SOMMES EXPONENTIELLES
 DONT LA GEOMETRIE EST TRES BELLE: p-ADIC ESTIMATES

Michel Carpentier

In the present work we examine a family of multivariable exponential sums on a connected variety defined over a finite field.

0. Introduction. Let $K=\mathbb{F}_{q}$ be the field with q elements (char $K=$ $\left.p \neq 2, q=p^{\ell}\right), \bar{x} \in K^{\times}, g_{1}, \ldots, g_{n}$ positive integers relatively prime and prime to $p(n \geq 2)$ and let $\mathscr{V}_{\bar{x}}$ be the variety defined over K by $\prod_{i=1}^{n} t_{i}^{g_{i}}=\bar{x}$. Let Ω be a complete algebraically closed field containing $\mathbb{Q}_{p}, \Theta: K \rightarrow \Omega^{\times}$an additive character and for each $i \in\{1, \ldots, n\}$ let $\chi_{i}: K^{\times} \rightarrow \Omega^{\times}$be a multiplicative character. Let $\bar{c}_{1}, \ldots, \bar{c}_{n}$ be non-zero elements of K, and let $\bar{f}(t)=\sum_{i=1}^{n} \bar{c}_{i} k_{i}^{k_{i}}$, where k_{1}, \ldots, k_{n} are positive integers prime to p. For each $m \in \mathbb{Z}_{+}$let K_{m} be the extension of K of degree m. We consider the twisted exponential sums

$$
\begin{equation*}
S_{m}\left(\bar{f}, \mathscr{V}_{\bar{x}}\right)=\sum_{\left(\bar{t}_{1}, \ldots, \bar{t}_{n}\right) \in \mathscr{F}_{\tilde{Y}\left(K_{n}\right)}} \prod_{i=1}^{n} \chi_{i} \circ N_{K_{m / K}}\left(\bar{t}_{i}\right) \times \Theta \circ \operatorname{Tr}_{K_{m / K}}(\bar{f}(\bar{t})) \tag{0.1}
\end{equation*}
$$

and the associated L function:

$$
\begin{equation*}
L=L\left(\bar{f}^{\prime}, \mathscr{V}_{\bar{x}}, T\right)=\exp \left(-\sum_{m=1}^{\infty} S_{m}\left(\bar{f}, \mathscr{C}_{\bar{x}}\right) T^{m} / m\right) . \tag{0.2}
\end{equation*}
$$

Our main results are the following:
A. We show that $L^{(-1)^{n}}$ is a polynomial of degree

$$
h=\left(\sum_{i=1}^{n} g_{i} / k_{i}\right) \prod_{i=1}^{n} k_{i}
$$

B. We compute explicitly a lower bound for the Newton polygon of $L^{(-1)^{n}}$; this lower bound is independent of the prime number p and its endpoints coincide with those of the Newton polygon (Theorem 5.1 and Corollary 5.1).
C. Provided p lies in certain congruence classes, we show that our lower bound is in fact the exact Newton polygon of $L^{(-1)^{n}}$ (Theorem 5.3).
D. As a consequence we obtain p-adic estimates for the sums (0.1), since they are related to the reciprocal roots $\left\{\gamma_{i}\right\}_{i=1}^{h}$ of (0.2) by the equation

$$
\begin{equation*}
S_{m}\left(\bar{f}, \mathscr{V}_{\bar{x}}\right)=(-1)^{n+1}\left(\gamma_{1}^{m}+\cdots+\gamma_{h}^{m}\right) . \tag{0.3}
\end{equation*}
$$

We emphasize that our lower bound for the Newton polygon can be computed explicitly: To fix notations, we assume that the multiplicative characters χ_{i} are of the form $\chi_{i}(t)=\omega(t)^{-(q-1) \rho_{l} / r}$, where r and ρ_{i} are natural integers, $r \mid q-1,0 \leq \rho_{i}<r$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$, let $\sigma(\alpha)=\operatorname{Inf}_{i} \alpha_{i} / g_{i}$ and $J(\alpha)=\frac{1}{r} \sum_{i=1}^{n} \alpha_{i} / k_{i}$. Let $\widetilde{\Delta}_{\rho}^{\prime}$ be the finite subset of \mathbb{Z}^{n} defined by

$$
\alpha \in \tilde{\Delta}_{\rho}^{\prime} \Leftrightarrow\left\{\begin{array}{l}
0 \leq \sigma(\alpha)<r \\
\alpha_{i} \equiv \rho_{i}(\bmod r), \quad i=1, \ldots, n \\
\sigma(\alpha) \leq \alpha_{i} / g_{i} \leq \sigma(\alpha)+r k_{i} / g_{i}, \quad i=1, \ldots, n .
\end{array}\right.
$$

Whenever two elements α and β of $\widetilde{\Delta}_{\rho}^{\prime}$ satisfy $J(\alpha)=J(\beta)$ and $\alpha_{i} \equiv$ $\beta_{i}\left(\bmod k_{i}\right)$ for all i, we only keep the first of these two elements for the lexicographic order and eliminate the other: let $\tilde{\Delta}_{\rho}$ be the resulting set. $\widetilde{\Delta}_{\rho}$ contains $h=\left(\sum_{i=1}^{n} g_{i} / k_{i}\right) \prod_{i=1}^{n} k_{i}$ elements, and the slopes of our lower bound are the values on $\widetilde{\Delta}_{\rho}$ of the weight function $w(\alpha)=J(\alpha)-\frac{1}{r} \sigma(\alpha) \sum_{i=1}^{n} g_{i} / k_{i}$. For example, if $\mathscr{V}_{\bar{x}}$ is the variety $t_{1} t_{2}^{2} t_{3}^{3}=1$ and $\bar{f}(t)=t_{1}^{3}+t_{2}^{2}+t_{3}$, with trivial twisting characters χ_{i}, then L^{-1} is a polynomial of degree 26 . When $p \equiv 1(\bmod 18)$ its reciprocal roots have p-adic ordinal $0,1 / 3,7 / 18,4 / 9,1 / 2,2 / 3$ (twice), $13 / 18$, $7 / 9,5 / 6,8 / 9,17 / 18,1$ (twice), 19/18, 10/9, 7/6, 11/9, 23/18, 4/3 (twice), $3 / 2,14 / 9,29 / 18,5 / 3,2$. When $p \not \equiv 1(\bmod 18)$, the Newton polygon of L^{-1} lies above the Newton polygon whose sides have these slopes and their endpoints coincide.

If $n=2, k_{1}=k_{2}=1, g_{1}=g_{2}=1$, and the twisting characters are trivial, the sum (0.1) is the Kloosterman sum, which was first investigated from a p-adic point of view by B. Dwork in [9]. More general situations have been studied by S. Sperber ([13], [14], [15]) and Adolphson-Sperber ([1], [2]). We have made extensive use of the work of these authors, especially from [15]. On the other hand, using l-adic cohomology, P. Deligne [6] has shown, in the case $g_{1}=\cdots=g_{n}=k_{1}=\cdots=k_{n}=1$, that the reciprocal roots $\left\{\gamma_{i}\right\}_{i=1}^{h}$ of $L^{(-1)^{n}}$ have complex absolute value $q^{n-1 / 2}$; this was later extended by N. Katz [10]-from whom we borrow the title of this article-to include the case $k_{1}=\cdots=k_{n}$ and general g_{1}, \ldots, g_{n}. We complement
here this result, by obtaining p-adic estimates for the γ_{i} 's. Our approach departs from previous literature on the subject by the use of a new trace formula (Theorem 1.1) which provides a more balanced treatment and avoids the restriction $g_{n}=k_{n}=1$ ([4], [15]).

Using Dwork's methods, we construct cohomology spaces $W_{x, \rho}$ on which a Frobenius map acts, $\overline{\mathscr{F}}_{x}: W_{x, \rho} \rightarrow W_{x^{q}, \rho}$. These spaces have dimension h, and if $x=x^{q}$ is a Teichmüller point, the eigenvalues of $\overline{\mathscr{F}}_{x}$ are the reciprocal zeros of (0.2). The choice of a good basis for the space $W_{x, \rho}$ is crucial in obtaining estimates for the Newton polygon of the L-function: its elements are those of the set $\left\{x^{-\sigma(\alpha) / r} t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho}\right\}$, chosen so as to minimize the weight function $w(\alpha)$.

Define $\rho^{(0)}=\rho, \rho^{(1)}, \ldots, \rho^{(\rho)}=\rho$ by the conditions

$$
\begin{cases}p \rho_{i}^{(j+1)}-\rho_{i}^{(j)} \equiv 0 & (\bmod r) \\ 0 \leq \rho_{i}^{(j)}<r & \forall i, j\end{cases}
$$

For each $\alpha^{(j)} \in \widetilde{\Delta}_{\rho(1)}$, there exist (Lemma 2.8) unique elements $\alpha^{(j+1)} \in$ $\widetilde{\Delta}_{\rho(u+1)}$ and $\delta^{(j)} \in \mathbb{Z}^{n}$ satisfying

$$
\left\{\begin{array}{l}
p\left(\frac{\alpha_{i}^{(j+1)}}{r k_{i}}-\sigma\left(\alpha^{(j+1)}\right) \frac{g_{i}}{r k_{i}}\right)-\left(\frac{\alpha_{i}^{(j)}}{r k_{i}}-\sigma\left(\alpha^{(j)}\right) \frac{g_{i}}{r k_{i}}\right)=\delta_{i}^{(j)} \\
0 \leq \delta_{i}^{(j)}<r
\end{array}\right.
$$

If $\alpha=\alpha^{(0)} \in \widetilde{\Delta}_{\rho}$, let $Z(\alpha)=\sum_{j=0}^{\ell-1} w\left(\alpha^{(j)}\right)$. We show that the Newton polygon of $L^{(-1)^{n}}$ lies below that of $\mathscr{K}_{\rho}(T)=\prod_{\alpha \in \widetilde{\Delta}_{\rho}}\left(1-p^{Z(\alpha)} T\right)$, and their endpoints coincide (Theorem 5.2 and Corollary 5.1). On the other hand, if $p \equiv 1(\bmod r)$, the Newton polygon of the L-function lies above that of $\mathscr{H}_{\rho}(T)=\prod_{\alpha \in \widetilde{\Delta}_{\rho}}\left(1-q^{w(\alpha)} T\right)$ (Theorem 5.1). If furthermore $p g_{i} \equiv g_{i} \bmod \left(k_{i} g_{j}\right)$ for all i, j, then $\mathscr{K}_{\rho}(T)=\mathscr{H}_{\rho}(T)$ and therefore their common Newton polygon is that of $L^{(-1)^{n}}$.

The precise determination of the Newton polygon in other congruence classes requires finer estimates for the Frobenius matrix. This question has been solved by Adolphson-Sperber ([2]) in the case $n=2$, $g_{1}=g_{2}=1, k_{1}=k_{2}$. We expect to address this question more fully in a subsequent article.

In [5], we studied the deformation equation when $k_{n}=g_{n}=1$. With only minor changes, this treatment can be reconciled with the point of view adopted here. Let us simply indicate that the deformation operator of [5, p. 9-04] should be replaced by

$$
\eta_{y}=E_{y}+\pi M c_{n} \frac{d_{n}}{a_{n}} t_{n}^{d_{n}},
$$

where

$$
E_{y}\left(Y^{\gamma} t^{\alpha}\right)=\left(\gamma+M \frac{\alpha_{n}}{a_{n}}\right) Y^{\gamma} t^{\alpha}
$$

1. Trace formula. Let g_{1}, \ldots, g_{n} be positive integers $(n \geq 2)$, $g=\left(g_{1}, \ldots, g_{n}\right)$. We assume that g.c.d. $\left(g_{1}, \ldots, g_{n}\right)=1$. For $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ we define:

$$
\left\{\begin{array}{l}
\omega_{i, j}(\alpha)=\frac{\alpha_{i}}{g_{i}}-\frac{\alpha_{j}}{g_{j}}, \quad i, j=1, \ldots, n \tag{1.1}\\
\sigma(\alpha)=\operatorname{Inf}\left\{\frac{\alpha_{1}}{g_{1}}, \ldots, \frac{\alpha_{n}}{g_{n}}\right\}
\end{array}\right.
$$

Let μ be a fixed positive integer; for any $\alpha \in \mathbb{Z}^{n}$ let $\phi_{\alpha}: \mathbb{Z}^{n} \rightarrow \mathbb{Z} / \mu \mathbb{Z}$ be the group homomorphism defined by $\phi_{\alpha}\left(\gamma_{1}, \ldots, \gamma_{n}\right)=\sum_{i=1}^{n} \overline{\gamma_{i} \alpha_{i}}$.

Lemma 1.1. Let $\alpha \in \mathbb{Z}^{N}$; the following conditions are equivalent:
(i) There exists $\beta \in \mathbb{Z}^{n}$ such that $\omega_{i, j}(\alpha)=\mu \omega_{i, j}(\beta)$ for all $i, j=$ $1, \ldots, n$.
(ii) There exist $\beta \in \mathbb{Z}^{n}$ and $l \in\{1, \ldots, n\}$ such that $\omega_{i, l}(\alpha)=$ $\mu \omega_{i, l}(\beta)$ for all $i=1, \ldots, n$.
(iii) $\operatorname{Ker}\left(\phi_{g}\right) \subset \operatorname{Ker}\left(\phi_{\alpha}\right)$.

Proof. The equivalence of (i) and (ii) is obvious from the definitions. Suppose that α satisfies condition (ii) and let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in$ $\operatorname{Ker}\left(\phi_{g}\right)$. By assumption, $\alpha_{i} g_{l}=\alpha_{l} g_{i}+\mu\left(\beta_{i} g_{l}-\beta_{l} g_{i}\right)$ for all i, hence:

$$
g_{l} \sum_{i=1}^{n} \gamma_{i} \alpha_{i}=\left(\sum_{i=1}^{n} \gamma_{i} g_{i}\right)\left(\alpha_{l}-\mu \beta_{l}\right)+\mu g_{l} \sum_{i=1}^{n} \gamma_{i} \beta_{i}
$$

Since $g_{i}\left(\alpha_{l}-\mu \beta_{l}\right)=g_{l}\left(\alpha_{i}-\mu \beta_{i}\right)$ for all i and g.c.d. $\left(g_{1}, \ldots, g_{n}\right)=1$, it follows that g_{l} divides $\alpha_{l}-\mu \beta_{l}$. Hence $\sum_{i=1}^{n} \gamma_{i} \alpha_{i} \equiv 0(\bmod \mu)$ i.e. $\gamma \in \operatorname{Ker}\left(\phi_{\alpha}\right)$ and (ii) $\Rightarrow(\mathrm{iii})$.

Suppose that $\operatorname{Ker}\left(\phi_{g}\right) \subset \operatorname{Ker}\left(\phi_{\alpha}\right)$ and, for $i=1, \ldots, n-1$, let $\tau_{i}=$ g. c. d. $\left(g_{i}, g_{n}\right)$.

Since

$$
\frac{g_{n}}{\tau_{i}} g_{i}-\frac{g_{i}}{\tau_{i}} g_{n}=0
$$

our assumption implies the existence of integers z_{1}, \ldots, z_{n-1} satisfying

$$
\frac{g_{n}}{\tau_{i}} \alpha_{i}-\frac{g_{i}}{\tau_{i}} \alpha_{n}=\mu z_{i} \quad \text { for all } i=1, \ldots, n-1
$$

Furthermore, for each such i, there are integers β_{i} and $\beta_{n}^{(i)}$ such that:

$$
\begin{equation*}
z_{i}=\beta_{i} \frac{g_{n}}{\tau_{i}}-\beta_{n}^{(i)} \frac{g_{i}}{\tau_{i}} \tag{i}
\end{equation*}
$$

Thus

$$
\frac{\alpha_{i}}{g_{i}}-\frac{\alpha_{n}}{g_{n}}=\mu\left(\frac{\beta_{i}}{g_{i}}-\frac{\beta_{n}^{(i)}}{g_{n}}\right) \quad \text { for all } i=1, \ldots, n-1
$$

Observe that, if $\left(\beta_{i}, \beta_{n}^{(i)}\right)$ is a solution of equation (1.2(i)), then so is $\left(\beta_{i}+g_{i} / \tau_{i}, \beta_{n}^{(i)}+g_{n} / \tau_{i}\right)$. We must show the existence of solutions satisfying $\beta_{n}^{(1)}=\cdots=\beta_{n}^{(n-1)}$. Let $i, j \in\{1, \ldots, n-1\}$ with $i \neq j$:

$$
\frac{\alpha_{i}}{g_{i}}-\frac{\alpha_{j}}{g_{j}}=\mu\left(\frac{\beta_{n}^{(j)}-\beta_{n}^{(i)}}{g_{n}}+\frac{\beta_{i}}{g_{i}}-\frac{\beta_{j}}{g_{j}}\right)
$$

On the other hand, just as above, we can find integers ε_{i} and ε_{j} such that:

$$
\frac{\alpha_{i}}{g_{i}}-\frac{\alpha_{j}}{g_{j}}=\mu\left(\frac{\varepsilon_{i}}{g_{i}}-\frac{\varepsilon_{j}}{g_{j}}\right)
$$

Hence, letting $\delta_{i}=\beta_{i}-\varepsilon_{i}, \delta_{j}=\beta_{j}-\varepsilon_{j}$ and $\tau_{i, j}=$ g.c.d. $\left(\tau_{i}, \tau_{j}\right)$ we can write:

$$
\left(\beta_{n}^{(j)}-\beta_{n}^{(i)}\right) \frac{g_{i} g_{j} \tau_{i, j}}{\tau_{i} \tau_{j}}=\frac{g_{n} \tau_{i, j}}{\tau_{i} \tau_{j}}\left(\delta_{j} g_{i}-\delta_{i} g_{j}\right)
$$

Since $g_{n} \tau_{i, j} / \tau_{i} \tau_{j}$ and $g_{i} g_{j} \tau_{i, j} / \tau_{i} \tau_{j}$ are relatively prime, there exists $Z \in \mathbb{Z}$ such that

$$
\beta_{n}^{(j)}-\beta_{n}^{(i)}=Z \frac{g_{n} \tau_{i, j}}{\tau_{i} \tau_{j}}
$$

In turn, there exist $\xi, \eta \in \mathbb{Z}$ such that $Z \tau_{i, j}=\xi \tau_{i}+\eta \tau_{j}$ and therefore

$$
\beta_{n}^{(j)}-\beta_{n}^{(i)}=\xi \frac{g_{n}}{\tau_{j}}+\eta \frac{g_{n}}{\tau_{i}}
$$

If we let $r_{k}=g_{n} / \tau_{k}(k=1, \ldots, n-1)$, we have just proved that, for all $i, j \in\{1, \ldots, n-1\}$:

$$
\begin{equation*}
\beta_{n}^{(j)}-\beta_{n}^{(i)} \in r_{i} \mathbb{Z}+r_{j} \mathbb{Z} \tag{1.3}
\end{equation*}
$$

We now proceed by induction. Let $k<n-1$ and suppose that we have found solutions $\left(\widetilde{\beta}_{i}, \widetilde{\beta}_{n}^{(i)}\right)$ of equations (1.2(i)) for all i, with the property that $\widetilde{\beta}_{n}^{(1)}=\cdots=\widetilde{\beta}_{n}^{(k)}\left(=\widetilde{\beta}_{n}\right)$.

Let $m_{k}=$ 1.c.m. $\left(r_{1}, \ldots, r_{k}\right) . \operatorname{By}(1.3), \widetilde{\beta}_{n}-\widetilde{\beta}_{n}^{(k+1)} \in m_{k} \mathbb{Z}+r_{k+1} \mathbb{Z}$ and therefore there are integers λ, ζ such that $\widetilde{\beta}_{n}+\lambda m_{k}=\widetilde{\beta}_{n}^{(k+1)}+\zeta r_{k+1}$.

Let:

$$
\begin{cases}\beta_{n}^{(i)}=\widetilde{\beta}_{n}^{(i)}+\lambda m_{k} & 1 \leq i \leq k \\ \beta_{i}=\widetilde{\beta}_{i}+\lambda \frac{g_{i}}{g_{n}} m_{k} & 1 \leq i \leq k \\ \beta_{n}^{(k+1)}=\widetilde{\beta}_{n}^{(k+1)}+\zeta r_{k+1} & \\ \beta_{k+1}=\widetilde{\beta}_{k+1}+\zeta \frac{g_{k+1}}{\tau_{k+1}} & \\ \beta_{n}^{(j)}=\widetilde{\beta}_{n}^{(j)} & j>k+1 \\ \beta_{j}=\widetilde{\beta}_{j} & j>k+1\end{cases}
$$

For each $i=1, \ldots, n-1,\left(\beta_{i}, \beta_{n}^{(i)}\right)$ is a solution of (1.2(i)) and we have $\beta_{n}^{(1)}=\cdots=\beta_{n}^{(k+1)}$. Finally we obtain $\beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$ with $\omega_{i, n}(\alpha)=\mu \omega_{i, n}(\beta) \forall i=1, \ldots, n$.

Hence (iii) \Rightarrow (ii).
Notation. If $\alpha, \beta \in \mathbb{Z}^{n}$ satisfy $\omega_{i, j}(\alpha)=\mu \omega_{i, j}(\beta)$ for all $i, j=1, \ldots, n$ we shall write:

$$
\begin{equation*}
\omega(\alpha)=\mu \omega(\beta) \tag{1.4}
\end{equation*}
$$

Remark 1.1. Let $\alpha, \beta \in \mathbb{Z}^{n}$ satisfying (1.4) and let $l \in\{1, \ldots, n\}$, then

$$
\begin{equation*}
\sigma(\alpha)=\frac{\alpha_{l}}{g_{l}} \Leftrightarrow \sigma(\beta)=\frac{\beta_{l}}{g_{l}} \tag{1.5}
\end{equation*}
$$

Let:

$$
\begin{equation*}
S=\left\{\alpha \in \mathbb{Z}^{n} \mid 0 \leq \sigma(\alpha)<1\right\} \tag{1.6}
\end{equation*}
$$

Lemma 1.2. Let $\alpha, \beta \in S$; then $\alpha=\beta \Leftrightarrow \omega(\alpha)=\omega(\beta)$.
Proof. The first implication is obvious. Conversely, suppose that $\omega(\alpha)=\omega(\beta)$ and let l be an index such that $\sigma(\alpha)=\alpha_{l} / g_{l}$. By the remark above, $\sigma(\beta)=\beta_{l} / g_{l}$.

