positive. The monotonicity property of the
hyperbolic metric gives

δ(2 - kδ)λa(i(M - δ)) < δ(2 - kδ)λE(i(M - δ)) = g(δ) < 1
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for δ small and positive. But this contradicts our hypothesis that
λa(z) > 11fδςι(z)[2-kδςι(z)] for z e Ω. Consequently, Ω must actually
be fc-convex.

5. The Bloch-Landau constant for the family K(k, a). We establish a
sharp constant lower bound for the density of the hyperbolic metric of
a A:-convex region in terms of the least upper bound for δ&. This lower
bound leads to an easy determination of the Bloch-Landau constant
for the family K(k, a).

We start by introducing a region that plays the central role in this
section. Fix M e (0, l/k]. Set R = y/M(2 - kM)/k; note that
R= l/k when M = l/k. The number R is determined so that the cir-
cle through -RJM and R has radius l/k. Let E = E(M) denote
the λ -convex region inX E^-R^R]. Note that E contains the disk
{z: \z\ < M}, but no larger disk, and is contained in the disk D =
{z: \z\ < R}. Also, observe that E(l/k) = D. If 2φ is the acute angle
that each of the boundary arcs of E makes with the real axis, then
φ = arctan(M/i?). Essentially this region E was employed in [12] ex-
cept that in this reference the region E was normalized by R = 1. We
shall use the results of [12] but for arbitrary R rather than just R = 1;
the extension of the results of [12] to arbitrary R is elementary. The
region E has the feature that circular arcs in E through ±R have con-
stant hyperbolic distance from the hyperbolic geodesic (-R,R) and
from each other. For z e E let y/>(z) denote the hyperbolic distance,
relative to Z>, from z to dE. Then the quotient XE/^D can be expressed
in terms of y^\ we restate the result here for the general R [12, pp.
133-135].

LEMMA 1. For z eE

XE{Z) _ πcos[2arctantanh(}>jr>(0) -

) 4φ cos [^ arctantanh(yD(0) - γD(z))] ~ 4(P'

and equality holds if and only ifze (-R9R).

Next, we extend this inequality from E to certain "triangular" k-
convex regions that contain {z: \z\ < M}. Let 2Γ = ^(M) denote
the family of /c-convex regions that contain {z: \z\ < M} and are
bounded by three distinct circular arcs each of radius l/k and having
the property that the full circles are tangent to \z\ = M and contain
{z: \z\ < M) in their interior. Observe that if Δ e ZΓy then each of
the three circular arcs bounding Δ meets the boundary of the disk D
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in diametrically opposite points when extended. The following result
is essentially Theorem 2 of [12].

LEMMA 2. If A e &~, then for z E Δ

' 4φ

Now, we can establish the desired lower bound.

THEOREM 4. Let Ω be a k-convex region and M = suρ{<fo(z): z e
Ω}. Then for zeΩ

^ π

> 4φR 4 y M(2 - kM) arctan

Equality holds at a point a e Ω if and only if there is a euclidean
motion T ofC such that Ω = T(E) and a = Γ(0).

Proof. The proof is an adaptation of that given for the analogous
result for spherically convex regions [12, Theorem 3]. Since Ω is
bounded, we actually have M = max{£Ω(z): z e Ω}. Also, M e
(0, l/k] since Ω is k-convcx. Take a e Ω with δa(a) = M.

First, suppose that M = l/k. Then Ω is a disk of radius l/k
with center a (see the proof of Theorem 1), so Ω = T(E), where
T(z) = z + a. Thus,

with equality if and only if z = a. This establishes the theorem in the
special case that M = l/k.

Now, assume that M e (0,1/fc). Because both λ& and <JQ are invari-
ant under euclidean motions, we may assume that a = 0 without loss
of generality. Let I = {z: \z\ = M and z e <9Ω}; / is nonempty and
closed. A result of Blaschke [2] implies that / cannot be contained in
a closed subarc of the circle \z\ = M with angular length strictly less
than π. We consider two cases.

The first is when / is contained in a closed subarc of angular length
exactly π. Then / contains a pair of diametrically opposite points of
the circle \z\ = M. By rotating Ω about the origin, if necessary, we
may assume that ±iM e I. Then Proposition 3 permits us to conclude
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that Ω c £ . The monotonicity property of the hyperbolic metric in
conjunction with Lemma 1 implies that

λφ) > λE(z) > £- £ π

4φR

with strict inequality between the extremes unless z = 0 and Ω = E.
The second case occurs when / is not contained in any closed subarc

of angular length π. Then there exist three points c\9 cι and C3 in /
that partition the circle \z\ = M into three subarcs each having angular
length strictly less than π. Let Dj (j = 1,2,3) be the open disk of
radius \/k that is tangent to the circle \z\ = M at Cj and contains 0
in its interior. Proposition 3 implies that Ω c Dj, so Ω c f]Dj = A
and Δ € y . Thus, Lemma 2 together with the monotonicity property
of the hyperbolic metric gives

This completes the proof.