By assumption, $g_{i}\left(\alpha_{l}-\beta_{l}\right)=g_{l}\left(\alpha_{i}-\beta_{i}\right)$ for all i. If $\gamma_{1}, \ldots, \gamma_{n}$ are integers satisfying $\sum_{i=1}^{n} \gamma_{i} g_{i}=1$, then $\alpha_{l}-\beta_{l}=g_{l} \sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-\beta_{i}\right)$ and therefore g_{l} divides $\alpha_{l}-\beta_{l}$.

Since α and β are elements of $S,-g_{l}<\alpha_{l}-\beta_{l}<g_{l}$, hence $\alpha_{l}=\beta_{l}$ and it follows that $\alpha_{i}=\beta_{i}$ for all i.

We fix r, a positive integer, and for each $\alpha \in \mathbb{Z}^{n}$ we set

$$
\begin{equation*}
\sigma(\alpha)=\frac{1}{r} \sigma(\alpha) \tag{1.7}
\end{equation*}
$$

Let:

$$
\begin{equation*}
E=\left\{\alpha \in \mathbb{Z}^{n} \mid 0 \leq s(\alpha)<1\right\}=\left\{\alpha \in \mathbb{Z}^{n} \mid 0 \leq \sigma(\alpha)<r\right\} . \tag{1.8}
\end{equation*}
$$

If $\rho \in \mathbb{Z}^{n}$, with $0 \leq \rho_{i}<r$ we set

$$
\begin{equation*}
Z^{(\rho)}=\left\{\alpha \in \mathbb{Z}^{n} \mid \alpha_{i} \equiv \rho_{i}(\bmod r) \text { for all } i\right\} \tag{1.9}
\end{equation*}
$$

$$
\begin{equation*}
E^{(\rho)}=Z^{(\rho)} \cap E \tag{1.10}
\end{equation*}
$$

Lemma 1.3. Let $\alpha, \beta \in E^{(\rho)}$; then $\alpha=\beta \Leftrightarrow \omega(\alpha)=\omega(\beta)$.
Proof. Suppose that $\omega(\alpha)=\omega(\beta)$ and assume that $\alpha_{l} \geq \beta_{l}$ for some index l. Then $\alpha_{i} \geq \beta_{i}$ for all i and, letting $\gamma_{i}=\left(\alpha_{i}-\beta_{i}\right) / r$, $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right)$ is an element of S, with $\omega(\gamma)=0$. Lemma 1.2 implies that $\gamma=(0, \cdots, 0)$.

We now fix p, a prime number, with $(p, r)=1$. If $\rho \in \mathbb{Z}^{n}, 0 \leq \rho_{i}<r$, we let $\rho^{\prime} \in \mathbb{Z}^{n}$ be the unique element satisfying

$$
\left\{\begin{array}{l}
0 \leq \rho_{i}^{\prime}<r \tag{1.11}\\
p \rho_{i}^{\prime}-\rho_{i} \equiv 0 \quad(\bmod r)
\end{array}\right.
$$

Lemma 1.4. Let $\alpha \in Z^{(\rho)}$ satisfying the equivalent conditions of Lemma 1.1 with $\mu=p$. Then, in (i) and (ii), β can be chosen uniquely so that
(1) $\beta \in E^{\left(\rho^{\prime}\right)}$;
(2) $\lrcorner(\alpha)-p\lrcorner(\beta) \in \mathbb{Z}$.

Proof. Suppose that $\omega(\alpha)=p \omega(\delta)$. Certainly, δ may be chosen (uniquely) so that $0 \leq \sigma(\delta)<1$. By Remark 1.1, $g_{i}(\sigma(\alpha)-p \sigma(\delta))=$ $\alpha_{i}-p \delta_{i} \forall i$. Let $\gamma_{1}, \ldots, \gamma_{n}$ be integers satisfying $\sum_{i=1}^{n} \gamma_{i} g_{i}=1$:

$$
\sum_{i=1}^{n} g_{i} \gamma_{i}(\sigma(\alpha)-p \sigma(\beta))=\sum_{i=1}^{n} \gamma_{i}\left(\alpha_{i}-p \delta_{i}\right)
$$

hence $\sigma(\alpha)-p \sigma(\delta) \in \mathbb{Z}$. In particular, $p \delta-\alpha$ belongs to the cyclic subgroup of \mathbb{Z}^{n} generated by g. Since g.c.d. $(p, r)=1=$ g. c.d. $\left(g_{1}, \ldots, g_{n}\right)$, there is a unique integer $\lambda, 0 \leq \lambda<r$, such that $p(\delta+\lambda g)-\alpha \in r \mathbb{Z}^{n}$. Now set $\beta=\delta+\lambda g$.

Let \mathbb{Q}_{p} be the completion of the field of rational numbers for the p-adic valuation, and Ω an algebraically closed field containing \mathbb{Q}_{p}. We denote by "ord" the valuation on Ω normalized so that ord $p=1$. Let ℓ be a positive integer such that $r \mid p^{\prime}-1$, let $q=p^{\prime}$ and let
$x \in \Omega^{\times}$be a Teichmüller point: $x^{q}=x$. Let K be an extension of \mathbb{Q}_{p} in Ω containing x. Let t_{1}, \ldots, t_{n} be indeterminates. We shall use multi-index notation: if $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}^{n}, t^{\alpha}=t_{1}^{\alpha_{1}} \ldots t_{n}^{\alpha_{n}}$.

Fix k_{1}, \ldots, k_{n} positive integers. Given $b, c \in \mathbb{R}$ with $b \geq 0$, let:

$$
\begin{gather*}
\mathscr{L}(b, c)=\left\{\xi=\sum_{\alpha \in \mathbb{N}^{n}} B_{\alpha} t^{\alpha} \mid B_{\alpha} \in K \text { and ord } B_{\alpha} \geq b \sum_{i=1}^{n} \frac{\alpha_{i}}{k_{i}}+c\right\} \tag{1.12}\\
\mathscr{L}(b)=\bigcup_{c \in \mathbb{R}} \mathscr{L}(b, c)
\end{gather*}
$$

For each $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right) \in \mathbb{Z}^{n}$ with $0 \leq \rho_{i}<r$ we let

$$
\begin{align*}
\mathscr{L}_{\rho}(b, c)= & \left\{\xi=\sum B_{\alpha} t^{\alpha} \in \mathscr{L}(b, c) \mid B_{\alpha}=0 \text { if } \alpha \notin Z^{(\rho)}\right\} ; \tag{1.14}\\
& \mathscr{L}_{\rho}(b)=\bigcup_{c \in \mathbb{R}} \mathscr{L}_{\rho}(b, c) . \tag{1.15}
\end{align*}
$$

$\mathscr{L}(b, c), \mathscr{L}(b), \mathscr{L}_{\rho}(b, c), \mathscr{L}_{\rho}(b)$ are p-adic Banach spaces with the norm

$$
\|\xi\|=\operatorname{Sup}_{\alpha} p^{c_{\alpha}}, \quad c_{\alpha}=b \sum_{i=1}^{n} \frac{\alpha_{i}}{k_{i}}-\operatorname{ord} B_{\alpha} .
$$

Let $\mathscr{N}=\sum_{i=1}^{n} g_{i} / k_{i}$ and
(1.16) $\overline{\mathscr{L}}(b, c)=\left\{\eta=\sum_{\alpha \in E} C_{\alpha} t^{\alpha} \mid C_{\alpha} \in K \quad\right.$ and

$$
\left.\operatorname{ord} C_{\alpha} \geq b\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{k_{i}}-\mathscr{N} \sigma(\alpha)\right)+c\right\} ;
$$

$$
\begin{equation*}
\overline{\mathscr{L}}(b)=\bigcup_{c \in \mathbb{R}} \overline{\mathscr{L}}(b, c) ; \tag{1.17}
\end{equation*}
$$

$$
\begin{gather*}
\overline{\mathscr{L}}_{\rho}(b, c)=\left\{\eta=\sum_{\alpha \in E} C_{\alpha} t^{\alpha} \in \overline{\mathscr{L}}(b, c) \mid C_{\alpha}=0 \text { if } \alpha \notin E^{(\rho)}\right\} ; \tag{1.18}\\
\overline{\mathscr{L}}_{\rho}(b)=\bigcup_{c \in \mathbb{R}} \overline{\mathscr{L}}_{\rho}(b, c) \tag{1.19}
\end{gather*}
$$

$\overline{\mathscr{L}}(b, c), \overline{\mathscr{L}}(b), \overline{\mathscr{L}}_{p}(b, c), \overline{\mathscr{L}}_{\rho}(b)$ are p-adic Banach spaces with the norm

$$
\|\eta\|=\operatorname{Sup}_{\alpha} p^{c_{\alpha}}, \quad c_{\alpha}=b\left(\sum_{i=1}^{n} \frac{\alpha_{i}}{k_{i}}-\mathscr{N} \sigma(\alpha)\right)-\operatorname{ord} B_{\alpha} .
$$

If $\alpha, \beta \in \mathbb{Z}^{n}$, there exist $\tau \in \mathbb{Z}$ and $\delta \in E$, uniquely defined, such that $\alpha+\beta=\delta+\tau r g$ and we set

$$
\begin{equation*}
t^{\alpha} * t^{\beta}=x^{\tau} t^{\delta} \tag{1.20}
\end{equation*}
$$

Since $\sigma(\alpha+\beta) \geq \sigma(\alpha)+\sigma(\beta)$ and $\sigma(\delta+\tau r g)=\sigma(\delta)+\tau r$, this operation makes $\overline{\mathscr{L}}(b)$ (respectively $\overline{\mathscr{L}}_{\rho}(b)$) into a K-algebra; if ζ is an element of $\overline{\mathscr{L}}\left(b, c^{\prime}\right)$, then $\eta \rightarrow \zeta * \eta$ maps $\overline{\mathscr{L}}(b, c)$ continuously into $\overline{\mathscr{L}}\left(b, c+c^{\prime}\right)$.

Let ϕ be the K-linear map whose action on monomials is given by

$$
\begin{equation*}
\phi\left(t^{\alpha}\right)=t_{1}^{\alpha_{1}} * t_{2}^{\alpha_{2}} * \cdots * t_{n}^{\alpha_{n}} \tag{1.21}
\end{equation*}
$$

For each ρ, ϕ is a continuous algebra homomorphism from $\mathscr{L}_{\rho}(b, c)$ into $\overline{\mathscr{L}}(b, c)$. If $\alpha \in Z^{(\rho)}$ we define
(1.22) $\psi\left(t^{\alpha}\right)= \begin{cases}x^{\lrcorner(\alpha)-p_{\lrcorner}(\beta)} t^{\beta} & \text { if } \exists \beta \in E^{\left(\rho^{\prime}\right)} \text { such that } \omega(\alpha)=p \omega(\beta), \\ 0 & \text { otherwise } .\end{cases}$

Note that if $\alpha, \beta \in \mathbb{Z}^{n}$, then

$$
\begin{equation*}
\psi\left(t^{\alpha} * t^{\beta}\right)=\psi\left(t^{\alpha+\beta}\right) \tag{1.23}
\end{equation*}
$$

It follows from Lemma 1.4 that ψ extends to a continuous linear map from $\overline{\mathscr{L}}_{p}(b, c)$ into $\overline{\mathscr{L}}_{\rho^{\prime}}(p b, c)$. Since $r \mid q-1, \psi^{\ell} \operatorname{maps} \overline{\mathscr{L}}_{\rho}(b, c)$ into $\overline{\mathscr{L}}_{\rho}(q b, c)$. If $b^{\prime}>b$, then $\overline{\mathscr{L}}_{\rho}\left(b^{\prime}, c\right)$ is a subspace of $\overline{\mathscr{L}}_{\rho}(b, c)$ and the canonical injection $i: \overline{\mathscr{L}}_{\rho}\left(b^{\prime}, c\right) \rightarrow \overline{\mathscr{L}}_{\rho}(b, c)$ is completely continuous [12, §9].

We fix $F(t)=\sum_{\alpha \in \mathbb{N}^{n}} B_{\alpha} t^{\alpha}$ an element of $\mathscr{L}(r b)$ and we let $\bar{F}(t)=$ $\phi\left(F\left(t^{r}\right)\right) \in \overline{\mathscr{L}}_{\underline{0}}(b)$. We define \mathscr{F}_{ρ} to be the composition:

$$
\overline{\mathscr{L}}_{\rho}(q b) \xrightarrow{i} \overline{\mathscr{L}}_{\rho}(b) \xrightarrow{* \bar{F}(t)} \overline{\mathscr{L}}_{\rho}(b) \xrightarrow{\psi^{\prime}} \overline{\mathscr{L}}_{\rho}(q b) .
$$

By $[12, \S 3], \mathscr{F}_{\rho}$ is a completely continuous endomorphism of $\overline{\mathscr{L}}(q b)$. Its trace and Fredholm determinant are well defined and $\operatorname{det}\left(I-T \mathscr{F}_{\rho}\right)=\exp \left(-\sum_{m=1}^{\infty} \operatorname{tr}\left(\mathscr{F}_{\rho}^{m}\right) \frac{T^{m}}{m}\right)$ is a p-adic entire function.

For $m \in \mathbb{N}^{*}$ we let

$$
\begin{equation*}
\mathscr{V}_{m}=\left\{\left(t_{1}, \ldots, t_{n}\right) \in K^{n} \mid t_{i}^{q^{m}-1}=1 \text { and } t_{1}^{g_{1}} \times \cdots \times t_{n}^{g_{n}}=x\right\} \tag{1.24}
\end{equation*}
$$

Theorem 1.1.

$$
(q-1)^{n-1} \operatorname{tr}\left(\mathscr{F}_{\rho} \mid \overline{\mathscr{L}}_{\rho}(q b)\right)=\sum_{t \in \mathscr{V}_{1}}\left(\prod_{i=1}^{n} t_{i}^{-(q-1) \rho_{i} / r}\right) F(t)
$$

Proof. Write $F(t)=\sum_{\alpha \in S} \sum_{\lambda \in \mathbb{N}} B_{\alpha+\lambda g} t^{\alpha+\lambda g}$. Let $G(t)=\sum_{\alpha \in S} C_{\alpha} t^{\alpha}$, with $C_{\alpha}=\sum_{\lambda \in \mathbb{N}} B_{\alpha+\lambda g} x^{\lambda}$. For each $i=1, \ldots, n$ let $\delta_{i}=-\rho_{i}(q-1) / r$ and set $X_{\rho}(t)=\prod_{i=1}^{n} t_{i}^{\delta_{1}}$. Then $\sum_{t \in \mathcal{Y}_{1}} X_{\rho}(t) F(t)=\sum_{t \in \mathscr{Y}_{1}} X_{\rho}(t) G(t)$.

On the other hand, $\bar{F}(t)=\phi\left(F\left(t^{r}\right)\right)=\sum_{\alpha \in S} C_{\alpha} t^{t \alpha}=G\left(t^{r}\right)$.
Note that for each $\beta \in \mathbb{Z}^{n}$ we can find $\gamma \in \mathbb{Z}^{n}$ such that $\omega(\gamma)=$ $(q-1) \omega(\beta)$. Since $r \mid q-1$, we can choose γ so that $\gamma_{i} \equiv 0(\bmod r)$ for all i. Furthermore, after adding or subtracting multiples of $r g$, we may assume that $\gamma \in E$. Accordingly, for each $\beta \in \mathbb{Z}^{n}$, we denote by $\widetilde{\beta}$ the unique (by Lemma 1.3) element of S satisfying $\omega(r \widetilde{\beta})=(q-1) \omega(\beta)$.

For fixed $\beta \in E^{(\rho)}$,

$$
\mathscr{F}_{\rho}\left(t^{\beta}\right)=\sum_{\alpha \in S} C_{\alpha} \psi^{\ell}\left(t^{r \alpha} * t^{\beta}\right)=\sum C_{\alpha} x^{(r \alpha+\beta)-q_{\rho}(\gamma)} t^{\gamma},
$$

where the last sum is indexed by the set of all $\alpha \in S$ such that $\omega(r \alpha+\beta)=q \omega(\gamma), \gamma \in E^{(\rho)}$. The coefficient of t^{β} in this sum is $C_{\widetilde{\beta}}{ }^{\delta^{(r \tilde{\beta})-(q-1) \delta(\beta)}}$, and therefore,

$$
\begin{equation*}
\operatorname{tr}\left(\mathscr{F}_{\rho}\right)=\sum_{\beta \in E^{(0)}} C_{\widetilde{\beta}} x^{s(\tau \widetilde{\beta})-(q-1)_{\Delta}(\beta)} . \tag{1.25}
\end{equation*}
$$

There remains to show that $(q-1)^{n-1} \operatorname{tr}\left(\mathscr{F}_{\rho}\right)=\sum_{t \in \mathscr{V}_{1}} X_{\rho}(t) G(t)$, and it is sufficient to check this when $G(t)$ is a single monomial, $G(t)=$ $C_{\alpha} t^{\alpha}$. Let $G=(\mathbb{Z} /(q-1) \mathbb{Z})^{n}$; if $\bar{a}=\left(\bar{a}_{1}, \ldots, \bar{a}_{n}\right)$ and $\bar{b}=\left(\bar{b}_{1}, \ldots, \bar{b}_{n}\right)$ are two elements of G, we let $\bar{a} \cdot \bar{b}=\sum_{i=1}^{n} \bar{a}_{i} \bar{b}_{i}$. Fix ζ a primitive ($q-1$)-st root of unity. Since g.c.d. $\left(g_{1}, \ldots, g_{n}\right)=1$, we can find $\bar{\gamma} \in G$ such that $x=\zeta^{\bar{\gamma}} \cdot \bar{g}$. Let $H=\{\bar{\eta} \in G \mid \bar{\eta} \bullet \bar{g}=0\}$:

$$
\sum_{t \in \mathscr{Y}_{1}} X_{\rho}(t) t^{\alpha}=\zeta^{\bar{\gamma} \cdot(\bar{\delta}+\bar{\alpha})} \sum_{\eta \in H} \zeta^{\bar{\eta} \cdot(\bar{\delta}+\bar{\alpha})} .
$$

The homomorphism from G into $\mathbb{Z} /(q-1) \mathbb{Z}$ sending $\bar{\eta} \in G$ into $\bar{\eta} \bullet \bar{g}$ is surjective, with kernel H; hence $|H|=(q-1)^{n-1}$. Furthermore, $\bar{\eta} \rightarrow \bar{\zeta}^{\bar{\eta} \cdot(\bar{\delta}+\bar{\alpha})}$ is a character of H. Therefore

$$
\sum_{\bar{\eta} \in H} \zeta^{\bar{\eta} \cdot(\bar{\delta}+\bar{\alpha})}= \begin{cases}(q-1)^{n-1} & \text { if } \bar{\eta} \bullet(\bar{\delta}+\bar{\alpha})=\overline{0} \quad \forall \bar{\eta} \in H ; \\ 0 & \text { otherwise. }\end{cases}
$$

By Lemma $1.1, \bar{\eta} \bullet(\bar{\delta}+\bar{\alpha})=\overline{0} \forall \bar{\eta} \in H$ if and only if there exists $\varepsilon \in \mathbb{Z}^{n}$ such that $\omega(\delta+\alpha)=(q-1) \omega(\varepsilon)$ or equivalently $\omega(r \alpha)=$ $(q-1) \omega(r \varepsilon+\rho)$.

Thus $\bar{\eta} \cdot(\bar{\delta}+\bar{\alpha})=\overline{0} \forall \bar{\eta} \in H$ if and only if there exists $\beta \in E^{(\rho)}$ (necessarily unique) such that $\omega(r \alpha)=(q-1) \omega(\beta)$. If so,

$$
\alpha_{i}-\rho_{i} \frac{(q-1)}{r} \equiv g_{i}[f(r \alpha)-(q-1) s(\beta)](\bmod q-1) \quad \text { for all } i \text {; }
$$

hence $\zeta^{\bar{\gamma}} \cdot(\bar{\delta}+\bar{\alpha})=X^{\triangleleft(r \alpha)-(q-1)_{(}(\beta)}$.
Lemma 1.5. Let $F(t) \in \mathscr{L}(r b)$; then $\psi^{\ell} \circ\left(* \overline{F\left(t^{q}\right)}\right)=* \bar{F}(t) \circ \psi^{\ell}$.
Proof. It is sufficient to check that, for a monomial $t^{\beta}, \beta \in \mathbb{Z}^{n}$:

$$
\begin{gathered}
\psi^{\prime}\left(t^{q \beta} * t^{\alpha}\right)=t^{\beta} * \psi^{\ell}\left(t^{\alpha}\right) \\
\psi^{\prime}\left(t^{\beta \beta} * t^{\alpha}\right)= \begin{cases}x^{s(q \beta+\alpha)-q_{\vartheta}(\delta)} t^{\delta} & \text { if } \omega(q \beta+\alpha)=q \omega(\delta) ; \\
0 & \text { otherwise. } .\end{cases}
\end{gathered}
$$

Suppose that $\omega(q \beta+\alpha)=q \omega(\delta)$. Then $\omega(\alpha)=q \omega(\delta-\beta)$; let $\lambda \in \mathbb{Z}$ be such that $\delta-\beta+\lambda r g=\gamma$ is an element of E :

$$
\begin{aligned}
\psi^{\ell}\left(t^{\alpha}\right) & =x^{\iota(\alpha)-q_{s}(\gamma) t^{\gamma} ; \quad \text { hence }} \\
t^{\beta} * \psi^{\ell}\left(t^{\alpha}\right) & =x^{\iota(\alpha)-q_{s}(\gamma)+\lambda} t^{\delta} .
\end{aligned}
$$

Suppose that $\sigma(\delta)=\delta_{l} / g_{l}$; Remark 1.1 shows that $\sigma(q \beta+\alpha)=$ $\left(q \beta_{l}+\alpha_{l}\right) / g_{l}$. Thus,

$$
\lrcorner(q \beta+\alpha)-q_{\lrcorner}(\delta)=\frac{1}{r g_{l}}\left(q \beta_{l}+\alpha_{l}-q \delta_{l}\right)=\frac{1}{r g_{l}}\left(\alpha_{l}-q \gamma_{l}\right)+q \lambda .
$$

Likewise, if $\sigma(\alpha)=\alpha_{k} / g_{k}$, then

$$
\sigma(\gamma)=\frac{\gamma_{k}}{g_{k}} \text { and } \frac{1}{g_{l}}\left(\alpha_{l}-q \gamma_{l}\right)=\frac{1}{g_{k}}\left(\alpha_{k}-q \gamma_{k}\right) .
$$

Hence

$$
\lrcorner(q \beta+\alpha)-q_{\jmath}(\delta) \equiv\right\lrcorner(\alpha)-q_{\jmath}(\gamma)+\lambda \quad \bmod q-1 .
$$

Corollary 1.1.

$$
\begin{aligned}
\left(q^{m}-\right. & 1)^{n-1} \operatorname{tr}\left(\mathscr{F}_{\rho}^{m} \mid \overline{\mathscr{L}}_{\rho}(q b)\right) \\
\quad & =\sum_{t \in \mathscr{V}_{m}}\left(\prod_{i=1}^{n} t_{i}^{-\left(q^{m}-1\right) \rho_{i} / r}\right) F(t) F\left(t^{q}\right) \cdots F\left(t^{q^{m-1}}\right) .
\end{aligned}
$$

2. Special subsets of \mathbb{Z}^{n}. Let $a=\left(a_{1}, \ldots, a_{n}\right)$ and $d=\left(d_{1}, \ldots, d_{n}\right)$ be two n-tuples of positive integers.

Let $M=$ 1.c.m. $\left(a_{1}, \ldots, a_{n}\right)$ and $D=1$.c.m. $\left(d_{1}, \ldots, d_{n}\right)$. If $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{Z}^{n}$ we let

$$
\begin{equation*}
s(\alpha)=\operatorname{Inf}\left\{\frac{\alpha_{1}}{a_{1}}, \ldots, \frac{\alpha_{n}}{a_{n}}\right\} \tag{2.1}
\end{equation*}
$$

Let $J: \mathbb{Z}^{n} \rightarrow \frac{1}{D} \mathbb{Z}$ be the map defined by

$$
\begin{equation*}
J(\alpha)=\sum_{i=1}^{n} \frac{\alpha_{i}}{d_{i}} . \tag{2.2}
\end{equation*}
$$

We define an equivalence relation on \mathbb{Z}^{n} by setting:

$$
\begin{equation*}
\alpha \sim \alpha^{\prime} \text { if and only if } \alpha_{i} \equiv \alpha_{i}^{\prime}\left(\bmod d_{i}\right) \text { for all } i=1, \ldots, n \tag{2.3}
\end{equation*}
$$

There are $\prod_{i=1}^{n} d_{i}$ equivalence classes, which we call "congruence classes"; if $\alpha \in \mathbb{Z}^{n}$, we denote by $\bar{\alpha}$ its congruence class.

Let

$$
\begin{equation*}
\Delta^{\prime}=\left\{\alpha \in \mathbb{Z}^{n} \left\lvert\, s(\alpha) \leq \frac{\alpha_{i}}{a_{i}} \leq s(\alpha)+\frac{d_{i}}{a_{i}} \quad \forall i=1\right., \ldots, n\right\} . \tag{2.4}
\end{equation*}
$$

If α and β are two elements of Δ^{\prime} we set

$$
\left\{\begin{array}{l}
\alpha \mathscr{R} \beta \text { if and only if } \alpha \sim \beta \text { and } J(\alpha)=J(\beta) ; \tag{2.5}\\
\Delta=\Delta^{\prime} / \mathscr{R} .
\end{array}\right.
$$

We identify Δ with the subset of Δ^{\prime} obtained by choosing, in each equivalence class for \mathscr{R}, the first element in lexicographic order.

Lemma 2.1. Let $\alpha \in \Delta$ and let $\beta \in \mathbb{Z}^{n}$ be such that $\beta \sim \alpha$ and $J(\beta)=J(\alpha)$; then

$$
s(\beta) \leq s(\alpha)
$$

Proof. If $\beta \neq \alpha$, there is an index i such that $\beta_{i}<\alpha_{i}$. Since $\beta \sim \alpha$, we have in fact $\beta_{i} \leq \alpha_{i}-d_{i}$. Hence

$$
\frac{\beta_{i}}{a_{i}} \leq \frac{\alpha_{i}}{a_{i}}-\frac{d_{i}}{a_{i}} \leq s(\alpha) .
$$

For each $i \in\{1, \ldots, n\}$ we denote by U_{i} the element of \mathbb{Z}^{n} with 1 in the i-th position and 0 elsewhere.

Lemma 2.2. Let $K \in \frac{1}{D} \mathbb{Z}$ and let $\bar{\alpha}$ be a congruence class in \mathbb{Z}^{n} such that $\bar{\alpha} \cap J^{-1}(K) \neq \varnothing$. Then there exists a unique element $\beta \in \Delta$ such that $\beta \in \bar{\alpha}$ and $J(\beta)=K$.

Proof. Let $S(\bar{\alpha}, K)=\operatorname{Max}\{s(\delta) \mid \delta \in \bar{\alpha}$ and $J(\delta)=K\}$.

Pick $\delta \in \bar{\alpha}$ with $J(\delta)=K$ and $s(\delta)=S(\bar{\alpha}, K)$.
If $\delta_{i} / a_{i} \leq s(\delta)+d_{i} / a_{i}$ for all i, then $\delta \in \Delta^{\prime}$ so $\Delta^{\prime} \cap J^{-1}(K) \neq \varnothing$ and we are done.

Suppose now that $\delta_{i} / a_{i}>s(\delta)+d_{i} / a_{i}$ for some index i and let k be the index such that δ_{k} / a_{k} is maximum among those satisfying the last inequality. Let also l be an index such that $s(\delta)=\delta_{l} / a_{l}$; note that necessarily $k \neq l$.

Let

$$
\gamma=\delta-d_{k} U_{k}+d_{l} U_{l}: \quad \frac{\gamma_{k}}{a_{k}}>s(\delta) \quad \text { and } \quad \frac{\gamma_{l}}{a_{l}}>s(\delta)
$$

Hence $s(\gamma) \geq s(\delta)$ and Lemma 2.1 implies $s(\gamma)=s(\delta)$.
Furthermore $\gamma_{l} / a_{l}=s(\gamma)+d_{l} / a_{l}$. Repeating the process if necessary, after a finite number of steps we obtain $\varepsilon \in \Delta^{\prime} \cap \bar{\alpha}$ with $J(\varepsilon)=K$.

Notation. If β satisfies the conditions of Lemma 2.2 we write

$$
\begin{equation*}
\beta=\tau(\bar{\alpha}, K) \tag{2.6}
\end{equation*}
$$

Let

$$
\begin{equation*}
N=J(a)=\sum_{i=1}^{n} \frac{a_{i}}{d_{i}} \tag{2.7}
\end{equation*}
$$

Observe that $\alpha \in \Delta \Leftrightarrow \alpha+a \in \Delta$. Thus, if $\bar{\alpha} \cap J^{-1}(K) \neq \varnothing$:

$$
\begin{equation*}
\tau(\bar{\alpha}, K)+a=\tau(\overline{\alpha+a}, K+N) \tag{2.8}
\end{equation*}
$$

Lemma 2.3. Let $K \in \frac{1}{D} \mathbb{Z}$ and let $\bar{\alpha}$ be a congruence class in \mathbb{Z}^{n} such that $\bar{\alpha} \cap J^{-1}(K) \neq \varnothing$; let $\beta=\tau(\bar{\alpha}, K), \delta=\tau(\bar{\alpha}, K+1)$; there exists an index $\lambda=\lambda(\bar{\alpha}, K) \in\{1, \ldots, n\}$ such that $\beta=\delta-d_{\lambda} U_{\lambda}$. Furthermore $s(\beta)=\beta_{\lambda} / a_{\lambda}$.

Proof. Let

$$
s=\max \left\{\frac{\delta_{1}-d_{1}}{a_{1}}, \ldots, \frac{\delta_{n}-d_{n}}{a_{n}}\right\}
$$

and let l be the smallest index such that $s=\left(\delta_{l}-d_{l}\right) / a_{l}$. Let $\gamma=$ $\delta-d_{l} U_{l}:$ for all $i \neq l$,

$$
\frac{\delta_{i}}{a_{i}} \geq s(\delta) \geq \frac{\delta_{l}-d_{l}}{a_{l}}=\frac{\gamma_{l}}{a_{l}}, \quad \text { hence } s(\gamma)=\gamma_{l} / a_{l}=s
$$

Furthermore, for all $i \neq l,\left(\gamma_{i}-d_{i}\right) / a_{i} \leq s(\gamma)$ so $\gamma \in \Delta^{\prime}$. Suppose that there exists $\varepsilon \in \Delta^{\prime}$ such that $\varepsilon \mathscr{R} \gamma$ and ε precedes γ in the lexicographic ordering. Let j be the smallest index such that $\varepsilon_{j} \neq \gamma_{j}$; then $\varepsilon_{j} \leq \gamma_{j}-d_{j}$ and there exists $k>j$ such that $\varepsilon_{k} \geq \gamma_{k}+d_{k}$:

$$
\begin{aligned}
& s(\varepsilon) \leq \frac{\varepsilon_{j}}{a_{j}} \leq \frac{\gamma_{j}-d_{j}}{a_{j}} \leq s(\gamma) \\
& s(\gamma) \leq \frac{\gamma_{k}}{a_{k}} \leq \frac{\varepsilon_{k}-d_{k}}{a_{k}} \leq s(\varepsilon)
\end{aligned}
$$

Hence $s(\gamma)=s(\varepsilon)=s, \varepsilon_{j}=\gamma_{j}-d_{j}, \varepsilon_{k}=\gamma_{k}+d_{k}$; in particular $s=\left(\gamma_{j}-d_{j}\right) / a_{j}$ so we must have $j \neq l$; hence $\varepsilon_{j}=\delta_{j}-d_{j}$ and therefore $j>l$. Let now $\delta^{\prime}=\delta-d_{j} U_{j}+d_{k} U_{k}$:

$$
\begin{gathered}
s \leq \frac{\varepsilon_{j}}{a_{j}}=\frac{\delta_{j}-d_{j}}{a_{j}} \leq s(\delta) \\
s(\delta) \leq \frac{\delta_{k}}{a_{k}}=\frac{\gamma_{k}}{a_{k}}=\frac{\varepsilon_{k}-d_{k}}{a_{k}}=s
\end{gathered}
$$

Thus

$$
s=s\left(\delta^{\prime}\right)=s(\delta)=\frac{\delta_{j}^{\prime}}{a_{j}}=\frac{\delta_{j}-d_{j}}{a_{j}}
$$

Furthermore,

$$
\frac{\delta_{i}^{\prime}}{a_{i}}=\frac{\delta_{i}}{a_{i}} \leq s\left(\delta^{\prime}\right)+\frac{d_{i}}{a_{i}} \text { if } i \neq j, k, \text { and } \frac{\delta_{k}^{\prime}}{a_{k}}=\frac{\delta_{k}+d_{k}}{a_{k}}=s\left(\delta^{\prime}\right)+\frac{d_{k}}{a_{k}}
$$

Hence $\delta^{\prime} \in \Delta, \delta^{\prime} \mathscr{R} \delta$ and δ^{\prime} precedes δ in the lexicographic ordering. This contradicts the choice of δ. Hence $\gamma=\beta=\tau(\bar{\alpha}, K)$ and $l=$ $\lambda(\bar{\alpha}, K)$.

We now let

$$
\begin{gather*}
\widetilde{\Delta}=\{\alpha \in \Delta \mid 0 \leq s(\alpha)<1\} \tag{2.9}\\
\bar{\Delta}=\{\alpha \in \Delta \mid 0 \leq J(\alpha)<N\} \tag{2.10}
\end{gather*}
$$

Lemma 2.4. $|\widetilde{\Delta}|=|\bar{\Delta}|$.
Proof. We construct two maps:

$$
\begin{aligned}
l: \widetilde{\Delta} & \rightarrow \bar{\Delta} \\
l^{*}: \bar{\Delta} & \rightarrow \tilde{\Delta}
\end{aligned}
$$

Let $\alpha \in \widetilde{\Delta}$: we can find $\mu_{\alpha} \in \mathbb{N}, r_{\alpha} \in \frac{1}{D} \mathbb{N}$, unique such that $J(\alpha)=$ $N \mu_{\alpha}+r_{\alpha}$ and we set:

$$
\begin{equation*}
l(\alpha)=\alpha-\mu_{\alpha} a \tag{2.11}
\end{equation*}
$$

Clearly, $l(\alpha) \in \Delta$ with $s(l(\alpha))=s(\alpha)-\mu_{\alpha}$ and $0 \leq J(l(\alpha))<N$; hence $l(\alpha) \in \bar{\Delta}$. If $\beta \in \bar{\Delta}$, there exist $\nu_{\beta} \in \mathbb{N}$ and $k_{\beta}<1$ unique such that $s(\beta)=\nu_{\beta}+k_{\beta}$; we set:

$$
\begin{equation*}
l^{*}(\beta)=\beta-\nu_{\beta} a . \tag{2.12}
\end{equation*}
$$

Clearly $l^{*}(\beta) \in \Delta$ with $0 \leq s\left(l^{*}(\beta)\right)<1$, i.e. $l^{*}(\beta) \in \widetilde{\Delta}$.
It is now straightforward to check that l and l^{*} are inverse to each other.

Lemma 2.5. Let $\delta=\frac{1}{D} \prod_{i=1}^{n} d_{i}$. If $K \in \frac{1}{D} \mathbb{Z}$, then $J^{-1}(K)$ meets exactly δ congruence classes in \mathbb{Z}^{n}.

Proof. Let $G=\mathbb{Z} / d_{i} \mathbb{Z} \times \cdots \times \mathbb{Z} / d_{n} \mathbb{Z}$ and let $H=\frac{1}{D} \mathbb{Z} / \mathbb{Z} . J: \mathbb{Z}^{n} \rightarrow \frac{1}{D} \mathbb{Z}$ induces a group homomorphism:

$$
\begin{equation*}
\bar{J}: G \rightarrow H \tag{2.13}
\end{equation*}
$$

It is sufficient to prove that $\left|\bar{J}^{-1}(h)\right|=\delta$ for any $h \in H$. Let

$$
\delta_{i}=\prod_{\substack{1 \leq j \leq n \\ j \neq i}} d_{i}
$$

Observe that $\delta=$ g.c.d. $\left(\delta_{1}, \ldots, \delta_{n}\right)$ and therefore there exist integers $\alpha_{1}, \ldots, \alpha_{n}$ such that $\delta=\sum_{i=1}^{n} \alpha_{i} \delta_{i}$. Dividing by $\prod_{i=1}^{n} d_{i}$ we obtain $\frac{1}{D}=\sum_{i=1}^{n} \alpha_{i} / d_{i}$, showing that \bar{J} is surjective. Hence, for $h \in H$,

$$
\left|J^{-1}(h)\right|=\frac{|G|}{|H|}=\frac{\prod_{i=1}^{n} d_{i}}{D}=\delta
$$

Lemma 2.6. $|\widetilde{\Delta}|=N \prod_{i=1}^{n} d_{i}$.
Proof. By Lemma $2.5, J^{-1}(K) \cap \Delta$ has exactly δ elements for each $K \in \frac{1}{D} \mathbb{Z}$. Hence, using the definition of $\bar{\Delta},|\bar{\Delta}|=N \prod_{i=1}^{n} d_{i}$. The conclusion follows from Lemma 2.4.

Let r be a fixed positive integer and let $g=\left(g_{1}, \ldots, g_{n}\right), k=$ $\left(k_{1}, \ldots, k_{n}\right)$ be n-tuples of positive integers, with g.c.d. $\left(g_{1}, \ldots, g_{n}\right)=$ 1.

From now on we shall assume that $a_{i}=r g_{i}$ and $d_{i}=r k_{i}$ for all $i=1, \ldots, n$. Thus, in (1.7) and (2.1):

$$
\begin{equation*}
s(\alpha)=\lrcorner(\alpha) \quad \forall \alpha \in \mathbb{Z}^{n} \tag{2.14}
\end{equation*}
$$

If $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right) \in \mathbb{Z}^{n}$, with $0 \leq \rho_{i}<r$ we let

$$
\begin{align*}
& \Delta_{\rho}=\left\{\alpha \in \Delta \mid \alpha_{i} \equiv \rho_{i} \bmod r\right\} ; \tag{2.15}\\
& \tilde{\Delta}_{\rho}=\tilde{\Delta} \cap \Delta_{\rho} ; \tag{2.16}\\
& \bar{\Delta}_{\rho}=\bar{\Delta} \cap \Delta_{\rho} . \tag{2.17}
\end{align*}
$$

Lemma 2.7. $\left|\widetilde{\Delta}_{\rho}\right|=\left|\bar{\Delta}_{\rho}\right|=N \prod_{i=1}^{n} k_{i}$.
Proof. The map $i: \widetilde{\Delta} \rightarrow \bar{\Delta}$ of Lemma 2.4 restricts to a bijection between $\tilde{\Delta}_{\rho}$ and $\bar{\Delta}_{\rho}$. Hence $\left|\tilde{\Delta}_{\rho}\right|=\left|\bar{\Delta}_{\rho}\right|$. Let $\eta=\left(\eta_{1}, \ldots, \eta_{n}\right) \in \mathbb{Z}^{n}$, with $0 \leq \eta_{i}<r$. If $\alpha \in \bar{\Delta}_{\rho}$ we let $\gamma=\alpha-\rho+\eta$. There is a unique integer λ_{α} such that $K_{\alpha}=J(\gamma)+\lambda_{\alpha} N$ satisfies $0 \leq K_{\alpha}<N$, and we set $\left.F_{\rho, \eta}(\alpha)=\tau \overline{\left(\gamma+\lambda_{\alpha} a\right.}, K_{\alpha}\right) . F_{\rho, \eta}$ maps $\bar{\Delta}_{\rho}$ and $\bar{\Delta}_{\eta}$ and is easily seen to be injective. Hence, the r^{n} sets $\bar{\Delta}_{\rho}, 0 \leq \rho_{i}<r$, all have the same cardinality

$$
\left|\bar{\Delta}_{\rho}\right|=\frac{1}{r^{n}}|\bar{\Delta}|=N \prod_{i=1}^{n} k_{i} .
$$

Lemma 2.8. Let p be a prime number, with $\left(p, a_{i}\right)=\left(p, d_{i}\right)=1$ for all i; let $\rho \in \mathbb{Z}^{n}$, with $0 \leq \rho_{i}<r$ and let $\rho^{\prime} \in \mathbb{Z}^{n}$ satisfying $0 \leq \rho_{i}^{\prime}<r$ and $p \rho_{i}^{\prime}-\rho_{i} \equiv 0(\bmod r) \forall i$. If $\alpha^{\prime} \in \widetilde{\Delta}_{\rho^{\prime}}$, there exist $\alpha \in \widetilde{\Delta}_{\rho}$ and integers $\delta_{1}, \ldots, \delta_{n}$ uniquely determined by the conditions:

$$
\left\{\begin{array}{l}
p\left(\frac{\alpha_{i}^{\prime}}{d_{i}}-s\left(\alpha^{\prime}\right) \frac{a_{i}}{d_{i}}\right)-\left(\frac{\alpha_{i}}{d_{i}}-s(\alpha) \frac{a_{i}}{d_{i}}\right)=\delta_{i}, \\
0 \leq \delta_{i}<p-1
\end{array}\right.
$$

Furthermore:
(i) Let $l \in\{1, \ldots n\}$, then

$$
s(\alpha)=\frac{\alpha_{l}}{a_{l}} \Leftrightarrow s\left(\alpha^{\prime}\right)=\frac{\alpha_{l}^{\prime}}{a_{l}} \Leftrightarrow \delta_{l}=0 .
$$

(ii) $\alpha^{\prime} \mapsto \alpha$ is a bijection between $\widetilde{\Delta}_{\rho^{\prime}}$ and $\widetilde{\Delta}_{\rho}$.