The function

Skit) = V
t(2 - kt) +v ! arctan

is strictly increasing on [0, l/k] with maximum value g^l/k) = π/4k.
Hence, for a e [0, l/k] the equation gk(t) = απ/4 has a unique so-
lution M(a) G [0, l/k]. More precisely, we should write Mk(a) in
place of M(a), but we suppress the dependence on k. Note that

= l/k.

COROLLARY (Bloch-Landau constant for K(k,a)). Let f e K(k,a).
Then either /(D) contains an open disk of radius strictly larger than
M{a), or else f(z) = e~iΘF(eiΘz) for some θ eR, where

„ , λ /M(a)(2 - kM{a)) 4 uίaF{z) = \ — v Jy ^ M a n hv V j M a n h w Γ Ί Γ 7 Γ T T L O S Ί

k \2]jM(a)(2-kM(a)) I - z J
belongs to K(k,a) and maps D conformally onto E(M(a)).

Proof Set Ω = /(D) and M = max{<5Ω(/(z)): z e D}. If M >
M(a), then we are done. Suppose that M < M{ά). Then^(M) <
gk{M{a)) = απ/4. Now, ΛΩ(0) = 17/(0) = 1/α, so the theorem with
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z = /(0) = 0 gives 1/α > π/(4gk{M))y or gk(M) > απ/4. Hence,
gk(M) = απ/4, which gives M — M{a). Thus, equality holds in the
theorem at the origin, so Ω is just a rotation of E(M(a)). Because
F e K(k,a) and maps D conformally onto E(M(a))9 it follows that
/(z) = e~iθF(eiΘz) for some θ e R.

Note that ^ ( ί ) —• t as fc —• 0, so for a fixed value of α, M(α) ->
απ/4 as k —> 0. Thus, for α = 1 and k — 0 we obtain Λf(l) = π/4
which is the Bloch-Landau constant for the family K of normalized
convex univalent functions. This result is due to Szegό [17]; also, see
[11].

6. Hyperbolic convexity in k-convex regions. Minda [13] proved that
if Ω φ C is convex and α e Ω, then Ωn{z: \z-a\ < r} is hyperbolically
convex as a subset of Ω for any r > 0. Also, if a is in the exterior of
Ω, then this set need not be hyperbolically convex; this is readily seen
to be true when Ω is a half-plane. Of course, this result also holds for
/:-convex regions. In this section we improve this result for /c-convex
regions. We show that a can actually lie in the exterior of Ω, provided
there is a restriction on r.

EXAMPLE. Let D = {z: \z - b\ < I/A:}. Suppose a e C\D, δ =
δD(a),r > 0 and δ = kr2/(l + y/Y+ΈΦ). Let Γ = dD and Γ =
{z: \z - a\ = r}. Then \a - b\2 = (1/fc + δ)2 = (l/k)2 + r2, so the
circles Γ and Γ' are orthogonal. Thus, Γ n D is a hyperbolic geodesic
in D and Dn{z: \z — a\ < r] is a hyperbolic half-lane which is trivially
hyperbolically convex as a subset of D. If δ > ks2/(\ + y/l +k2s2),
then it is easy to see geometrically that D n {z: \z — a\ < s) is not
hyperbolically convex in D.

THEOREM 5. Suppose Ω w α k-convex region. Let a e C\Ω, J =
^Ω(^) ? ^ > 0,i? = {z: |z - a\ < r}, Γ = dR and j denote reflection
in the circle Γ. If δ < kr2/{\ + Vl+k2r2), then j(Ω\R) C Ω. In
particular, Ω n {z: \z - a\ < r} is hyperbolically convex as a subset of
Ω.