Proof. Certainly, using notation (1.4), there exists $\beta \in \mathbb{Z}^{n}$ such that $\omega(\beta)=p \omega\left(\alpha^{\prime}\right)$, and an argument similar to that of Lemma 1.4 shows
that β can be chosen uniquely in $E^{(\rho)}$. Furthermore, if $s\left(\alpha^{\prime}\right)=\alpha_{l}^{\prime} / a_{l}$, then $s(\beta)=\beta_{l} / a_{l}$. Since $\alpha^{\prime} \in \widetilde{\Delta}$, we have

$$
0 \leq \frac{\alpha_{i}^{\prime}}{a_{i}}-\frac{\alpha_{l}^{\prime}}{a_{l}} \leq \frac{d_{i}}{a_{i}},
$$

hence

$$
0 \leq \frac{\beta_{i}}{a_{i}}-\frac{\beta_{l}}{a_{l}} \leq p \frac{d_{i}}{a_{i}}
$$

for all i.
If

$$
\frac{\beta_{i}}{a_{i}}-\frac{\beta_{l}}{a_{l}}<p \frac{d_{i}}{a_{i}},
$$

there is a unique integer $\delta_{i}, 0 \leq \delta_{i} \leq p-1$, such that

$$
0 \leq \frac{\beta_{i}-\delta_{i} d_{i}}{a_{i}}-\frac{\beta_{l}}{a_{l}}<\frac{d_{i}}{a_{i}} .
$$

If

$$
\frac{\beta_{i}}{a_{i}}-\frac{\beta_{l}}{a_{l}}=p \frac{d_{i}}{a_{i}}
$$

we set $\delta_{i}=p-1$.
Now let $\alpha_{i}=\beta_{i}-\delta_{i} d_{i}$ for all i. It is straightforward to check that $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ and $\delta=\left(\delta_{1}, \ldots, \delta_{n}\right)$ have the required properties.

Lemma 2.9. Let $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right) \in \mathbb{N}^{n}$, with $0 \leq \rho_{i}<r$. Then

$$
\sum_{\alpha \in \widetilde{\Lambda}_{\rho}} w(\alpha)=N \prod_{i=1}^{n} k_{i} \frac{(n-1)}{2}
$$

Proof. Let $G=\prod_{i=1}^{n} \mathbb{Z} / d_{i} \mathbb{Z}$ and let $\rho: G \rightarrow(\mathbb{Z} / r \mathbb{Z})^{n}$ and $q: \mathbb{Z}^{n} \rightarrow G$ be the natural quotient maps. Let $\bar{\rho}=\rho \circ q(\rho)$ and $K_{\rho}=\mu^{-1}(\bar{\rho})$. Note that

$$
\left|K_{\rho}\right|=\prod_{i=1}^{n} k_{i}, \alpha \in \Delta_{\rho} \Leftrightarrow \alpha+a \in \Delta_{\rho} \quad \text { and } \quad \bar{\eta} \in K_{\rho} \Leftrightarrow \bar{\eta}+q(a) \in K_{\rho} .
$$

Let H be the cyclic subgroup of G generated by $\mathcal{q}(a)$ and let $\left\{G_{l}\right\}_{l=1}^{(G: H)}$ be the orbits of G under addition by elements of $H: G=\amalg_{l=1}^{(G: H)} G_{l}$. We have $K_{\rho}=\amalg_{K_{\rho} \cap G_{l} \neq \varnothing} G_{l}$ and $\bar{\Delta}_{\rho}=\amalg_{l=1}^{(G: H)} \bar{\Delta}_{\rho}(l)$, where $\bar{\Delta}_{\rho}(l)=$ $\left\{\alpha \in \bar{\Delta} \mid \mathscr{q}(\alpha) \in K_{\rho} \cap G_{l}\right\}$.

Let l be such that $K_{\rho} \cap G_{l} \neq \varnothing$ and let $\eta \in \bar{\Delta}_{\rho}(l)$ be such that $J(\eta)$ is minimum. Let $\varepsilon=|H| ; \varepsilon$ is the smallest integer such that
$\varepsilon a_{i} \equiv 0\left(\bmod d_{i}\right)$ for all i. For any $\alpha \in \bar{\Delta}_{\rho}(l)$, there is a unique integer $\mu \in \mathbb{N}$ such that $0 \leq \mu<\varepsilon$ and $\alpha_{i}+\mu a_{i} \equiv \eta_{i}\left(\bmod d_{i}\right)$ for all i, and we have $J(\eta) \leq J(\alpha+\mu a)<J(\eta)+\varepsilon N$. Conversely, if $\beta \in \Delta$ satisfies $J(\eta) \leq J(\beta)<J(\eta)+\varepsilon N$ and $\beta_{i} \equiv \eta_{i}\left(\bmod d_{i}\right)$ for all i, there is a unique $\nu \in \mathbb{N}, 0 \leq \nu<\varepsilon$ such that $J(\eta)+\nu N \leq J(\beta)<J(\eta)+(\nu+1) N$. Let $\gamma=\beta-\nu a$; then $J(\eta) \leq J(\gamma)<J(\eta)+N$. If $J(\gamma) \geq N$, then $J(\gamma-a) \geq 0$ and $J(\gamma-a)<J(\eta)$, contradicting the minimality of $J(\eta)$. Hence $\gamma \in \bar{\Delta}$.
Let $D_{\rho}(l)=\left\{\alpha \in \Delta \mid \alpha_{i} \equiv \eta_{i}\left(\bmod d_{i}\right) \forall i\right.$ and $J(\eta) \leq J(\alpha)<J(\eta)+$ $\varepsilon N\}$. Since $w(\alpha+a)=w(\alpha)$ for all $\alpha \in \mathbb{Z}^{n}$ we deduce that:

$$
\sum_{\alpha \in \widetilde{\Delta}_{\rho}} w(\alpha)=\sum_{\alpha \in \bar{\Delta}_{\rho}} w(\alpha)=\sum_{l=1}^{(G: H)} \sum_{\alpha \in D_{\rho}(l)} w(\alpha) .
$$

It follows from Lemma 2.3 that $D_{\rho}(l)=\{\tau(\bar{\eta}, J(\eta)+k) \mid 0 \leq k \leq$ $\varepsilon N-1\}$. For each $k \in \mathbb{N}$, let $\alpha^{(k)}=\tau(\bar{\eta}, J(\eta)+k), s_{k}=s\left(\alpha^{(k)}\right), J_{k}=$ $J\left(\alpha^{(k)}\right)=J_{0}+k, \lambda_{k}=\lambda\left(\bar{\eta}, J_{k}\right)$. By Lemma 2.3, $\alpha^{(k)}=\alpha^{(k-1)}+d_{\lambda_{k}} U_{\lambda_{k}}$ and $s_{k}=\alpha_{\lambda_{k+1}}^{(k)} / a_{\lambda_{k+1}}$. For each $i \in\{1, \ldots n\}$ let μ_{i} be the integer satisfying $\varepsilon a_{i}=\mu_{i} d_{i}$. Since $\alpha^{(\varepsilon N)}=\eta+\varepsilon a$, it follows that $\varepsilon a=\sum_{k=1}^{\varepsilon N} d_{\lambda_{k}} U_{\lambda_{k}}$ and $\mu_{i}=\#\left\{k \mid 1 \leq k \leq \varepsilon N\right.$ and $\left.\lambda_{k}=i\right\}$.

We have

$$
\begin{aligned}
\sum_{k=0}^{\varepsilon N-1} s_{i} & =\sum_{j=1}^{n} \sum_{\lambda_{k}=j} \alpha_{\lambda_{k+1}}^{(k)} / a_{j}=\sum_{j=1}^{n} \frac{1}{a_{j}}\left(\sum_{\nu=0}^{\mu_{j}-1} \eta_{j}+\nu d_{j}\right) \\
& =\sum_{j=1}^{n}\left[\frac{\mu_{j}}{a_{j}}\left(\eta_{j}+\frac{\left(\mu_{j}-1\right)}{2} d_{j}\right)\right] \\
& =\varepsilon \sum_{j=1}^{n}\left(\frac{\mu_{j}}{d_{j}}+\frac{\mu_{j}-1}{2}\right)=\varepsilon\left(J_{0}+\frac{\varepsilon N-n}{2}\right) .
\end{aligned}
$$

On the other hand:

$$
\sum_{k=0}^{\varepsilon N-1} J_{k}=\varepsilon N J_{0}+\frac{N(\varepsilon N-1)}{2} .
$$

Thus

$$
\begin{aligned}
\sum_{\alpha \in D_{\rho}(l)} w(\alpha) & =\sum_{k=0}^{\varepsilon N-1}\left(J_{k}-N s_{k}\right) \\
& =\varepsilon N \frac{(n-1)}{2}=\left|K_{\rho} \cap G_{l}\right| N \frac{(n-1)}{2} .
\end{aligned}
$$

Hence

$$
\sum_{\alpha \in \widetilde{\Delta}_{\rho}} w(\alpha)=\left|K_{\rho}\right| N \frac{(n-1)}{2}
$$

3. Cohomology: The generic case.

a. Definitions. Let K_{r} be the unramified extension of \mathbb{Q}_{p} in Ω of degree $r, \zeta_{p} \in \Omega$ a primitive p-th root of unity, $\Omega_{0}=K_{r}\left(\zeta_{p}\right)$ and let $\tau \in \operatorname{Gal}\left(\Omega_{0} \mid \mathbb{Q}_{p}\left(\zeta_{p}\right)\right)$ denote the Frobenius automorphism. Let \mathscr{O}_{0} be the ring of integers of Ω_{0}.

Let $M=$ l.c. $\mathrm{m} .\left(a_{1}, \ldots, a_{n}\right)$ and, for $m \in \mathbb{N}^{*}$:

$$
\begin{align*}
S_{m} & =\left\{(\alpha ; \gamma) \in \mathbb{N}^{n} \times \mathbb{Z} \mid \gamma \geq-m M s(\alpha)\right\} \tag{3.1}\\
E_{m} & =\{(\alpha ; \gamma) \in E \times \mathbb{Z} \mid \gamma \geq-m M s(\alpha)\} \tag{3.2}\\
A_{m} & =\Omega_{0} \text {-algebra generated by }\left\{t^{\alpha} Y^{\gamma} \mid(\alpha ; \gamma) \in S_{m}\right\} \tag{3.3}\\
P^{(m)} & =t^{a} Y^{-m M}-1 ; \tag{3.4}\\
\bar{A}_{m} & =A_{m} /\left(P^{(m)}\right) \tag{3.5}\\
\mathscr{R}_{m} & =\Omega_{0} \text {-span of }\left\{t^{\alpha} Y^{\gamma} \mid(\alpha ; \gamma) \in E_{m}\right\} . \tag{3.6}
\end{align*}
$$

If $\alpha \in \mathbb{Z}^{n}, \gamma \in \mathbb{Z}$, we set:

$$
\begin{equation*}
w_{m}(\alpha ; \gamma)=J(\alpha)+\frac{N \gamma}{m M} \tag{3.7}
\end{equation*}
$$

Remarks.

$$
\begin{equation*}
w_{m}(\alpha ; \gamma) \geq 0 \quad \text { for all }(\alpha ; \gamma) \in S_{m} \tag{3.8}
\end{equation*}
$$

(3.9) If $W \in \mathbb{Q}$, the set $\left\{(\alpha ; \gamma) \in E_{m} \mid w_{m}(\alpha ; \gamma)=W\right\}$ is finite.

If $\alpha, \beta \in \mathbb{Z}^{n}$, there exist $\delta=\delta(\alpha, \beta) \in E, \lambda=\lambda(\alpha, \beta) \in \mathbb{Z}$ unique, such that $\alpha+\beta=\delta+\lambda a$ and we set:

$$
\begin{equation*}
t^{\alpha} *_{m} t^{\beta}=Y^{\lambda m M} t^{\delta} \tag{3.10}
\end{equation*}
$$

If $(\alpha ; \gamma)$ and $(\beta ; \varepsilon)$ are two elements of $S_{m}, \delta=\delta(\alpha, \beta), \lambda=\lambda(\alpha, \beta)$ as above, then $(\delta, \gamma+\varepsilon+\lambda) \in E_{m}$. In particular, the operation $*_{m}$ makes \mathscr{R}_{m} into an $\Omega_{0}[Y]$ algebra and, if we set

$$
\begin{equation*}
\boldsymbol{\Phi}_{m}\left(t^{\alpha}\right)=t_{1}^{\alpha_{1}} *_{m} t_{2}^{\alpha_{2}} *_{m} \cdots *_{m} t_{n}^{\alpha_{n}} \quad\left(\alpha \in \mathbb{Z}^{n}\right) \tag{3.11}
\end{equation*}
$$

then Φ_{m} extends to an $\Omega_{0}[Y]$-algebra homomorphism $\Phi_{m}: A_{m} \rightarrow \mathscr{R}_{m}$.
Furthermore, Φ_{m} induces an $\Omega_{0}[Y]$-algebra isomorphism.

$$
\begin{equation*}
\bar{\Phi}_{m}: \bar{A}_{m} \xrightarrow{\sim} \mathscr{R}_{m} . \tag{3.12}
\end{equation*}
$$

$A_{m}, \bar{A}_{m}, \mathscr{R}_{m}$ are graded algebras with

$$
\begin{equation*}
w_{m}\left(Y^{\gamma} t^{\alpha}\right)=w_{m}(\alpha ; \gamma) \tag{3.13}
\end{equation*}
$$

Both Φ_{m} and $\bar{\phi}_{m}$ are homogeneous of degree 0 .
Note. When no confusion can arise, we shall omit the subscript " m " and write $*$ instead of $*_{m}$.

For $b, c \in \mathbb{R}, b \geq 0$, let

$$
\begin{align*}
L(b, c)=\left\{\eta=\sum A(\alpha) t^{\alpha} \mid \alpha \in \mathbb{N}^{n},\right. & A(\alpha) \in \Omega_{0} \tag{3.14}\\
& \text { ord } A(\alpha) \geq b J(\alpha)+c\}
\end{align*}
$$

$$
\begin{equation*}
L(b)=\bigcup_{c \in \mathbb{R}} L(b, c) \tag{3.15}
\end{equation*}
$$

$L(b)$ and $L(b, c)$ are p-adic Banach spaces with the norm

$$
\begin{equation*}
\|\eta\|=\operatorname{Sup}_{\alpha} p^{-c_{\alpha}}, \quad c_{\alpha}=\operatorname{ord} A(\alpha)-b J(\alpha) \tag{3.16}
\end{equation*}
$$

Let

$$
\begin{gather*}
L_{m}(b, c)=\left\{\xi=\sum B(\alpha ; \gamma) t^{\alpha} Y^{\gamma} \mid(\alpha ; \gamma) \in E_{m}, B(\alpha ; \gamma) \in \Omega_{0}\right. \tag{3.17}\\
\left.\operatorname{ord} B(\alpha ; \gamma) \geq b w_{m}(\alpha ; \gamma)+c\right\} \\
L_{m}(b)=\bigcup_{c \in \mathbb{R}} L_{m}(b, c) \tag{3.18}
\end{gather*}
$$

$L_{m}(b)$ and $L_{m}(b, c)$ are p-adic Banach spaces with the norm

$$
\begin{equation*}
\|\xi\|_{m}=\operatorname{Sup}_{(\alpha ; \gamma)} p^{-c_{a, \gamma}}, \quad c_{\alpha, \gamma}=\operatorname{ord} B(\alpha ; \gamma)-b w_{m}(\alpha ; \gamma) \tag{3.19}
\end{equation*}
$$

Let

$$
\begin{gather*}
R_{m}(b, c)=\Omega_{0}[[Y]] \cap L_{m}(b, c) \tag{3.20}\\
R_{m}(b)=\Omega_{0}[[Y]] \cap L_{m}(b)=\bigcup_{c \in \mathbb{R}} R_{m}(b, c) \tag{3.21}
\end{gather*}
$$

The operation $*_{m}$ described in (3.10) makes $L_{m}(b)$ into an $R_{m}(b)$ algebra. (3.9) ensures that this is well defined. Furthermore, if $\eta \in$ $L_{m}(b)$, the mapping $\xi \mapsto \eta *_{m} \xi$ is a continuous endomoprhism of $L_{m}(b)$. Note that $L_{m}(b)$ is the completion of \mathscr{R}_{m} for the norm $\left\|\|_{m}\right.$.

For each $c \in \mathbb{R}$, there is a continuous Ω_{0}-linear map from $L(b, c)$ into $L_{m}(b, c)$ whose action on monomials is given by (3.11). This map will again be denoted $\boldsymbol{\Phi}_{m}$.

Let $\bar{c}_{1}, \ldots, \bar{c}_{n}$ be non-zero elements of \mathbb{F}_{q} and, for each i let c_{i} be the Teichmüller representative of \bar{c}_{i} in Ω_{0} (so $c_{i}^{q}=c_{i}$).

Let:

$$
\begin{equation*}
f(t)=\sum_{i=1}^{n} c_{i} t_{i}^{k_{i}} . \tag{3.22}
\end{equation*}
$$

Let $\left\{\gamma_{j}\right\}_{j=0}^{\infty}$ be a sequence of elements of $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ such that

$$
\left\{\begin{align*}
& \operatorname{ord} \gamma_{0}=\frac{1}{p-1} \tag{3.23}\\
& \operatorname{ord} \gamma_{j} \geq \frac{p^{j+1}}{p-1}-(j+1), \quad j \geq 1
\end{align*}\right.
$$

If $t^{\alpha} Y^{\gamma}$ is a monomial, we set

$$
\begin{equation*}
E_{i}\left(t^{\alpha} Y^{\gamma}\right)=\left(\frac{\alpha_{i}}{a_{i}}-\frac{\alpha_{n}}{a_{n}}\right) t^{\alpha} Y^{\gamma}, \quad i=1, \ldots, n-1 . \tag{3.24}
\end{equation*}
$$

Note that $E_{i}\left(t^{\alpha} * t^{\beta}\right)=E_{i}\left(t^{\alpha}\right) * t^{\beta}+t^{\alpha} * E_{i}\left(t^{\beta}\right)$ so that E_{i} acts as a derivation on all the rings and Banach spaces which have been defined so far.

Let
(3.25) $\bar{H}(t)=\gamma \circ f\left(t^{r}\right)$.
(3.26) $H(t)=\sum_{l=0}^{\infty} \gamma_{l} f^{\tau^{\prime}}\left(t^{r p^{\prime}}\right)=\sum_{l=0}^{\infty} \gamma_{l}\left(\sum_{i=1}^{n} c_{i}^{p^{\prime}} t_{i}^{p^{\prime} d_{l}}\right)$;
(3.27) $\bar{H}_{i}=E_{i} \bar{H}(t)=\gamma_{0}\left(c_{i} \frac{d_{i}}{a_{i}} t_{i}^{d_{i}}-c_{n} \frac{d_{n}}{a_{n}} t_{n}^{d_{n}}\right), \quad i=1, \ldots, n-1$;
(3.28) $H_{i}=E_{i} H(t), \quad i=1, \ldots, n-1$;
$D_{i}=E_{i}+H_{i}, \quad i=1, \ldots, n-1$
From now on we assume:

$$
\begin{equation*}
\text { g.c.d. }(p, M)=\text { g.d.c. }(p, D)=1, \tag{3.30}
\end{equation*}
$$

and we let

$$
\begin{equation*}
\varepsilon_{i}=c_{i} \frac{d_{i}}{a_{i}}, \quad i=1, \ldots, n \tag{3.31}
\end{equation*}
$$

Each ε_{i} is therefore a unit in \mathscr{O}_{0}.
Let $e=b-1 /(p-1)$: we have $\bar{H}_{i} \in L(b,-e)$ and $\bar{H}_{i} \in L_{m}(b,-e) \forall m$.
Also, if $b \leq p /(p-1), H_{i} \in L(b,-e)$ and $H_{i} \in L_{m}(b,-e) \forall m$.
b. Reduction.

Lemma 3.1. Let $\alpha \in \mathbb{N}^{n}, K=J(\alpha), \beta=\tau(\bar{\alpha}, K) ;$ then $t^{\alpha}=u(\alpha) t^{\beta}+$ $\gamma_{0}^{-1} \sum_{i=1}^{n-1} \bar{H}_{i} p_{i, \alpha}$, where $u(\alpha) \in \mathscr{\sigma}_{0}$ is a unit and, for each i, $p_{i, \alpha} \in$ $\mathscr{O}_{0}\left[t_{1}, \ldots, t_{n}\right]$.

Furthermore, $p_{i, \alpha}$ has unit coefficients and, if t^{δ} is any monomial of $p_{i, \alpha}$ having non-zero coefficient, then
(i) $J(\delta)=J(\alpha)-1$
(ii) $s(\delta) \geq s(\alpha)$.

Proof. If $\delta \in \mathbb{Z}^{n}$, we can write
$t^{\delta}=\varepsilon_{j} \varepsilon_{i}^{-1} t^{\alpha-d_{i} U_{i}+d_{j} U_{j}}+\gamma_{0}^{-1} \varepsilon_{i}^{-1}\left(\bar{H}_{i}-\bar{H}_{j}\right) t^{\alpha-d_{i} U_{t}}, \quad i, j=1, \ldots, n-1 ;$
$t^{\delta}=\varepsilon_{n} \varepsilon_{i}^{-1} t^{\alpha-d_{1} U_{1}+d_{n} U_{n}}+\gamma_{0}^{-1} \varepsilon_{i}^{-1} \bar{H}_{i} t^{\alpha-d_{l} U_{i}}, \quad i=1, \ldots, n-1$.
By assumption, there are integers $\lambda_{1}, \ldots, \lambda_{n}$ such that $\alpha=\beta+$ $\sum_{i=1}^{n} \lambda_{i} d_{i} U_{i}$, with $\sum_{i=1}^{n} \lambda_{i}=0$. The result follows immediately, except maybe for (ii): if $\alpha \neq \beta$, there is an index i such that $\lambda_{i}>0$; hence $\alpha_{i} \geq \beta_{i}+d_{i}$. Thus $\left(\alpha_{i}-d_{i}\right) / a_{i} \geq \beta_{i} / a_{i} \geq s(\beta)$ and $s(\beta) \geq s(\alpha)$ since $\beta \in \Delta$.

Lemma 3.2. Let $Y^{\gamma} t^{\alpha}$ be a monomial in \mathscr{R}_{m} and let $\widetilde{\alpha} \in \widetilde{\Delta}, \tau \in \mathbb{N}$, satisfying $\alpha \sim \widetilde{\alpha}+\tau a$ and $J(\alpha)=J(\widetilde{\alpha})+\tau N$. Then

$$
Y^{\gamma} t^{\alpha}=u(\alpha) Y^{\gamma+\tau m M} t^{\tilde{\alpha}}+\gamma_{0}^{-1} \sum_{i=1}^{n-1} \bar{H}_{i} *_{m} q_{i, \alpha, \gamma}
$$

where $u(\alpha) \in \mathscr{O}_{0}$ is a unit and, for each $i, q_{i, \alpha, \gamma} \in \mathscr{R}_{m}$. Furthermore, each $q_{i, \alpha, \gamma}$ has unit coefficients and, if $Y^{\delta} t^{\varepsilon}$ is a monomial of $q_{i, \alpha, \gamma}$ with non-zero coefficient, then $w_{m}(\varepsilon ; \delta)=w_{m}(\alpha ; \gamma)-1$.

Proof. Using Lemma 3.1 we can write:

$$
\begin{equation*}
Y^{\gamma} t^{\alpha}=u(\alpha) Y^{\gamma} t^{\beta}+\gamma_{0}^{-1} \sum_{i=1}^{n-1} \bar{H}_{i} p_{i, \alpha, \gamma} \tag{3.32}
\end{equation*}
$$

where β is the unique element of Δ such that $\beta \mathscr{R} \alpha$, and $p_{i, \alpha, \gamma}=Y^{\gamma} p_{i, \alpha}$. Let t^{δ} be a monomial of $p_{i, \alpha}$ with non-zero coefficient:

Lemma 3.2 (ii) $\Rightarrow \gamma \geq-m M s(\delta)$ so that $p_{i, \alpha, \gamma} \in A_{m}$ and equation (3.32) is valid in A_{m}.

Applying the map $\Phi_{m}: A_{m} \rightarrow \mathscr{R}_{m}$ to equation (3.32) we obtain the desired result with $q_{i, \alpha, \gamma}=\boldsymbol{\Phi}_{m}\left(p_{i, \alpha, \gamma}\right)$.

Let $V_{m}(b)$ be the $R_{m}(b)$-vector space generated by

$$
\left\{Y^{-m M s(\alpha)} t^{\alpha} \mid \alpha \in \widetilde{\Delta}\right\}
$$

and let $V_{m}(b, c)=V_{m}(b) \cap L_{m}(b, c)$.

Proposition 3.1.

$$
L_{m}(b, c)=V_{m}(b, c)+\sum_{i=1}^{n-1} \bar{H}_{i} * L_{m}(b, c+e) .
$$

Proof. Let $\xi=\sum_{(\alpha ; \gamma) \in E_{m}} A(\alpha ; \gamma) t^{\alpha} Y^{\gamma} \in L_{m}(b, c)$. We apply Lemma 3.2 to all the monomials in ξ.

If $\tilde{\alpha} \in \widetilde{\Delta}$ and $\nu \geq-m M s(\widetilde{\alpha})$ we let

$$
\begin{equation*}
B_{\widetilde{\alpha}}(\nu)=A(\alpha ; \gamma) u(\alpha), \tag{3.33}
\end{equation*}
$$

where $u(\alpha)$ has been defined in Lemma 3.2 and the sum is taken over the set
$E(\widetilde{\alpha}, \nu)=\left\{(\alpha ; \gamma) \in E_{m} \mid \nu=\mu m M+\gamma, \alpha \sim \widetilde{\alpha}+\mu a, J(\alpha)=J(\widetilde{\alpha})+\mu N\right\}$.
If $(\alpha, \gamma) \in E(\widetilde{\alpha}, \nu)$, then $w_{m}(\alpha ; \gamma)=w_{m}(\widetilde{\alpha} ; \nu)$; hence by (3.9) the sum (3.33) is finite and ord $B_{\widetilde{\alpha}}(\nu) \geq b w_{m}(\widetilde{\alpha} ; \nu)+c$.

Thus, for each $\widetilde{\alpha} \in \widetilde{\Delta}, B_{\widetilde{\alpha}}(Y) t^{\alpha}=\sum_{\nu \geq-m M s(\widetilde{\alpha})} B_{\widetilde{\alpha}}(\nu) Y^{\nu} t^{\widetilde{\alpha}}$ is an element of $V_{m}(b, c)$. On the other hand, let $\zeta_{i}=\gamma_{0}^{-1} \sum_{(\alpha ; \gamma) \in E_{m}} A(\alpha ; \gamma) q_{i, \alpha, \gamma}$ and write

$$
\begin{equation*}
\zeta_{i}=\sum_{(\beta, \nu) \in E_{m}} C_{i}(\beta ; \nu) t^{\beta} Y^{\nu}, \quad i=1, \ldots, n-1 . \tag{3.34}
\end{equation*}
$$

If $(\alpha ; \gamma) \in E_{m}$ we can write $q_{i, \alpha, \gamma}=\sum D_{i, \alpha, \gamma}(\varepsilon ; \delta) t^{\varepsilon} Y^{\delta}$, the sum being taken over all $(\varepsilon ; \delta) \in E_{m}$ such that $w_{m}(\varepsilon ; \delta)=w_{m}(\alpha ; \gamma)-1$. Thus

$$
\begin{equation*}
C_{i}(\beta, \nu)=\gamma_{0}^{-1} \sum D_{i, \alpha, \gamma}(\beta, \nu) A(\alpha ; \gamma), \tag{3.35}
\end{equation*}
$$

the sum being over the set $\left\{(\alpha ; \gamma) \in E_{m} \mid w_{m}(\alpha ; \gamma)=w_{m}(\beta ; \nu)+1\right\}$. This set is finite and

$$
\operatorname{ord} C_{i}(\beta ; \nu) \geq b\left[w_{m}(\beta ; \nu)+1\right]+c-\frac{1}{p-1}=b w_{m}(\beta ; \nu)+c+e .
$$

Hence the sum (3.34) is meaningful, $\zeta_{i} \in L_{m}(b, c+e)$, and we can write

$$
\begin{equation*}
\xi=\sum_{\alpha \in \widetilde{\Delta}} B_{\widetilde{\alpha}}(Y) t^{\tilde{\alpha}}+\sum_{i=1}^{n=1} \bar{H}_{i} * \zeta_{i} . \tag{3.36}
\end{equation*}
$$

c.

Proposition 3.2. $V_{m}(b) \cap \sum_{i=1}^{n-1} \bar{H}_{i} * L_{m}(b)=(0)$.

Proof. Let $v \in V_{m}(b)$. For $W \in \mathbb{Q}$ we let $v^{(W)}$ be the component of v which is of homogeneous weight W : we can write $v^{(W)}=$ $\sum_{\alpha \in \widetilde{\Delta}} P_{\alpha}(Y) t^{\alpha}$, where each $P_{\alpha}(Y)$ is a Laurent polynomial in Y.

Let $l: \widetilde{\Delta} \rightarrow \bar{\Delta}$ be the map described in the proof of Lemma 2.4. Let $Z=Y^{m M}$ and, for $\alpha \in \widetilde{\Delta}$ let $\beta=l(\alpha)=\alpha-\tau a(\tau \in \mathbb{N})$:

$$
t^{\alpha}=Z^{\tau} t^{\beta}+\left(t^{a}-Z\right)\left(t^{\alpha-a}+Z t^{\alpha-2 a}+\cdots+Z^{\tau-1} t^{\alpha-\tau a}\right) .
$$

Hence we can write:

$$
v^{(W)}=\sum_{\beta \in \bar{\Delta}} Q_{\beta}(Y) t^{\beta}+\left(t^{a}-Z\right) \sum_{\beta \in \bar{\Delta}} R_{\beta}(t, Y),
$$

where for each $\beta, Q_{\beta}(Y)$ is a Laurent polynomial in Y and $R_{\beta}(t, Y)$ is a Laurent polynomial in Y, t_{1}, \ldots, t_{n}. Furthermore:
(i) if $y \in \Omega^{\times}$and $\alpha \in \widetilde{\Delta}$, then $P_{\alpha}(y)=0 \Leftrightarrow Q_{l(\alpha)}(y)=0$;
(ii) if $Y^{\gamma} t^{\delta}$ is any monomial in $R_{\beta}(t, Y)$ with non-zero coefficient, then $J(\delta) \geq 0$.
Suppose $v \in \sum_{l=1}^{n-1} \bar{H}_{i} * L_{m}(b)$: we can write

$$
v^{(W)}=\sum_{i=1}^{n-1} \bar{H}_{i} * \zeta_{i},
$$

where, for each $i, \zeta_{i} \in \Omega_{0}\left[Y, \frac{1}{Y}, t_{1}, \ldots, t_{n}\right]$ and is of homogeneous weight $W-1$.

Let $\alpha, \beta \in E$ and suppose $\alpha+\beta=\delta+\tau a$, with $\delta \in E$ and $\tau \in \mathbb{N}$: $t^{\alpha} *_{m} t^{\beta}=t^{\alpha+\beta}-\left(t^{\alpha+\beta-a}+Z t^{\alpha+\beta-2 a}+\cdots+Z^{\tau-1} t^{\alpha+\beta-\tau a}\right)\left(t^{a}-Z\right)$. Hence we can write

$$
\bar{H}_{i} * \zeta_{i}=\bar{H}_{i} \zeta_{i}+\eta_{i}\left(t^{a}-Z\right), \quad \text { with } \eta_{i} \in \Omega_{0}\left[Y, \frac{1}{Y}, t_{1}, \ldots, t_{n}\right] .
$$

For each $i=1, \ldots, n$, fix $\xi_{i} \in \Omega$ with $\xi_{i}^{d_{i}}=\varepsilon_{n} \varepsilon_{i}^{-1}$ and let $\mu_{d_{1}}$ be the group of d_{i}-th roots of unity in Ω.

Let $s_{i}=\prod_{j \neq i} d_{j}, s=\prod_{j=1}^{n} d_{j}$. Let $\hat{v}(Y, t)=\sum_{\beta \in \bar{\Delta}} Q_{\beta}(Y) t^{\beta}$ and suppose $v^{(W)} \neq 0$: there exists $\alpha \in \widetilde{\Delta}$ such that $P_{\alpha}(Y) \neq 0$; hence there exists $\beta=l(\alpha) \in \bar{\Delta}$ such that $Q_{\beta}(Y) \neq 0$. For such a fixed β let $\bar{\Delta}(\beta)=\{\gamma \in \bar{\Delta} \mid J(\gamma)=J(\beta)\}$ and let $y \in \Omega^{\times}$such that $Q_{\beta}(y) \neq 0$.

We claim that there exists $\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \prod_{i=1}^{n} \mu_{d_{i}}$ such that

$$
\begin{equation*}
\hat{v}\left(y, u_{1}, \ldots, u_{n}\right) \neq 0 \tag{3.37}
\end{equation*}
$$

where $u_{i}=\xi_{i} \zeta_{i} t_{n}^{s_{1}}, i=1, \ldots, n$.

Indeed, the coefficient of $t_{n}^{s J(\beta)}$ in (3.37) is

$$
\sum_{\gamma \in \bar{\Delta}(\beta)} Q_{\gamma}(y) \xi_{1}^{\gamma_{1}} \ldots \xi_{n}^{\gamma_{n}} \zeta_{1}^{\gamma_{1}} \ldots \zeta_{n}^{\gamma_{n}}
$$

For each $\gamma=\left(\gamma_{1}, \ldots, \gamma_{n}\right) \in \bar{\Delta}(\beta), \chi_{\gamma}:\left(\zeta_{1}, \ldots, \zeta_{n}\right) \mapsto \zeta_{1}^{\gamma_{1}} \ldots \zeta_{n}^{\gamma_{n}}$ is a character of $\prod_{i=1}^{n} \mu_{d_{i}}$.

The elements of $\bar{\Delta}(\beta)$ all belong to distinct congruence classes, so these characters are all distinct, and therefore linearly independent. Our claim follows since $Q_{\beta}(y) \neq 0$.

Let now

$$
\begin{gathered}
S(Y ; t)=\sum_{i=1}^{n} \eta_{i}-\sum_{\delta \in \bar{\Delta}} R_{\delta}(Y ; t) \\
u=\prod_{i=1}^{n}\left(\xi_{i} \zeta_{i}\right)^{a_{i}} \quad \text { and } \quad A=\sum_{i=1}^{n} a_{i} r_{i}=N \prod_{i=1}^{n} d_{i} .
\end{gathered}
$$

We have:

$$
\begin{equation*}
\hat{v}\left(y ; u_{1}, \ldots, u_{n}\right)=\left(u t_{n}^{A}-y^{m M}\right) S\left(y ; u_{1}, \ldots, u_{n}\right) \tag{3.38}
\end{equation*}
$$

The left-hand side of (3.38) is a non-zero polynomial in t_{n}, of degree less than A, while the right-hand side vanishes for any choice of t_{n} satisfying $t_{n}^{A}=u^{-1} y^{m M}$, a contradiction. Hence $v^{(W)}=0$.

Lemma 3.3. Let K be a field of arbitrary characteristic, u_{1}, \ldots, u_{n} elements of $K^{\times}, \nu_{1}, \ldots, \nu_{n}, \lambda$ positive integers; let

$$
B=K\left[t_{1}, \ldots, t_{n}, Y, Y^{-1} t^{a}\right], \quad f=\left(Y^{-1} t^{a}\right)^{\lambda}-1
$$

$\bar{B}=B /(f), h_{i}=u_{i} t_{i}^{\nu_{1}}-u_{n} t_{n}^{\nu_{n}}(i=1, \ldots, n-1) ;$ then the family $\left\{h_{i}\right\}_{i=1}^{n-1}$ in any order forms a regular sequence on \bar{B}.

Proof. Let $I \subsetneq\{1, \ldots, n-1\}$ and let \mathfrak{A}_{I} be the ideal of \bar{B} generated by $\left\{h_{i}\right\}_{i \in I}$. We must show that $\left(\mathfrak{A}_{I}: h_{k}\right)=\mathfrak{A}_{I}$ for any $k \notin I$. By relabelling we may assume that $I=\{1, \ldots, j\}$, with $j<n-1$, and that $k=j+1$. Accordingly, we write \mathfrak{A}_{j} instead of \mathfrak{A}_{I}. Let $B_{1}=K\left[t_{1}, \ldots, t_{n}, Y, Z\right]$ and $\bar{B}_{1}=B_{1} /\left(Z^{\lambda}-1, Y Z-t^{a}\right)$.

The mapping $Z \mapsto Y^{-1} t^{a}$ induces a ring isomorphism from \bar{B}_{1} into \bar{B}. Thus, if \mathfrak{B}_{j} is the ideal of B_{1} generated by $\left\{h_{1}, \ldots, h_{j}, Z-1\right.$, $\left.Y Z-t^{a}\right\}$, we must show that $\left(\mathfrak{B}_{j}: h_{j+1}\right)=\mathfrak{B}_{j}$, or equivalently that h_{j+1} does not belong to any associated prime of \mathfrak{B}_{j}. Since \mathfrak{B}_{j} has $j+2$ generators, its dimension is at least $n-j$. On the other hand,
the ring B_{1} / \mathfrak{B}_{j} is integral over $K\left[t_{j+1}, \ldots, t_{n}\right]$ (note that $Y^{\lambda}-t^{\lambda a}=0$ in B_{1} / \mathfrak{B}_{j}). Hence $\operatorname{dim} \mathfrak{B}_{j}=n-j$. By Macaulay's theorem [16, Ch. VII, §8], \mathfrak{B}_{j} is unmixed. Likewise, $\mathfrak{B}_{j+1}=\left(\mathfrak{B}_{j}, h_{j+1}\right)$ is unmixed, of dimension $n-j-1$. Let \mathfrak{p} be an associated prime of \mathfrak{B}_{j} and suppose that $h_{j+1} \in \mathfrak{p}: \mathfrak{p} \supset\left(\mathfrak{B}_{j}, h_{j+1}\right)=\mathfrak{B}_{j+1}$; hence $\operatorname{dim} \mathfrak{p} \leq n-j-1$, a contradiction since $\operatorname{dimp}=n-j$.

Let

$$
\begin{gather*}
R=\Omega_{0}\left[t_{1}, \ldots, t_{n}, Y, Y^{-1} t^{a}\right] \tag{3.39}\\
f^{(m)}=\left(Y^{-1} t^{a}\right)^{m M}-1 \tag{3.40}\\
\bar{R}^{(m)}=R / f\left({ }^{(m)}\right) \tag{3.41}\\
h_{i}^{(m)}=\varepsilon_{i} t_{i}^{m M d_{i}}-\varepsilon_{n} t_{n}^{m M d_{n}}, \quad i=1, \ldots, n-1 . \tag{3.42}
\end{gather*}
$$

For any monomial $t^{\alpha} Y^{\gamma}$ we set:

$$
\begin{equation*}
\widetilde{w}_{m}(\alpha ; \gamma)=\widetilde{w}_{m}\left(t^{\alpha} Y^{\gamma}\right)=\frac{1}{m M}(J(\alpha)+N \gamma) . \tag{3.43}
\end{equation*}
$$

\widetilde{w}_{m} makes $\bar{R}^{(m)}$ into a graded ring, and each $h_{i}^{(m)}$ is homogeneous of weight 1.

Lemma 3.4. Let I be a non-empty subset of $\{1, \ldots, n-1\}$ and let $\left\{P_{i}\right\}_{i \in I}$ be a family of elements of $\bar{R}^{(m)}$ such that $\sum_{i \in I} P_{i} h_{i}^{(m)}=0$. Then there exists a skew-symmetric set $\left\{\eta_{i, j}\right\}_{i, j \in I}$ such that $P_{i}=\sum_{j \in I} \eta_{i, j} h_{j}^{(m)}$ for each $i \in I$. Furthermore, if each P_{i} is of homogeneous weight $\widetilde{w}_{m}\left(P_{i}\right)=W$ independent of i :
(a) if $W \geq 1$, each $\eta_{i, j}$ may be chosen of homogeneous weight $\widetilde{w}_{m}\left(\eta_{i, j}\right)=W-1$ with $\operatorname{Min}_{j \in I}\left\{\operatorname{ord} \eta_{i, j}\right\} \geq$ ord P_{i} for all $i \in I$;
(b) if $W<1$ then $P_{i}=0$ for all $i \in I$ (i.e. each $\eta_{i, j}$ may be chosen to be zero).

Proof. To simplify notation, we write h_{i} instead of $h_{i}^{(m)}$. We proceed by induction on the number of elements in I. By relabelling, we may assume that $I=\{1, \ldots, r+1\}, r \geq 0$. If $r=0$, then $P_{i}=0$ and hence we can assume $r \geq 1$. Let \mathfrak{A}_{r} be the ideal of $\bar{R}^{(m)}$ generated by $\left\{h_{i}\right\}_{i=1}^{r}$; by Lemma 3.3, $\left(\mathfrak{A}_{r}: h_{r+1}\right)=\mathfrak{A}_{r}$; hence $P_{r+1} \in \mathfrak{A}_{r}$. Thus there exist $y_{1}, \ldots, y_{r} \in \bar{R}^{(m)}$ such that

$$
\begin{equation*}
P_{r+1}=\sum_{i=1}^{r} y_{i} h_{i} . \tag{3.44}
\end{equation*}
$$

Now

$$
\begin{aligned}
\sum_{i=1}^{r}\left(P_{i}+y_{i} h_{r+1}\right) h_{i} & =\sum_{i=1}^{r} P_{i} h_{i}+\left(\sum_{i=1}^{r} y_{i} h_{i}\right) h_{r+1} \\
& =\sum_{i=1}^{r+1} P_{i} h_{i}=0
\end{aligned}
$$

By induction hypothesis, there exists a skew-symmetric set $\left\{\eta_{i, j}\right\}_{i, j=1}^{r}$ such that $P_{i}+y_{i} h_{r+1}=\sum_{i=1}^{r} \eta_{i, j} h_{j}$ for $i=1, \ldots, r$.

We can now set $\eta_{r+1, i}=y_{i}$ and $\eta_{i, r+1}=-y_{i}, i=1, \ldots, r$ and the first assertion follows.

If each P_{i} is of homogeneous weight $W \geq 1$, in (3.44) we can choose each y_{i} to be of homogeneous weight $W-1$. If $W<1$, since $\widetilde{w}_{m}\left(h_{i}\right)=1$ both sides of equation (3.44) must be zero and the induction hypothesis shows that each $P_{i}=0, i=1, \ldots, r+1$.

For the estimate on ord $\eta_{i, j}$ we refer the reader to [7, Lemma 3.1] where a similar result is proved.

The argument of Lemmas 3.5 and 3.6 is due to S. Sperber and can be used to close a gap in the proof of directness of sum in [15, Theorem 3.9].

Lemma 3.5. Let $T_{m}=\left\{(\alpha ; \gamma) \in(m M \mathbb{Z})^{n} \times \mathbb{Z} \mid t^{\alpha} Y^{\gamma} \in R\right\} ;$ then the mapping $(\alpha ; \gamma) \mapsto(m M \alpha ; \gamma)$ establishes a bijection between S_{m} and T_{m}. In particular, $t_{i} \mapsto t_{i}^{m M}(i=1, \ldots, n)$ maps A_{m} into a subring of R and \bar{A}_{m} into a subring of $\bar{R}^{(m)}$.