Proof. Select c e <9Ω with \a - c| = δ. Let Z> be the open disk
of radius l/k that is tangent to the circle \z — a\ = δ at c and does
not meet the open segment (a,c). Suppose b is the center of D and
Γ = dD. Proposition 4 implies that Ω c ΰ .
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First, we consider the case in which δ = kr2/{\ + y/l +k2r2). As in
the preceding example, the circles Γ and P are orthogonal. Consider
z e Ω\R and let γ be the circular arc through c, z and j(c). Note
that j(c) e P since P perpendicular to Γ implies that y(P) = P . In
fact, c and j{c) are diametrically opposite on the circle P . Let d be
the point in which γ meets Γ. Then it is clear that j(y) = γ since 7
fixes d and interchanges the points c and y(c). The point d divides
γ into two subarcs γ\ and ?2, with y\ c i?, 72 C C\i? and 7(72) = JΊ
If 5* is the radius of γ, then s > \/k since 7 is inside of Z> and passes
through diametrically opposite points of P = dD. Let γ' D γ\ be the
subarc of γ from z to c. Proposition 2 implies that γ'\{c} c Ω. Then
j(z) G >(/ n γ2) c yi\{c}, so y(z) e Ω. This proves 7*(Ω\i?) c Ω.
This inclusion implies that Ω Π R is hyperbolically convex in Ω ([13,
Theorem 6], [14, Proposition 1]).

The remaining case δ < kr2/(\ + \/l + k2r2) can be reduced to the
preceding case as follows. Select ko > 0 so that

Then k > ko, so Ω is also ko convex. The first part of the proof applied
with ko in place of k allows us to conclude that j(Ω\R) c Ω and that
Ω Π R is hyperbolically convex.

The example prior to the theorem shows that the inequality between
δ and r in the theorem cannot be improved.

7. Applications to euclidean curvature. In [14, Theorem 2] Minda
obtained precise information about the location of the center of the
euclidean circle of curvature for a hyperbolic geodesic in a convex
region. In particular, the center of curvature always lies in the com-
plement of the region. Now, we determine a sharp relationship be-
tween the euclidean curvature and center of curvature for a hyperbolic
geodesic in a fc-convex region.

THEOREM 6. Suppose that Ω is a k-convex region, γ is a hyperbolic
geodesic in Ω, ZQ G y and the euclidean curvature k(zo,γ) of γ at
zo is nonvanishing. Let a denote the euclidean center of curvature and
r(zo, y) = l/|fc(zo, y)\ the radius of curvature for y at ZQ. Then a e C\Ω
and

kr(zo,γ)2

>
λ/l+k2r(zo,γ)2'
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Equality holds if and only ifΩ is an open disk of radius l/k and γ is
a circular arc orthogonal to dΩ.

Proof. We start by showing that equality holds when Ω is a disk of
radius l/k. In this situation the hyperbolic geodesies are the circular
arcs and straight line segments that are orthogonal to the boundary.
Suppose γ is a circular arc that is perpendicular to <9Ω. Let a be
the center and r the radius of γ and δ = δςι(a). The fact that γ is
orthogonal to dΩ gives (l/k)2+r2 = (δ+l/k)2, or δ2+(2/k)δ-r2 = 0.
The positive root of this quadratic equation is δ = kr2/{l+\/l +k2r2).
Thus, equality does hold for a disk of radius l/k.

Now, we establish the inequality in the general case of an arbi-
trary ^-convex region Ω. There is no harm in assuming that γ is
oriented so that fc(zo, y) is positive. From [14, Theorem 2] we know
that a e C\Ω. Actually, we will show that if ΓQ is any positively ori-
ented circle through ZQ with radius r0, center a§ e C\Ω and the same
unit tangent as y at z0, then ΓQ is not the circle of curvature for γ at

ZQ provided δςι(ao) < kr%/(l + Jl + k2rfy. Fix such a circle Γo. Be-
cause the preceding inequality is strict, we can choose a strictly larger
circle Γ through z 0 with radius r > r0, center a e C\Ω and the same
unit tangent as γ at z 0 such that δςι(a) < kr2/(l + \/l +k2r2). Then
Theorem 5 implies that j(Ω\R) c Ω, where R = {z: \z — a\ < r} and j
denotes reflection in Γ, so [14, Theorem 1] implies k(zo, y) < fc(zo,Γ).
Since fc(zo,Γ) < /c(zo,Γo), it follows that ΓQ cannot be the circle of
curvature for y at ZQ.