Proof. Let $(\alpha ; \gamma) \in S_{m}$ and let $\beta=m M \alpha$:

$$
t^{\beta} Y^{\gamma}=\left(Y^{-1} t^{a}\right)^{s(\beta)} Y^{\gamma+s(\beta)} t^{\beta-s(\beta) a}
$$

$s(\beta)=m M s(\alpha)$ is an integer and, by assumption, $\gamma \geq-m M s(\alpha)$ and $\alpha_{i} \geq s(\alpha) a_{i}$ for all i. Hence $\gamma+s(\beta) \geq 0, \beta_{i}-s(\beta) a_{i} \geq 0 \forall i$ and $t^{\beta} Y^{\gamma} \in R$.

Conversely, if $t^{\delta} Y^{\gamma}$ is a monomial in R, then $\gamma \geq-s(\delta)$: this is clearly true of the generators of R and, for any $\delta, \varepsilon \in \mathbb{Z}^{n}, s(\delta+\varepsilon) \geq$ $s(\delta)+s(\varepsilon)$. Thus, if $(\beta ; \gamma) \in T_{m}$, with $\beta=m M \alpha$, then $(\alpha ; \gamma) \in S_{m}$.

Lemma 3.6. Let I be a non-empty subset of $\{1, \ldots, n-1\}$; then the family $\left\{\bar{H}_{i}\right\}_{i \in I}$ in any order forms a regular sequence in \mathscr{R}_{m}. More precisely, if $\left\{P_{i}(t, Y)\right\}_{i \in I}$ is a set of non-zero elements of \mathscr{R}_{m}, of homogeneous weight $w_{m}\left(P_{i}\right)=W$ independent of i, and such that
$\sum_{i \in I} \bar{H}_{i} * P_{i}=0$, then there exists a skew-symmetric set $\left\{\xi_{i, j}\right\}_{i, j \in I}$ of elements of \mathscr{R}_{m} such that
(i) $P_{i}(t, Y)=\sum_{j \in I} \bar{H}_{j} * \xi_{i, j}$;
(ii) each $\xi_{i, j}$ has homogeneous weight $w_{m}\left(\xi_{i, j}\right)=W-1$ for all $(i, j) \in I \times I$;
(iii) $\operatorname{Min}_{j \in I}\left\{\operatorname{ord} \xi_{i, j}\right\} \geq \operatorname{ord} P_{i}-1 /(p-1)$ for all $i \in I$.

Proof. Assume that

$$
\begin{equation*}
\sum_{i \in I} \bar{H}_{i} * P_{i}(t, Y)=0 . \tag{3.45}
\end{equation*}
$$

Applying $\bar{\Phi}_{m}^{-1}$ to equation (3.45) we obtain the following equation in \bar{A}_{m} :

$$
\begin{equation*}
\sum_{i \in I} \bar{H}_{i} P_{i}(t, Y)=0 . \tag{3.46}
\end{equation*}
$$

Replacing t_{i} by $t_{i}^{m M}(i=1, \ldots, n)$, and multiplying by γ_{0}^{-1}, we get

$$
\begin{equation*}
\sum_{i \in I} h_{i}^{(m)} P_{i}\left(t^{m M}, Y\right)=0 . \tag{3.47}
\end{equation*}
$$

Let $Q_{i}(t, Y)=P_{i}\left(t^{m M}, Y\right)$; by Lemma 3.5, $Q_{i}(t, Y) \in \bar{R}_{m}$ and, if $t^{\alpha} Y^{\gamma}$ is any monomial in $Q_{i}(t, Y)$ with non-zero coefficient, then $\widetilde{w}_{m}(\alpha ; \gamma)=W$. Lemma 3.4 implies the existence of a skew-symmetric set $\left\{\eta_{i, j}\right\}_{i, j \in I}$ of elements of \bar{R}_{m} such that $Q_{i}(t, Y)=\sum_{j \in I} \eta_{i, j} h_{j}^{(m)}$ for each $i \in I$, with $\widetilde{w}_{m}\left(\eta_{i, j}\right)=W-1$ and ord $\eta_{i, j} \geq$ ord P_{i} for all i, j.

If $t^{\alpha} Y^{\gamma}$ is any monomial in $Q_{i}(t, Y)$ with non-zero coefficient then $(\alpha ; \gamma) \in T_{m}$. The same is true of each $h_{i}^{(m)}$. Hence we may choose the elements $\eta_{i, j}$ so that $\eta_{i, j}=\xi_{i, j}^{\prime}\left(t^{m M}, Y\right)$:

$$
\begin{equation*}
P_{i}\left(t^{m M}, Y\right)=\sum_{j \in I} \xi_{i, j}^{\prime}\left(t^{m M}, Y\right) h_{j}^{(m)} . \tag{3.48}
\end{equation*}
$$

Therefore, letting $\xi_{i, j}(t, Y)=\gamma_{0}^{-1} \xi_{i, j}^{\prime}(t, Y)$:

$$
\begin{equation*}
P_{i}(t, Y)=\sum_{j \in I} \xi_{i, j}(t, Y) \bar{H}_{j} . \tag{3.49}
\end{equation*}
$$

Equation (3.49) is now valid in \bar{A}_{m} and, for any monomial $t^{\alpha} Y^{\gamma}$ in $\xi_{i, j}(t, Y)$ with non-zero coefficient, $w_{m}(\alpha ; \gamma)=\widetilde{w}_{m}(m M \alpha ; \gamma)=W-1$. Applying $\bar{\Phi}_{m}$ to equation (3.49) yields the result.

Using the results already attained in this section, Lemmas 3.7 and 3.8 and Theorems 3.1, 3.2, and 3.3 can be obtained with a slight reworking of the arguments in [7, §3]. We shall therefore omit the proofs.

Lemma 3.7 (see [7, Lemma 3.4]). If $b \leq p /(p-1)$, then

$$
L_{m}(b, c)=V_{m}(b, c)+\sum_{i=1}^{n-1} H_{i} * L_{m}(b, c+e) .
$$

Lemma 3.8 (see [7, Lemma 3.5]). If $b \leq p /(p-1)$, then

$$
V_{m}(b) \cap \sum_{i=1}^{n-1} H_{i} * L_{m}(b)=(0) .
$$

Theorem 3.1 (see [7, Lemma 3.6]). If $1 /(p-1) \leq b \leq p /(p-1)$, then

$$
L_{m}(b, c)=V_{m}(b, c)+\sum_{i=1}^{n-1} D_{i} * L_{m}(b, c+e) .
$$

Theorem 3.2 (see [7, Lemma 3.10]). Let I be a non-empty subset of $\{1, \ldots, n-1\}$ and assume that $1 /(p-1)<b \leq p /(p-1)$; if $\left\{\xi_{i}\right\}_{i \in I}$ is a set of elements of $L_{m}(b, c)$ such that $\sum_{i \in I} D_{i} * \xi_{i}=0$, then there exists a skew-symmetric set $\left\{\eta_{i, j}\right\}_{i, j \in I}$ in $L_{m}(b, c+e)$ such that $\xi_{i}=$ $\sum_{j \in I} D_{j} * \eta_{i, j}$ for all $i \in I$. In particular, the family $\left\{D_{i}\right\}_{i=1}^{n-1}$ in any order forms a regular sequence on the $R_{m}(b)$-module $L_{m}(b, c)$.

Theorem 3.3 (see [7, Lemma 3.11]). If $1 /(p-1)<b \leq p /(p-1)$, then

$$
V_{m}(b) \cap \sum_{i=1}^{n-1} D_{i} * L_{m}(b)=(0)
$$

d. A Comparison Theorem.

We now undertake to compare reduction modulo

$$
\sum_{i=1}^{n-1} H_{i} * L_{m}(b, c+e) \quad\left(\text { respectively } \sum_{i=1}^{n-1} D_{i} * L_{m}(b, c+e)\right)
$$

with reduction modulo $\sum_{i=1}^{n-1} \bar{H}_{i} * L_{m}(b, c+e)$ studied in $\S 2$.

Fix $\xi \in L_{m}(b, c)$. Using Theorem 3.1, Lemma 3.8, and Proposition 3.1 we write:

$$
\begin{array}{ll}
\xi=v+\sum_{i=1}^{n-1} D_{i} * \zeta_{i}, & v \in V_{m}(b, c), \zeta_{i} \in L_{m}(b, c+e) ; \\
\xi=\widetilde{v}+\sum_{i=1}^{n-1} H_{i} * \widetilde{\zeta}_{i}, & \widetilde{v} \in V_{m}(b, c), \widetilde{\zeta}_{i} \in L_{m}(b, c+e) ; \\
\xi=\bar{v}+\sum_{i=1}^{n-1} \bar{H}_{i} * \bar{\zeta}_{i}, & \bar{v} \in V_{m}(b, c), \bar{\zeta}_{i} \in L_{m}(b, c+e) . \tag{3.52}
\end{array}
$$

Lemma 3.9. Let $\xi, v, \zeta_{1}, \ldots, \zeta_{n-1}$ be as in (3.50); then in (3.51) \widetilde{v} satisfies $v-\widetilde{v} \in V_{m}(b, c+e)$ and each $\widetilde{\zeta}_{i}$ can be chosen so that $\zeta_{i}-\widetilde{\zeta}_{i} \in$ $L_{m}(b, c+2 e)$.

Proof.

$$
\sum_{i=1}^{n-1} D_{i} * \zeta_{i}-\sum_{i=1}^{n-1} H_{i} * \zeta_{i}=\sum_{i=1}^{n-1} E_{i} \zeta_{i} \in L_{m}(b, c+e) .
$$

By Lemma 3.8, there exist $v^{\prime} \in V_{m}(b, c+e)$ and $\zeta_{i}^{\prime} \in L_{m}(b, c+2 e)$, $i=1, \ldots, n-1$, such that

$$
\sum_{i=1}^{n-1} E_{i} \zeta_{i}=v^{\prime}+\sum_{i=1}^{n-1} H_{i} * \zeta_{i}^{\prime}
$$

Hence

$$
\xi=v+v^{\prime}+\sum_{i=1}^{n-1} H_{i} *\left(\zeta_{i}+\zeta_{i}^{\prime}\right)
$$

and we may set $\widetilde{v}=v+v^{\prime}, \widetilde{\zeta}_{i}=\zeta_{i}+\zeta_{i}^{\prime}, i=1, \ldots, n-1$.
In the rest of this section we fix $b=1 /(p-1)$ (so $e=1$).
Lemma 3.10. For each $i \in\{1, \ldots, n-1\}$ there exist

$$
\Gamma_{i} \in L_{m}(p /(p-1), 0) \quad \text { and } \quad G_{i} \in L_{m}(p /(p-1), 0)
$$

such that $H_{i}=\bar{H}_{i} * G_{i}+\Gamma_{i}$. Furthermore, G_{i} is invertible and $G_{i}^{-1} \in$ $L_{m}(p /(p-1), 0)$.

Proof. By definition,

$$
H_{i}=\sum_{l=0}^{\infty} p^{l} \gamma_{l}\left(c_{i}^{p^{\prime}} \frac{d_{i}}{a_{i}} t_{i}^{p^{\prime} d_{l}}-c_{n}^{p^{\prime}} \frac{d_{n}}{a_{n}} t_{n}^{p^{\prime} d_{n}}\right)
$$

(recall that $c_{i}^{q}=c_{i}$, and therefore $c_{i}^{\tau}=c_{i}^{p}$).

Let

$$
\Gamma_{i}=\sum_{l=0}^{\infty} p^{l} \gamma_{l}\left[\frac{d_{i}}{a_{i}}-\left(\frac{d_{i}}{a_{i}}\right) p^{l}\right] c_{i}^{p^{\prime}} t_{i}^{p^{\prime} d_{i}}-\sum_{l=0}^{\infty} p^{l} \gamma_{l}\left[\frac{d_{n}}{a_{n}}-\left(\frac{d_{n}}{a_{n}}\right)^{p^{\prime}}\right] c_{n}^{p^{\prime}} t_{n}^{p^{\prime} d_{n}}
$$

Then

$$
H_{i}=\sum_{l=0}^{\infty} p^{l} \gamma_{l}\left[\left(\varepsilon_{i} t_{i}^{d_{l}}\right)^{p^{\prime}}-\left(\varepsilon_{n} t_{n}^{d_{n}}\right)^{p^{l}}\right]+\Gamma_{i}
$$

If we set

$$
G_{i}=1+\sum_{l=1}^{\infty} \gamma_{0}^{-1} \gamma_{l} p^{l} \sum_{j=0}^{p^{\prime}-1}\left(\varepsilon_{i} t_{i}^{d_{i}}\right)^{j}\left(\varepsilon_{n} t_{n}^{d_{n}}\right)^{p^{l}-j-1}
$$

then formally: $H_{i}=\bar{H}_{i} G_{i}+\Gamma_{i}$.
Since $d_{k} / a_{k} \in \mathbb{Q}$ and $(p, M)=1$ we have

$$
\operatorname{ord}\left[\frac{d_{k}}{a_{k}}-\left(\frac{d_{k}}{a_{k}}\right)^{p^{\prime}}\right] \geq 1 \quad \text { for all } k=1, \ldots, n
$$

Hence both Γ_{i} and G_{i} are elements of $L(p /(p-1), 0) . G_{i}$ is of the form $G_{i}=1-\sum_{\alpha_{i} \geq 0} C_{\alpha} t^{\alpha}$; such a series is invertible in $L(p /(p-1), 0)$, with inverse $G_{i}^{-1}=1+\sum_{j=0}^{\infty}\left(\sum_{\alpha_{i} \geq 0} C_{\alpha} t^{\alpha}\right)^{j}$.

Now apply $\Phi_{m}: L(p /(p-1)) \rightarrow L_{m}(p /(p-1))$.
Lemma 3.11. Let $\xi, \widetilde{v}, \widetilde{\zeta}_{1}, \ldots, \widetilde{\zeta}_{n-1}$ be as in (3.51); then in (3.52) \bar{v} satisfies $\widetilde{v}-\bar{v} \in V_{m}(p /(p-1), c+1)$ and each $\bar{\zeta}_{i}$ can be chosen so that

$$
\widetilde{\zeta}_{i}-G_{i} * \bar{\zeta}_{i} \in L_{m}\left(\frac{p}{p-1}, c+2\right)
$$

Proof. We construct a sequence $\left(\xi^{(\nu)}, v^{(\nu)}, \zeta_{1}^{(\nu)}, \ldots, \zeta_{n-1}^{(\nu)}\right)_{\nu \in \mathbb{N}}$ with

$$
\begin{gathered}
\xi^{(\nu)} \in L_{m}\left(\frac{p}{p-1}, c+\nu\right), \quad v^{(\nu)} \in V_{m}\left(\frac{p}{p-1}, c+\nu\right) \\
\zeta_{i}^{(\nu)} \in L_{m}\left(\frac{p}{p-1}, c+\nu+1\right)
\end{gathered}
$$

by letting $\xi^{(0)}=\xi, v^{(0)}=\widetilde{v}, \zeta_{i}^{(0)}=\widetilde{\zeta}_{i}$ and the following recursion. Given $\xi^{(\nu)} \in L_{m}(p /(p-1), c+\nu)$ we can write, using Lemma 3.8:

$$
\begin{aligned}
& \xi^{(\nu)}=v^{(\nu)}+ \sum_{i=1}^{n-1} H_{i} * \zeta_{i}^{(\nu)}, \quad v^{(\nu)} \in L_{m}\left(\frac{p}{p-1}, c+\nu\right) \\
& \zeta_{i}^{(\nu)} \in L_{m}\left(\frac{p}{p-1}, c+\nu+1\right)
\end{aligned}
$$

By Lemma 3.10,

$$
\begin{gather*}
\xi^{(\nu)}=v^{(\nu)}+\sum_{i=1}^{n-1} \bar{H}_{i} * G_{i} * \zeta_{i}^{(\nu)}+\xi^{(\nu+1)}, \quad \text { with } \tag{3.53}\\
\xi^{(\nu+1)}=\Gamma_{i} * \zeta_{i}^{(\nu)} \in L_{m}\left(\frac{p}{p-1}, c+\nu+1\right) .
\end{gather*}
$$

Let $s \in \mathbb{N}$. Writing equation (3.53) for $0 \leq \nu \leq s$ and adding yields, after cancellations:

$$
\xi=\sum_{\nu=0}^{s} v^{(\nu)}+\sum_{i=1}^{n-1} \bar{H}_{i} * \sum_{\nu=0}^{s} G_{i} * \zeta_{i}^{(\nu)}+\xi^{(s+1)} .
$$

Letting $s \rightarrow \infty, \sum_{\nu=0}^{s} v^{(\nu)}$ converges to $\bar{v} \in V_{m}(p /(p-1), c)$, $\sum_{\nu=0}^{s} \zeta_{i}^{(\nu)}$ converges to $\bar{\zeta}_{i} \in L_{m}(p /(p-1), c+1)$ and $\xi^{(s+1)}$ converges to zero.

Theorem 3.4. Let $\xi \in L_{m}(p /(p-1), c)$; if we express ξ in the form $\xi=\bar{v}+\sum_{i=1}^{n-1} \bar{H}_{i} * \bar{\zeta}_{i}$ on the one hand, with $\bar{v} \in V_{m}(p /(p-1), c), \bar{\zeta}_{i} \in$ $L_{m}(p /(p-1), c+1)$ and if we express ξ in the form $\xi=v+\sum_{i=1}^{n-1} D_{i} * \zeta_{i}$ on the other hand, with $v \in V_{m}(p /(p-1), c), \zeta_{i} \in L_{m}(p /(p-1), c+1)$, then $v-\bar{v} \in V_{m}(p /(p-1), c+1)$ and ζ_{i} and $\bar{\zeta}_{i}$ may be chosen so that $\zeta_{i}-G_{i} * \bar{\zeta}_{i} \in L_{m}(p /(p-1), c+2)$ for all i.

Proof. This is a consequence of Lemmas 3.9 and 3.11.
4. Specialization. In order to obtain estimates for the exponential sum (0.4), we need to specialize the spaces $L_{m}(b, c)$ by setting $Y=y$ for some $y \in \Omega^{\times}$. We first observe that elements of $L_{m}(b, c)$ are convergent for ord $t_{i}>-b / d_{i}$ and ord $Y>-N b / m M$. Furthermore, if we fix $Y=y$ with ord $y>-N b / m M$, the resulting series in t_{1}, \ldots, t_{n} are convergent for t_{i} satisfying ord $t_{i} \geq\left(m M / d_{i} N\right)$ ord y.

Throughout this section, we assume that $(p, M)=1=(p, D)$ and $1 /(p-1)<b \leq p /(p-1)$.

For $\alpha \in \mathbb{Z}^{n}$ we let

$$
\begin{equation*}
w(\alpha)=J(\alpha)-N s(\alpha) . \tag{4.1}
\end{equation*}
$$

For $x \in \Omega_{0}^{\times}$, let

$$
\begin{align*}
& L(x ; b, c)=\left\{\xi=\sum_{\alpha \in E} A(\alpha) t^{\alpha} \mid A(\alpha) \in \Omega_{0}\right. \tag{4.2}\\
&\quad \operatorname{ord} A(\alpha) \geq b w(\alpha)-s(\alpha) \cdot \operatorname{ord} x+c\}
\end{align*}
$$

$$
\begin{gather*}
L(x ; b)=\bigcup_{c \in \mathbb{R}} L(x, b, c) ; \tag{4.3}\\
V=\Omega_{0} \text {-span of }\left\{t^{\alpha} \mid \alpha \in \tilde{\Delta}\right\} ; \tag{4.4}\\
V(x ; b, c)=V \cap L(x, b, c) . \tag{4.5}
\end{gather*}
$$

$L(x ; b)$ is a Banach space with the norm

$$
\begin{equation*}
\|\xi\|_{x}=\operatorname{Sup}_{\alpha \in E} p^{-c_{a}}, \quad c_{\alpha}=\operatorname{ord} A(\alpha)-b w(\alpha)+s(\alpha) \operatorname{ord} x . \tag{4.6}
\end{equation*}
$$

We equip $L(x ; b, c)$ with an Ω_{0}-algebra structure in the following way: if $\alpha, \beta \in E$, there exist $\delta \in E, \lambda \in \mathbb{N}$ unique such that $\alpha+\beta=$ $\delta+\lambda a$ and we set:

$$
\begin{equation*}
t^{\alpha} * t^{\beta}=x^{\lambda} t^{\delta} \tag{4.7}
\end{equation*}
$$

If $\eta=\sum_{\alpha \in E} B(\alpha) t^{\alpha}$ is an element of $L\left(x ; b, c^{\prime}\right)$, then $\xi \mapsto \eta * \xi$ is a continuous mapping from $L(x ; b, c)$ into $L\left(x ; b, c+c^{\prime}\right)$. Note that \bar{H}_{i} and H_{i} (as defined in (3.27) and (3.28) respectively) can be viewed as elements of $L(x ; b, 0)$ and that \bar{H}_{i}, H_{i}, and D_{i} act continuously on $L(x ; b, c)$ for any $c \in \mathbb{R}$. Given $x \in \Omega_{0}^{\times}$, ord $x^{m}>-N b$, we fix $y \in \Omega^{\times}$ with $y^{M}=x$. Let $L_{m}(b, c)^{\prime}, L_{m}(b)^{\prime}, V_{m}(b, c)^{\prime}, L(x ; b, c)^{\prime}, L(x ; b)^{\prime}, V^{\prime}$ be defined as their unprimed counterparts, with the difference that the coefficients are allowed to lie in $\Omega_{0}^{\prime}=\Omega_{0}(y)$. We can define an Ω_{0}^{\prime}-linear specialization map

$$
S_{y}: L_{m}(b)^{\prime} \rightarrow L\left(x^{m} ; b\right)^{\prime}
$$

by sending Y into $y . S_{y}$ is continuous of norm 1 and is surjective, sending $V_{m}(b)^{\prime}$ onto V^{\prime} and $D_{1} * L_{m}(b)^{\prime}$ onto $D_{i} * L\left(x^{m}, b\right)^{\prime}$ for all i. Indeed, there is an Ω_{0}^{\prime}-linear section

$$
\begin{equation*}
T_{y}: \sum_{\alpha \in E} A(\alpha) t^{\alpha} \rightarrow \sum_{\alpha \in E} x^{m s(\alpha)} Y^{-m M s(\alpha)} t^{\alpha} . \tag{4.8}
\end{equation*}
$$

Proposition 4.1. $\operatorname{Ker}\left(S_{y} \mid L_{m}(b, c)^{\prime}\right)=(Y-y) L_{m}(b, c-\operatorname{ord} y)$.
In particular, $L_{m}(b)^{\prime} /(Y-y) L_{m}(b)^{\prime} \xrightarrow{\sim} L\left(x^{m} ; b\right)^{\prime}$.
Proof. Let $\xi=\sum_{(\alpha ; \gamma) \in E_{m}} A(\alpha ; \gamma) t^{\alpha} Y^{\gamma} \in L_{m}(b, c)^{\prime}$ and assume that $S_{y}(\xi)=0$.

For each $\alpha \in E$ we must have $\sum_{\gamma \geq-m M s(\alpha)} A(\alpha ; \gamma) y^{\gamma}=0$. Multiplying by $y^{m M s(\alpha)}$ we obtain $\sum_{\gamma \geq 0} A(\alpha ; \gamma-m M s(\alpha)) t^{\gamma}=0$. Thus
$\xi=\sum_{\alpha \in E}\left[\sum_{\gamma \geq 0} A(\alpha ; \gamma-m M s(\alpha))\left(Y^{\gamma}-y^{\gamma}\right)\right] Y^{m M s(\alpha)} t^{\alpha}=(Y-y) \xi^{\prime}$, with
$\xi^{\prime}=\sum_{\alpha \in E}\left[\sum_{\gamma \geq 0} A(\alpha ; \gamma-m M s(\alpha)) \sum_{\lambda=0}^{\gamma-1} Y^{\lambda} y^{\gamma-\lambda-1}\right] Y^{m M s(\alpha)} t^{\alpha}$.
$\xi^{\prime} \in L_{m}(b, c-\operatorname{ord} y)^{\prime}$ since ord $y>-N b / m M$.
It follows from Theorem 3.2 that the operators $D_{i}, i=1, \ldots$, $n-1$, acting on the $R_{m}(b)$-module $L_{m}(b)$ (respectively the $R_{m}(b)^{\prime}-$ module $\left.L_{m}(b)^{\prime}\right)$ form a completely secant family ($\left[3, \S 9, \mathrm{n}^{\circ} 5\right.$, Proposition 5]). In other words, the associated Koszul complexes are acyclic: if

$$
\mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L_{m}(b)\right) \quad\left[\text { respectively } \mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n}, L_{m}(b)^{\prime}\right)\right]
$$

is the μ-th homology group of the corresponding complex, then:

$$
\begin{array}{lc}
\mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L_{m}(b)\right)=0, & \mu \geq 1 \\
\mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L_{m}(b)^{\prime}\right)=0, & \mu \geq 1 \tag{4.10}
\end{array}
$$

Lemma 4.1. $(Y-y)$ is not a zero divisor in $L_{m}(b)^{\prime} / \sum_{i=1}^{n-1} D_{i} * L_{m}(b)^{\prime}$.
Proof. Let $\xi \in L_{m}(b)^{\prime}$ and assume that

$$
\begin{equation*}
(Y-y) \xi=\sum_{i=1}^{n-1} D_{i} * \zeta_{i}, \quad \zeta_{i} \in L_{m}(b)^{\prime} \tag{4.11}
\end{equation*}
$$

By Theorem 3.1, we can write

$$
\begin{equation*}
\xi=v+\sum_{i=1}^{n-1} D_{i} * \eta_{i}, \quad v \in V_{m}(b)^{\prime}, \eta_{i} \in L_{m}(b)^{\prime} . \tag{4.12}
\end{equation*}
$$

Thus (4.11), (4.12), and Theorem 3.3 imply $(Y-y) v=0$; hence $v=0$.

Theorem 4.1.

(i) $\mathcal{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)^{\prime}\right)=0$ for all $\mu \geq 1$;
(ii) $\mathbb{H}_{0}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m}, b\right)^{\prime}\right) \xrightarrow{\sim} V^{\prime}$.

Proof. (i) Let $D_{m}=Y-y$. As a consequence of Lemma 4.1, the family $\left\{D_{i}\right\}_{i=1}^{n}$ forms a regular sequence on the $R_{m}(b)^{\prime}$-module $L_{m}(b)^{\prime}$.

In particular,

$$
\begin{equation*}
\mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n}, L_{m}(b)^{\prime}\right)=0 \quad \text { for all } \mu \geq 1 \tag{4.13}
\end{equation*}
$$

Using [11, Ch. 8, Theorem 4] and Proposition 4.1, for all $\mu \geq 0$ there is an Ω_{0}^{\prime}-linear isomorphism.

$$
\begin{equation*}
\mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n}, L_{m}(b)^{\prime}\right) \xrightarrow{\sim} \mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)^{\prime}\right) . \tag{4.14}
\end{equation*}
$$

(ii) S_{y} maps $V_{m}(b, c)^{\prime}$ onto $V\left(x^{m} ; b, c\right)^{\prime}$ and $D_{i} * L_{m}(b, c+e)^{\prime}$ onto $D_{i} * L\left(x^{m} ; b, c+e\right)^{\prime}$ for all $i=1, \ldots, n-1$.

Hence using Theorems 3.1 and 3.3:

$$
\begin{equation*}
L\left(x^{m} ; b, c\right)^{\prime}=V\left(x^{m} ; b, c\right)^{\prime}+\sum_{i=1}^{n-1} D_{i} * L\left(x^{m} ; b, c+e\right)^{\prime} \tag{4.15}
\end{equation*}
$$

Now

$$
\mathbb{H}_{0}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)^{\prime}\right)=L\left(x^{m} ; b\right)^{\prime} / \sum_{i=1}^{n-1} D_{i} * L\left(x^{m} ; b\right)^{\prime}
$$

Proposition 4.2. $L(x ; b, c)=V(x ; b, c)+\sum_{i=1}^{n-1} D_{i} * L(x ; b, c+e)$.
Proof. Let $\eta=\sum_{\alpha \in E} A(\alpha) t^{\alpha}$ be an element of $L(x ; b, c)$. Assume that, for any $\alpha \in E$ such that $A(\alpha) \neq 0, s(\alpha)$ is equal to some value s independent of α, and let $\xi=y^{-M s} T_{y}(\eta)$.

Let $c_{s}=s \cdot \operatorname{ord} x ; \xi=\sum_{\alpha \in E} A(\alpha) t^{\alpha} Y^{-M s}$ is an element of $L_{1}\left(b, c+c_{s}\right)$ and, by Theorem 3.1, there exist $v=\sum_{\beta \in \Delta} P_{\beta}(Y) t^{\beta} \in$ $V_{1}\left(b, c+c_{s}\right)$ and $\zeta_{i} \in L_{1}\left(b, c+c_{s}+e\right)$ such that $\xi=v+\sum_{i=1}^{n-1} D_{i} * \zeta_{i}$. For each $\beta \in \widetilde{\Delta}$, write $P_{\beta}(Y)=\sum_{\gamma} P_{\beta, \gamma} Y^{\gamma}$ and, for each $i=1, \ldots, n-1$, $\zeta_{i}=\sum_{(\alpha ; \gamma)} \zeta_{i, \alpha, \gamma} t^{\alpha} Y^{\gamma}$.

For $l \in \mathbb{N}, 0 \leq l<M$ we let:

$$
\begin{aligned}
P_{\beta, l}(Y) & =\sum_{\gamma+M s \equiv l(\bmod M)} P_{\beta, \gamma} Y^{\gamma} \\
\zeta_{i, l} & =\sum_{\gamma+M s \equiv l(\bmod M)} \zeta_{i, \alpha, \gamma} t^{\alpha} Y^{\gamma}, \quad i=1, \ldots, n-1 .
\end{aligned}
$$

Note that if $t^{\alpha} Y^{\gamma}$ is any monomial in $D_{i} * \zeta_{i, l}$ with non-zero coefficient, then again $\gamma+M s \equiv l(\bmod M)$. Thus, if $l \neq 0$:

$$
\sum_{\beta \in \widetilde{\Delta}} P_{\beta, l}(Y)+\sum_{i=1}^{n-1} D_{i} * \zeta_{i, l}=0
$$

Applying Theorem 3.3, $P_{\beta, l}(Y)=0$ for all $\beta \in \widetilde{\Delta}$ and we may choose each $\zeta_{i, l}$ to be zero. Therefore:

$$
\xi=\sum_{\beta \in \widetilde{\Delta}} P_{\beta, 0}(Y) t^{\beta}+\sum_{i=1}^{n-1} D_{i} * \zeta_{i, 0} .
$$

Certainly $y^{M s} P_{\beta, 0}(Y) \in \Omega_{0}$ for all $\beta \in \widetilde{\Delta}$ and $y^{M s} S_{y}\left(\zeta_{i, 0}\right)$ has its coefficients in Ω_{0} for all $i=1, \ldots, n-1$. Hence

$$
\eta \in V(x ; b, c)+\sum_{i=1}^{n-1} D_{i} * L(x ; b, c+e) .
$$

Now observe that if $\alpha \in E, s(\alpha)$ can assume only a finite set of values. Finally, directness of sum follows from (4.15).

Corollary 4.1.

(i) $\mathcal{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)\right)=0$ for all $\mu \geq 1$.
(ii) $\mathbb{H}_{0}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)\right) \xrightarrow{\sim} V$.

Proof. (i) follows from Theorem 4.1 and the fact that

$$
\mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)^{\prime}\right)=\mathbb{H}_{\mu}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)\right) \otimes_{\Omega_{0}} \Omega_{0}^{\prime}
$$

(ii) follows from Proposition 4.2 and the fact that

$$
\mathbb{H}_{0}\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L\left(x^{m} ; b\right)\right)=L\left(x^{m} ; b\right) / \sum_{i=1}^{n-1} D_{i} * L\left(x^{m} ; b\right) .
$$

5. The Frobenius map. We first review some of the definitions and results in [7, §4] concerning the lifting of characters. Let

$$
E(z)=\exp \left(\sum_{j=0}^{\infty} \frac{z^{p^{j}}}{p^{j}}\right)
$$

be the Artin-Hasse exponential series. For $s \in \mathbb{N}^{*} \cup\{\infty\}$, fix $\gamma_{s, 0} \in$ $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ satisfying

$$
\operatorname{ord} \gamma_{s, 0}=\frac{1}{p-1} \quad \text { and } \quad \sum_{j=0}^{s} \frac{\gamma_{s, 0}^{p^{J}}}{p^{j}}=0
$$

and let θ_{s} be the splitting function

$$
\begin{equation*}
\theta_{s}(z)=E\left(\gamma_{s, 0} z\right) . \tag{5.1}
\end{equation*}
$$

Let

$$
a_{s}= \begin{cases}\frac{1}{p-1}-\frac{1}{p^{s}}\left(s+\frac{1}{p-1}\right) & \text { if } s \in \mathbb{N}^{*} \tag{5.2}\\ \frac{1}{p-1} & \text { if } s=\infty\end{cases}
$$

As a power series in z :

$$
\begin{equation*}
\theta_{s}(z)=\sum_{l=0}^{\infty} B_{l}^{(s)} z^{l} \tag{5.3}
\end{equation*}
$$

with

$$
\begin{cases}\operatorname{ord} B_{l}^{(s)} \geq l a_{s+1} & \text { for all } l \geq 0 \tag{5.4}\\ B_{l}^{(s)}=\frac{\gamma_{s, 0}^{l}}{l!} & \text { for } 0 \leq l \leq p-1\end{cases}
$$

In particular:

$$
\begin{equation*}
\operatorname{ord} B_{l}^{(s)}=\frac{l}{p-1} \quad \text { for } 0 \leq l \leq p-1 \tag{5.5}
\end{equation*}
$$

For a fixed choice of s, we can choose $\gamma_{s, 0}$ so that

$$
\begin{equation*}
\theta_{s}(t)=\theta(\bar{t}) \quad \text { whenever } t^{p}=t \tag{5.6}
\end{equation*}
$$

where θ is the additive character of \mathbb{F}_{p} chosen in (0.5). Let

$$
\left\{\begin{array}{l}
F(t)=\prod_{i=1}^{n} \theta_{s}\left(c_{i} t_{i}^{k_{1}}\right) \tag{5.7}\\
G(t)=\prod_{j=0}^{\ell-1} F^{\tau^{\prime}}\left(t^{p^{\prime}}\right)
\end{array}\right.
$$

As a consequence of [7, §4], for all $m \geq 0$:

$$
\begin{equation*}
S_{m}\left(\bar{f}, \mathscr{V}_{\bar{x}}, \Theta, \rho\right)=\sum_{t \in \mathscr{Y}_{m}}\left(\prod_{i=1}^{n} t_{i}^{-\left(q^{m}-1\right) \rho_{i} / r}\right) G(t) G\left(t^{q}\right) \cdots G\left(t^{q^{m-1}}\right) \tag{5.8}
\end{equation*}
$$

Clearly, $F(t) \in L\left(r a_{s+1}, 0\right)$ and $G(t) \in L\left(\frac{p}{q} r a_{s+1}, 0\right)$.
Let $\rho \in \mathbb{N}^{n}, 0 \leq \rho_{i}<r$. We define elements $\rho^{(0)}=\rho, \rho^{\prime}=$ $\rho^{(1)}, \ldots, \rho^{(\rho)}=\rho$ satisfying:
(5.9) $\left\{\begin{array}{l}p \rho_{i}^{(j+1)}-\rho_{i}^{(j)} \equiv 0(\bmod r), \\ 0 \leq \rho_{i}^{(j)}<r,\end{array} \quad i=1, \ldots, n ; j=0, \ldots, f\right.$.

For each of the Banach spaces which have been defined, we indicate by the subscript " ρ " the subspace where all monomials t^{α} have zero coefficient unless $\alpha \in Z^{(\rho)}$. Thus, for example,

$$
\begin{aligned}
& L_{m, \rho}(b, c) \\
& \quad=\left\{\xi=\sum B(\alpha ; \gamma) t^{\alpha} Y^{\gamma} \in L_{m}(b, c) \mid B(\alpha ; \gamma)=0 \text { if } \alpha \notin E^{(\rho)}\right\} .
\end{aligned}
$$

Let $X=Y^{M}$. If $\alpha \in Z^{(\rho)}$ we set

$$
\psi\left(t^{\alpha}\right)= \begin{cases}t^{\alpha / p}, & \text { if } p \mid \alpha_{i}, 1 \leq i \leq n \tag{5.10}\\ 0, & \text { otherwise }\end{cases}
$$

(5.11) $\psi_{X}\left(t^{\alpha}\right)$

$$
= \begin{cases}X^{s(\alpha)-p s(\beta)} t^{\beta}, & \text { if } \exists \beta \in E^{\left(\rho^{\prime}\right)} \text { such that } \omega(\alpha)=p \omega(\beta) \\ 0, & \text { otherwise }\end{cases}
$$

$$
\begin{equation*}
\psi_{x}\left(t^{\alpha}\right)=S_{y} \circ \psi_{x}\left(t^{\alpha}\right) \tag{5.12}
\end{equation*}
$$

ψ defines a continuous Ω_{0}-linear map $\psi: L_{\rho}(b / p, c) \rightarrow L_{\rho^{\prime}}(b, c) ; \psi_{X}$ defines a continuous $R_{1}(b)$-linear map $\psi_{X}: L_{1, \rho}(b / p, c) \rightarrow L_{p, \rho^{\prime}}(b, c)$; ψ_{x} defines a continuous Ω_{0}-linear map $\psi_{x}: L_{\rho}(x ; b / p, c) \rightarrow L_{\rho^{\prime}}\left(x^{p} ; b, c\right)$. For all $m \geq 0$ the following diagram is commutative:

$$
\begin{equation*}
L_{\rho}(b / p) \xrightarrow{\phi_{m}} L_{m, \rho}(b / p) \xrightarrow{S_{y}} L_{\rho}\left(x^{m} ; b / p\right) \otimes_{\Omega_{0}} \Omega_{0}^{\prime} \tag{5.13}
\end{equation*}
$$

Let:

$$
\left\{\begin{array}{l}
\psi_{X}^{\ell}=\psi_{X^{q / p}} \circ \psi_{X^{q / p^{2}}} \circ \cdots \circ \psi_{X} \tag{5.14}\\
\psi_{x}^{\ell}=\psi_{x^{q / p}} \circ \psi_{x^{q / p^{2}}} \circ \cdots \circ \psi_{x}
\end{array}\right.
$$

$$
\left\{\begin{array}{l}
F_{j}(t, X)=\left[\phi_{p^{\prime}}\left(F\left(t^{r}\right)\right)\right]^{\tau^{\prime}} \in L_{p^{\prime}}\left(a_{s+1}, 0\right), \quad 0 \leq j \leq f-1 \tag{5.15}\\
G_{0}(t, X)=\phi_{1}\left(G\left(t^{r}\right)\right)
\end{array}\right.
$$

If $b \leq p a_{s+1}$ we define maps

$$
\left\{\begin{array}{l}
\mathscr{F}: L_{\rho}(b, c) \rightarrow L_{\rho}(b / q, c) \xrightarrow{\times G\left(t^{r}\right)} L_{\rho}(b / q, c) \xrightarrow{\psi^{\prime}} L_{\rho}(b, c) ; \tag{5.16}\\
\mathscr{F}_{X}: L_{1, \rho}(b, c) \rightarrow L_{1, \rho}(b / q, c) \xrightarrow{* G_{0}(t, X)} L_{1, \rho}(b / q, c) \xrightarrow{\psi_{X}^{\prime}} L_{q, \rho}(b, c) ; \\
\mathscr{F}_{x}: L_{\rho}(x ; b, c) \rightarrow L_{\rho}(x ; b / q, c) \xrightarrow{* G_{0}(t, x)} L_{\rho}(x ; b / q, c) \xrightarrow{\psi_{x}^{\prime}} L_{\rho}\left(x^{q} ; b, c\right) .
\end{array}\right.
$$

By $[12, \S 9], \mathscr{F}$ (respectively \mathscr{F}_{X}, respectively \mathscr{F}_{x}) is a completely continuous Ω_{0}-linear map (respectively $R_{1}(b)$-linear, respectively Ω_{0} linear).

Let δ be the operator defined on $1+T \Omega[[T]]$ by

$$
\begin{equation*}
g(T)^{\delta}=\frac{g(T)}{g(q T)} \tag{5.17}
\end{equation*}
$$

If $x \in \Omega_{0}^{\times}$is the Teichmüller lifting of $\bar{x} \in \mathbb{F}_{q}$, it follows from Corollary 1.1 that

$$
\begin{equation*}
L\left(\bar{f}, \mathscr{V}_{\bar{x}}, \Theta, \rho, T\right)^{(-1)^{n}}=\operatorname{det}\left(I-T \mathscr{F}_{x}\right)^{\delta^{n-1}} . \tag{5.18}
\end{equation*}
$$

We now fix the choice of constants in (3.23) by setting

$$
\gamma_{j}= \begin{cases}\sum_{l=0}^{j} \frac{\gamma_{0, s}^{p^{l}}}{p^{l}}, & \text { if } j \leq s-1 \tag{5.19}\\ 0, & \text { if } j \geq s\end{cases}
$$

Let $\hat{F}\left(t^{r}\right)=\exp H(t)(H(t)$ has been defined in (3.26)).
We recall ([7, (4.22)]) that

$$
\left\{\begin{array}{l}
F(t)=\frac{\hat{F}(t)}{\hat{F}^{\tau}\left(t^{p}\right)}, \tag{5.20}\\
G(t)=\frac{\hat{F}(t)}{\hat{F}\left(t^{q}\right)}
\end{array}\right.
$$

As operators on $L(0)$:

$$
\begin{equation*}
D_{i}=\frac{1}{\hat{F}\left(t^{r}\right)} \circ E_{i} \circ \hat{F}\left(t^{r}\right), \quad i=1, \ldots, n-1 \tag{5.21}
\end{equation*}
$$

On the other hand, $\mathscr{F}=\psi \not \circ G\left(t^{r}\right)$ maps $L(0)$ into itself, and it follows from (5.20) that

$$
\begin{equation*}
\mathscr{F}=\frac{1}{\hat{F}\left(t^{r}\right)} \circ \psi^{\not} \circ \hat{F}\left(t^{r}\right) \tag{5.22}
\end{equation*}
$$

Since $\psi^{\ell} \circ E_{i}=q E_{i} \circ \psi^{\ell}$ for all i, we deduce:

$$
\begin{equation*}
\mathscr{F} \circ D_{i}=q D_{i} \circ \mathscr{F}, \quad i=1, \ldots, n-1, \tag{5.23}
\end{equation*}
$$

and this last equation is now valid in $L(b) \subset L(0)$. Using (5.13) and the definition of ϕ_{m} we deduce:

$$
\left\{\begin{array}{l}
\mathscr{F}_{X} \circ D_{i}=q D_{i} \circ \mathscr{F}_{X}, \tag{5.24}\\
\mathscr{F}_{X} \circ D_{i}=q D_{i} \circ \mathscr{F}_{x} .
\end{array}\right.
$$

Let

$$
\left\{\begin{array}{l}
W_{X^{m}, \rho}=L_{m, \rho}(b) / \sum_{i=1}^{n-1} D_{i} * L_{m, \rho}(b) ; \tag{5.25}\\
W_{x, \rho}=L_{\rho}(x ; b) / \sum_{i=1}^{n-1} D_{i} * L_{\rho}(x ; b) .
\end{array}\right.
$$