Finally, we determine the form of Ω when equality holds. Sup-
pose that Γ is the circle of curvature for γ at z0, has center α, ra-
dius r and δςι(a) = kr2/(l + Vl +k2r2). Theorem 5 again implies
that j(Ω\R) C Ω, so that k(zo,γ) < k(zo,Γ) with equality if and
only if Ω is symmetric about Γ and γ c Γ [14, Theorem 1]. But
k(zQ9γ) = fc(zo,Γ) since Γ is the circle of curvature for γ at ZQ,
so Ω must be symmetric about Γ and γ c Γ. Select c e dΩ with
\a - c\ = δςι(a). If D is the disk of radius l/k that is tangent to the
circle \z — a\ = δςι{a) at c and does not meet the segment (a,c), then
Ω c f l b y Proposition 4. The fact that equality holds implies that Γ is
orthogonal to d D as in the first part of the proof. Because Ω is sym-
metric about Γ, j(c) edΩ. Note that j(c) is diametrically opposite c
on 3D, so \c - j(c)\ = 2/k. But then the corollary to Proposition 2
implies that D = intEk[c,j(c)] c Ω. Hence, Ω = Z>, so Ω is a disk of
radius l/k when equality holds.
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The inequality in Theorem 6 is equivalent to each of the following
inequalities:

\k(z0, γ)\Wk2

 + k(z0,γ)2 + \k(z0,

COROLLARY 1. Suppose Ω is a k-convex region, y is a hyperbolic
geodesic in Ω and z0 e γ. Then

Equality implies that Ω is a disk of radius \/k and γ is a circular arc
orthogonal to <9Ω.

Proof. We may assume that k(zo,γ) Φ 0. Let a be the center and
r the radius of the circle of curvature for γ at ZQ. Set δ = δa(a).
The segment [a, ZQ] meets dΩ, in some point c, so <5Ω(ZO) ^ \zo ~c\ =

\a - ZQ\ - \a - c\ = r - δ. The theorem gives

kr2

r-δn{zo)>δ>-
l+Vl+k2r2

We solve this inequality for 1/r by means of elementary manipulations
and obtain

" r-δQ(z0)[2-kδa(z0)Y

COROLLARY 2. Let Ω be a k-convex region. Then for z e Ω

and

(ϋ)

with equality if and only ifΩ, is a disk of radius i/k.

Proof. First, we show that equality holds for the disk D with center
0 and radius l/k. Then λD(z) = k/(l - k2\z\2), so that VlogλD(z) =
2k2z/(l - k2\z\2). Thus, δD = (l/k) - \z\ gives

2\z\ 2(1-kδD(z))
\V\ogλD(z)\ =

[(1 Ik) - \z\W/k) + \z\] δD(z)[2 - kδD(z)\
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Similarly, it is elementary to establish equality in (ii) for D.
Next, we establish (i). Fix z0 E Ω and set v = VlogAβ(zo). There

is nothing to prove if v = 0, so we may assume v Φ 0. Set n = vj\v\
and let γ be a hyperbolic geodesic through ZQ with normal n at z0.
From [15, Formula 19] and Corollary 1 we have

and equality implies Ω is a disk of radius l/k.
Finally, we establish (ii). From Theorem 3 in conjunction with the

fact that δςι(z) < l/k, we obtain

a<fr(r) a
K K

with equality in the left-hand inequality if and only if Ω is a disk of
radius l/k. Since h{t) = 2(1 - kt)/t{2 - kt) is decreasing on [0, l/k],
we obtain

h(Sφ)) < h

Thus, inequality (ii) follows from inequality (i).

8. Applications to /c-convex mappings. We now establish some addi-
tional results for the family K(k,a). In particular, we obtain a sharp
estimate for the second coefficient of a function in K(k, a) and an
analytic characterization of the class K(k,a).

T H E O R E M 7. Suppose Ω is a k-convex region and f:D-+Ωisa
conformal mapping. Then

l/»(0)l 2[l - kδΩ(f(O))]

L 7 W - *i(/(0))[2-

equality holds if and only ifΩ is a disk of radius l/k.

Proof. From λa(f(z))\f'(z)\ = λD(z) = 1/(1 - \z\2), we obtain

For z = 0 this gives

i|VlogAΩ(/(0))|= A i o g A Ω ( / ( 0 ) ) 2*
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The desired result now follows from Corollary 2 to Theorem 6.

COROLLARY. / / / e K(k,a), then |/"(0)| < 2α^l -<*k. Equality
holds if and only if f{z) = e~iθ fk(eiΘ z) for some θ e R.

. Set Ω = /(D). Then λΩ(0) = λΩ(/(0)) = l//'(0) = I/a. The
theorem gives

< 2\f'(0)\2yJλΩ(0)[λΩ(0)-k] =

with equality if and only if Ω is a disk of radius l/k. The only func-
tions which belong to K(k, a) and map onto a disk of radius l/k have
the form specified in the corollary.

It is well known that if K is the class of normalized convex univa-
lent functions defined in 0, then a normalized holomorphic function
belongs to K if and only if for z e D, 1 +Re(z/"(z)//'(z)) > 0. More-
over, whenever this inequality is true, then the stronger inequality

f"(z) 2z

f(z) " l-\z\2

also holds [1, p. 5]. We shall obtain analogs of these results for the
family K{k,a).

THEOREM 8. /// e K(ky α), then z e 0
Ί'(z) 2z

f'{z) 1 - |*|

Equality holds at a point if and only iff(z) = e~ιΘ fk{eιθ z) for some
θeR.

Proof. For z = 0 the inequality in the theorem becomes |/"(0)| <
lay/1 - ak. Thus, for z = 0 the theorem reduces to the corollary of
Theorem 7. Next, we show that the general case can be reduced to
this special situation. Consider any / e K(k, a). Fix a e D and define

g(z) = f((z + a)/(I + az)) - f(a). Then #(0) = 0 and g(D) is a
k-convex region. Also,

= (ί-\a\2)f(a)

and

g"(0) = (1 - - \a\2) - 2af(a)].
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Let φ = -Arg/'(α). Then G = e*g € K(k,(l - |α | 2 ) |/ '(α) |). The
corollary of Theorem 7 applied to G gives

\G"(0)/G'(0)\<2^/l-kG>(0).

The formulas for gf(0) and g"(0) reveal that this inequality is equiv-
alent to that stated in the theorem. All that remains is to determine
when equality holds. If f(z) = e~iθfk{eiΘz) for some θ e R, then
equality holds for z = re~iθ, 0 < r < 1. On the other hand, if equality
holds at some point of D, then the proof shows that G, and hence /,
maps D onto a disk of radius l/k. Therefore, / must have the form
e~wfk{ewz) for some θeR.

COROLLARY 1. Let f be holomorphic and univalent in D and nor-
malized by /(0) = 0, /'(0) = a > 0. Then f e K(k,a) if and only
if

for zeD.

Proof. Suppose / e K(k,a). Then the inequality in Theorem 8
holds. If we multiply this inequality by \z\, square the resulting in-
equality and then simplify, we obtain

4|z|4 zΓ(z) 2

 <

- 1 - M2

This implies the desired result.
Conversely, assume that the inequality in the corollary holds. Con-

sider the path γ: z = z{t) = reιt, t e [0,2π]. The euclidean curvature
of the path / o γ at the point /(z), z e y, is given by

Consequently, k(f(z),fo γ) > k for all z eγ. Proposition 1 implies
that /({z: \z\ < r}) is a k-convex region. Because /(D) is an increasing
union of ^-convex regions, it is also /c-convex.

COROLLARY 2. Suppose f is holomorphic and univalent in D. Then
/(D) is k-convex if and only iff maps each subdisk ofD onto a k-convex
region.

Proof. First, suppose that / maps each subdisk of D onto a /c-convex
region. Then /({z: \z\ < r}) is a /^-convex region for 0 < r < 1, so
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/(D) is also /c-convex. Conversely, assume that /(D) is λ -convex.
There is no harm in supposing that /(0) = 0 and a = /'(0) > 0,
since /c-convexity is invariant under translations and rotations. We
begin by showing that f{{z: \z\ < r}) is a fc-convex region for 0 <
r < 1. Corollary 1 implies that if γ: z = z(t) = reu

9 t e [0,2π],
then k(f(z),fo γ) > k for all z e γ, so Proposition 1 shows that
f({z: \z\ < r}) is a /:-convex region. Now, if Δ is a subdisk of D
with Δ c D, then there is a conformal automorphism T of D such
that Γ(Δ) is a disk centered at the origin. Now g = / o T~ι maps D
onto a fc-convex region, so the first case shows that /(Δ) = g(T(A))
is /c-convex. Finally, if Δ is a subdisk D of that is tangent to the unit
circle, then there is an increasing sequence {An} of subdisks of D with
An c Δ c D for all n and Δ = | JΔ Λ . Since f(An) is fc-convex, it follows
that /(Δ) = \Jf(An) is also λ -convex.

Added in proof. Professor Wolfram Koepf has pointed out that some
of the results of this paper as well as similar results for negtive cur-
vature are contained in the paper, E. Peschl, Uber die Krύmmung von
Niveaukurven bei der konformen Abbildung einfachzusammenhάngen-
der Gebiete auf das Innere eines Kreises, Math. Ann., 106 (1932),
574-594.
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