As a consequence of (5.24), \mathscr{F}_{x} acts on the Koszul complex
$K\left(\left\{D_{i}\right\}_{i=1}^{n-1}, L_{\rho}(x ; b)\right)$. Specifically, there is a commutative diagram:

Corollary 4.1 implies that both rows of diagram (5.26) are exact. Therefore, taking the alternating product of the Fredholm determinants, we obtain

$$
\begin{equation*}
\operatorname{det}\left(I-T \mathscr{F}_{x}\right)^{\delta^{n-1}}=\operatorname{det}\left(I-T \overline{\mathscr{F}}_{x}\right) . \tag{5.27}
\end{equation*}
$$

For $j \geq 0$ let

$$
\left\{\begin{array}{l}
\mathscr{F}^{(j)}=\psi \circ F^{\tau^{j}}\left(t^{r}\right) \tag{5.28}\\
\mathscr{F}_{X}^{(j)}=\psi_{X^{p^{j}}} \circ\left[* F_{j}(t, X)\right] \\
\mathscr{F}_{x}^{(j)}=\psi_{x^{j}} \circ\left[* F_{j}(t, x)\right] .
\end{array}\right.
$$

$\mathscr{F}_{X}^{(j)}$ maps $L_{p^{\prime}, \rho^{(0)}}(b, c)$ into $L_{p^{j+1}, \rho^{(j+1)}}(b, c)$, while $\mathscr{F}_{x}^{(j)}$ maps $L_{\rho^{(\prime)}}\left(x^{p^{j}} ; b, c\right)$ into $L_{\rho^{(+1)}}\left(x^{p^{j+1}} ; b, c\right)$. If we set:

$$
\begin{equation*}
D_{i}^{(j)}=E_{i}+H_{i}^{\tau^{j}}, \quad i=1, \ldots, n-1 ; j=0, \ldots, \not, \tag{5.29}
\end{equation*}
$$

then, as above,

$$
\begin{equation*}
\mathscr{F}^{(j)} \circ D_{i}^{(j)}=p D_{i}^{(j+1)} \circ \mathscr{F}^{(j)} . \tag{5.30}
\end{equation*}
$$

Hence:

$$
\left\{\begin{array}{l}
\mathscr{F}_{X}^{(j)} \circ D_{i}^{(j)}=p D_{i}^{(j+1)} \circ \mathscr{F}_{X}^{(j)} ; \tag{5.31}\\
\mathscr{F}_{x}^{(j)} \circ D_{i}^{(j)}=p D_{i}^{(j+1)} .
\end{array}\right.
$$

Let

$$
\left\{\begin{array}{l}
W_{X, \rho}^{(j)}=L_{p^{\prime}, \rho^{(j)}}(b) / \sum_{i=1}^{n-1} D_{i}^{(j)} * L_{p^{\prime}, \rho^{(j)}}(b), \tag{5.32}\\
W_{x, \rho}^{(j)}=L_{\rho^{(j)}}\left(x^{p^{j}} ; b\right) / \sum_{i=1}^{n-1} D_{i}^{(j)} * L_{\rho^{(j)}}\left(x^{p^{j}} ; b\right)
\end{array}\right.
$$

$\mathscr{F}_{X}^{(j)}$ and $\mathscr{F}_{x}^{(j)}$ define quotient maps:

$$
\left\{\begin{array}{l}
\overline{\mathscr{F}}_{X}^{(j)}: W_{X, \rho}^{(j)} \rightarrow W_{X, \rho}^{(j+1)} ; \tag{5.33}\\
\overline{\mathscr{F}}_{x}^{(j)}: W_{x, \rho}^{(j)} \rightarrow W_{x, \rho}^{(j+1)} .
\end{array}\right.
$$

With these notations, $W_{X, \rho}^{(\mathcal{~})}=W_{X^{q}, \rho}, W_{x, \rho}^{(\rho)}=W_{x^{q}, \rho}$ and the following factorizations hold:

$$
\left\{\begin{array}{l}
\overline{\mathscr{F}}_{X}=\overline{\mathscr{F}}_{X}^{(f-1)} \circ \ldots \circ \overline{\mathscr{F}}_{X}^{(1)} \circ \overline{\mathscr{F}}_{X}^{(0)} ; \tag{5.34}\\
\overline{\mathscr{F}}_{x}=\overline{\mathscr{F}}_{x}^{(\ell-1)} \circ \ldots \circ \overline{\mathscr{F}}_{x}^{(1)} \circ \overline{\mathscr{F}}_{x}^{(0) .} .
\end{array}\right.
$$

We now fix:

$$
\begin{equation*}
s=\infty ; \quad b=\frac{p}{p-1} . \tag{5.35}
\end{equation*}
$$

Proposition 5.1. (i) Let $C^{(j)}(Y)=\left(C_{\beta, \alpha}^{(j)}(Y)\right)$ be the matrix of $\overline{\mathscr{F}}_{X}^{(j)}: W_{X, \rho}^{(j)} \rightarrow W_{X, \rho}^{(j+1)}$ with respect to the bases $\left\{Y^{-M p^{\prime} s(\alpha)} t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho^{(u)}}\right\}$ of $W_{X, \rho}^{(j)}$ and $\left\{\tilde{Y}^{-M p^{j+1} s(\alpha)} t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho^{(J+1)}}\right\}$ of $W_{X, \rho}^{(j+1)}$ respectively; then for any $\alpha \in \widetilde{\Delta}_{\rho(u)}$ and $\beta \in \widetilde{\Delta}_{\rho(t) 1}, C_{\beta, \alpha}^{(j)}(Y)$ is analytic in the disk $\left\{y \mid \operatorname{ord} y>-N / M p^{j}(p-1)\right\}$.
(ii) Let $x \in \Omega^{\times}$with $\operatorname{ord} x=0$ and let $A^{(j)}=\left(A_{\beta, \alpha}^{(j)}(x)\right)$ be the matrix of $\overline{\mathscr{F}}_{x}^{(j)}: W_{x, \rho}^{(j)} \rightarrow W_{x, \rho}^{(j+1)}$ with respect to the bases $\left\{t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho(u)}\right\}$ of $W_{x, \rho}^{(j)}$ and $\left\{t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho^{(u+1)}}\right\}$ of $W_{x, \rho}^{(j+1)}$ respectively; then for any $\alpha \in \widetilde{\Delta}_{\rho^{(u)}}$ and $\beta \in \widetilde{\Delta}_{\rho^{(u+1)}}, \operatorname{ord} A_{\beta, \alpha}^{(j)}(x) \geq(p w(\beta)-w(\alpha)) /(p-1)$.

Proof. (i) If $\alpha \in \widetilde{\Delta}_{\rho^{(u+1)}}$, then

$$
Y^{-p^{\prime} M s(\alpha)} t^{\alpha} \in L_{p^{\prime}}\left(\frac{1}{p-1}, \frac{-w(\alpha)}{p-1}\right)
$$

so that

$$
\mathscr{F}_{X}^{(j)}\left(Y^{-p^{j} M s(\alpha)} t^{\alpha}\right) \in L_{p^{j+1}}\left(\frac{p}{p-1}, \frac{-w(\alpha)}{p-1}\right) .
$$

Using Theorem 3.1, we may write
(5.36) $\quad \mathscr{F}_{X}^{(j)}\left(Y^{-p^{J} M s(\alpha)} t^{\alpha}\right)$

$$
=\sum_{\beta \in \widetilde{\Delta}_{\rho^{(t+1)}}} C_{\beta, \alpha}^{(j)}(Y) Y^{-p^{\prime+1} M s(\beta)} t^{\beta}+\sum_{i=1}^{n-1} D_{i}^{(j+1)} * \zeta_{i}(t, Y) .
$$

with

$$
\begin{aligned}
C_{\beta, \alpha}^{(j)}(Y) & \in R_{p^{+1}}\left(\frac{p}{p-1}, \frac{p w(\beta)-w(\alpha)}{p-1}\right. \text { and } \\
\zeta_{i}(t, Y) & \in L_{p^{p+1}}\left(\frac{p}{p-1}, \frac{-w(\alpha)}{p-1}+1\right)
\end{aligned}
$$

(ii) Applying the map S_{y} to equation (5.36) and multiplying by $x^{p^{\prime} s(\alpha)}$ we obtain:

$$
\begin{align*}
\mathscr{F}_{x}^{(j)}\left(t^{\alpha}\right)= & \sum_{\beta \in \tilde{\Delta}_{\Delta+1)}} C_{\beta, \alpha}^{(j)}(y) x^{p / s(\alpha)-p^{j+1}(\beta)} t^{\beta} \tag{5.37}\\
& +\sum_{i=1}^{n-1} D_{i}^{(j+1)} * \zeta_{i}(t, y)
\end{align*}
$$

Since $\mathscr{F}_{x}^{(j)}$ is defined over Ω_{0}, Proposition 4.2 shows that in fact $C_{\beta, \alpha}^{(j)}(y) x^{p^{\prime} s(\alpha)-p^{j+1} s(\beta)} \in \Omega_{0}$ and we may write:

$$
\begin{equation*}
A_{\beta, \alpha}^{(j)}(x)=C_{\beta, \alpha}^{(j)}(y) x^{p^{\prime} s(\alpha)-p^{j+1} s(\beta)} . \tag{5.38}
\end{equation*}
$$

The estimates now follow from the fact that

$$
C_{\beta, \alpha}(y) \in L\left(x^{p+1} ; \frac{p}{p-1}, \frac{p w(\beta)-w(\alpha)}{p-1}\right)^{\prime} \cap \Omega_{0}^{\prime} .
$$

Theorem 5.1. Let $\rho=\left(\rho_{1}, \ldots, \rho_{n}\right) \in \mathbb{Z}^{n}, 0 \leq \rho_{i}<r$ and suppose that $\rho=\mathbf{0}$ or $p \equiv 1(\bmod r)$; let $\mathscr{L}_{\rho}(T)=\Pi_{\alpha \in \widetilde{\Lambda}_{\rho}}\left(1-q^{w(\alpha)} T\right)$. Then the Newton polygon of $L(\bar{f}, \Theta, \rho, T)$ lies over the Newton polygon of $\mathscr{H}_{\rho}(T)$.

Proof. Let \mathscr{T} be the completion of the maximal unramified extension of \mathbb{Q}_{p} in Ω. For $x \in \mathscr{T}\left(\zeta_{p}\right)$ satisfying ord $x \geq 0$ and $\tau(x)=x^{p}$ we can define

$$
\begin{equation*}
\tau^{-1}: W_{x, \rho}^{(1)} \rightarrow W_{x, \rho}^{(0)}=W_{x, \rho}, \tag{5.39}
\end{equation*}
$$

by sending $\xi=\sum_{\alpha \in E^{(0)}} A(\alpha) t^{\alpha} \in L_{\rho}\left(x^{p} ; b, c\right)$ into

$$
\tau^{-1}(\xi)=\sum_{\alpha \in E^{(0)}} \tau^{-1}(A(\alpha)) t^{\alpha} \in L_{\rho}(x ; b, c) .
$$

Certainly,

$$
\tau^{-1}\left(D_{i}^{(1)} *_{p} L\left(x^{p} ; b\right)\right) \subset D_{i} *_{1} L(x ; b) \text { for all } i,
$$

so that τ^{-1} is defined on the quotient. Let $x \in \Omega_{0}^{\times}$with $x^{q}=x$ and let

$$
\begin{equation*}
\mathscr{F}_{x}^{\prime}=\tau^{-1} \circ \mathscr{F}_{x}^{(0)} \tag{5.40}
\end{equation*}
$$

If $p \equiv 1(\bmod r)$, then $\rho^{(j)}=\rho$ for all $j \in \mathbb{N}$ and \mathscr{F}_{x}^{\prime} is a τ^{-1}-semilinear map and a completely continuous endomorphism of $L_{\rho}(x ; b)$ over $\Omega_{1}=\mathbb{Q}_{p}\left(\zeta_{p}\right)$. If we let

$$
\begin{equation*}
\overline{\mathscr{F}}_{x}^{\prime}=\tau^{-1} \circ \overline{\mathscr{F}}_{x}^{(0)}, \tag{5.41}
\end{equation*}
$$

then:

$$
\begin{equation*}
\overline{\mathscr{F}}_{x}=\left(\overline{\mathscr{F}}_{x}^{\prime}\right) \nmid . \tag{5.42}
\end{equation*}
$$

It follows from [8, Lemma 7.1] that the Newton polygon of $\operatorname{det}_{\Omega_{0}}\left(I-T \bar{T}_{x}\right)$ can be obtained from that of $\operatorname{det}_{\Omega_{1}}\left(I-T \overline{\mathscr{F}}_{x}^{\prime}\right)$ by
reducing both ordinates and abscissae by the factor $1 / f$ and interpreting the ordinates as normalized so that ord $q=1$. If $x \in \Omega_{0}^{\times}$is the Teichmüller representative of $\bar{x} \in \mathbb{F}_{q}$, we let $\mathscr{A}(x)=\left(\mathscr{A}_{\beta, \alpha}(x)\right)$ be the matrix of $\mathscr{F}_{x}^{\prime}: W_{x, \rho} \rightarrow W_{x, \rho}$ over Ω_{0} with respect to the basis $\left\{t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho}\right\}$. By Proposition 5.1:

$$
\begin{equation*}
\operatorname{ord} \mathscr{A}_{\beta, \alpha}(x) \geq \frac{p w(\beta)-w(\alpha)}{p-1} \quad \text { for all } \alpha, \beta \in \tilde{\Delta}_{\rho} \tag{5.43}
\end{equation*}
$$

We fix an integral basis $\left\{\eta_{i}\right\}_{i=1}^{\ell}$ of Ω_{0} over Ω_{1} with the property that $\left\{\bar{\eta}_{i}\right\}_{i=1}^{\ell}$ is a basis of \mathbb{F}_{q} over \mathbb{F}_{p}. In particular, if $\omega \in \Omega_{0}, \omega=$ $\sum_{i=1}^{\ell} \omega_{i} \eta_{i}, \omega_{i} \in \Omega_{1}$, then ord $\omega=\operatorname{Inf}_{1 \leq i \leq \rho}\left\{\operatorname{ord} \omega_{i}\right\}$. Write:

$$
\begin{equation*}
\overline{\mathscr{F}}_{x}^{\prime}\left(\eta_{i} t^{\alpha}\right)=\sum_{\beta \in \tilde{\Delta}_{\rho}} \sum_{1 \leq j \leq \beta} \mathscr{A}((\beta, j),(\alpha, i)) \eta_{j} t^{\beta} \tag{5.44}
\end{equation*}
$$

$\overline{\mathscr{F}}_{x}^{\prime}$ is an Ω_{1}-linear endomorphism of $W_{x, \rho}$ with matrix

$$
\mathscr{A}^{\prime}=[\mathscr{A}((\beta, j),(\alpha, i))]
$$

with respect to the basis $\left\{\eta_{i} t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho}, 1 \leq i \leq \rho\right\}$. Furthermore:

$$
\operatorname{ord} \mathscr{A}((\beta, j),(\alpha, i)) \geq \frac{p w(\beta)-w(\alpha)}{p-1} \text { for all } i, j
$$

We now proceed as in [8, §7]:

$$
\operatorname{det}_{\Omega_{1}}\left(I-T \overline{\mathscr{F}}_{x}^{\prime}\right)=1+\sum_{j=1}^{Q} m_{j} T^{j}
$$

where $Q=f N \prod_{i=1}^{n} k_{i}$ and m_{j} is (up to sign) the sum of the $j \times j$ principal minors of the matrix \mathscr{A}^{\prime}. Thus, ord m_{j} is greater than or equal to the minimum of all j-fold sums $\sum_{l=1}^{j} w\left(\beta_{(l)}\right)$, in which $\left\{\left(\beta_{(l)}, i_{l}\right)\right\}_{l=1}^{j}$ is a set of j distinct elements in $\left\{(\beta, i) \mid \beta \in \widetilde{\Delta}_{\rho}, 1 \leq i \leq\right.$ f \}.

Proposition 5.2. For each $\alpha \in \widetilde{\Delta}_{\rho^{(j)}}$, let $\alpha^{\prime} \in \widetilde{\Delta}_{\rho^{(j+1)}}$ and $\delta \in \mathbb{Z}^{n}$ be the unique elements such that $0 \leq \delta_{i} \leq p-1$ and

$$
p\left(\frac{\alpha_{i}^{\prime}}{d_{i}}-s\left(\alpha^{\prime}\right) \frac{a_{i}}{d_{i}}\right)-\left(\frac{\alpha_{i}}{d_{i}}-s(\alpha) \frac{a_{i}}{d_{i}}\right)=\delta_{i} \quad \text { for all } i ;
$$

Let $C^{(j)}=\left(C_{\beta, \alpha}^{(j)}(Y)\right)$ be the matrix of $\overline{\mathscr{F}}_{X}^{(j)}: W_{X, \rho}^{(j)} \rightarrow W_{X, \rho}^{(j+1)}$.
Then:
(i) $\operatorname{ord} C_{\alpha^{\prime}, \alpha}^{(j)}(0)=\frac{p w\left(\alpha^{\prime}\right)-w(\alpha)}{p-1}=\sum_{i=1}^{n} \delta_{i}$.
(ii) If $\beta \neq \alpha^{\prime}$ then

$$
\operatorname{ord} C_{\beta, \alpha}^{(j)}(0)>\frac{p w(\beta)-w(\alpha)}{p-1}
$$

provided one of the following conditions holds:
(a) β and α^{\prime} lie in distinct congruence classes;
(b) $\beta \sim \alpha^{\prime}$ and $s(\beta) \neq s\left(\alpha^{\prime}\right)$;
(c) $\beta \sim \alpha^{\prime}, s(\beta)=s\left(\alpha^{\prime}\right), w(\beta)<w\left(\alpha^{\prime}\right)$.

Proof. To simplify notation, we shall assume that $j=0$. For each $l \in \mathbb{N}$ we write B_{l} instead of $B_{l}^{(\infty)}$ in (5.3). For $\alpha \in \mathbb{N}^{n}$ let

$$
B(\alpha)= \begin{cases}\prod_{i=1}^{n} c_{i}^{\alpha_{i} / d_{i}} B_{\alpha_{i} / d_{i}}, & \text { if } d_{i} \mid \alpha_{i} \text { for all } i \tag{5.45}\\ 0, & \text { otherwise }\end{cases}
$$

By (5.4), ord $B(\alpha) \geq J(\alpha) /(p-1)$, and by (5.5), ord $B(\alpha)=$ $J(\alpha) /(p-1)$, if $\alpha_{i} / d_{i} \leq p-1$ for all i.

With these notations:

$$
\left\{\begin{array}{l}
F\left(t^{r}\right)=\sum_{\alpha \in \mathbb{N}^{n}} B(\alpha) t^{\alpha} \tag{5.46}\\
F_{0}(t, X)=\sum_{\alpha \in E} \sum_{\lambda \in \mathbb{N}} B(\alpha+\lambda a) t^{\alpha} Y^{\lambda M}
\end{array}\right.
$$

Let $\alpha \in \widetilde{\Delta}_{\rho}$:

$$
\begin{align*}
\mathscr{F}_{X}^{(0)} & \left(Y^{-M s(\alpha)} t^{\alpha}\right) \tag{5.47}\\
& =\sum_{\lambda \in \mathbb{N}} \sum B(\eta+\lambda a) Y^{M s(\alpha+\eta)-p M s(\sigma)-M s(\alpha)+\lambda M} t^{\sigma}
\end{align*}
$$

where the inner sum is indexed by the set

$$
\left\{(\eta, \sigma) \in E^{(0)} \times E^{\left(\rho^{\prime}\right)} \mid \eta_{i}+\lambda a_{i} \equiv 0 \bmod d_{i}, \omega(\alpha+\mu)=p \omega(\sigma)\right\}
$$

Let

$$
\xi \in L_{p}\left(\frac{p}{p-1}, c\right), \quad \xi=\sum_{(\alpha, \gamma) \in E_{p}} A(\alpha ; \gamma) t^{\alpha} Y^{\gamma}
$$

If we write

$$
\xi=\sum_{\beta \in \widetilde{\Delta}} E_{\beta}(Y) t^{\beta}+\sum_{i=1}^{n-1} \bar{H}_{i}^{\tau} * \zeta_{i}
$$

we saw in the proof of Proposition 3.1 that the coefficient of $Y^{-p I I s(\beta)}$ in $E_{\beta}(Y)$ is $\sum u(\widehat{\alpha}) A(\widehat{\alpha} ; \gamma)$, where the sum is indexed by the set

$$
\begin{aligned}
& \{(\widehat{\alpha} ; \gamma) \in E \times \mathbb{N} \mid-p M s(\beta)=\mu p M+\gamma, \widehat{\alpha} \sim \beta+\mu a \\
& \qquad J(\widetilde{\alpha})=J(\beta)+\mu a, \mu \in \mathbb{N}\}
\end{aligned}
$$

and where each $u(\widehat{\alpha})$ is a unit in \mathscr{O}_{0}. Thus, if we write

$$
\begin{equation*}
\mathscr{F}_{X}^{(0)}\left(Y^{-M s(\alpha)} t^{\alpha}\right)=\sum_{\beta \in \tilde{\Delta}_{\rho^{\prime}}} \bar{C}_{\beta, \alpha}(Y) Y^{-p M s(\beta)} t^{\beta}+\sum_{i=1}^{n-1} \bar{H}_{i}^{\tau} * \zeta_{i} \tag{5.48}
\end{equation*}
$$

then the constant coefficient of $\bar{C}_{\beta, \alpha}(Y)$ is

$$
\begin{equation*}
\bar{C}_{\beta, \alpha}(0)=\sum u(\sigma) B(\mu+\lambda a) \tag{5.49}
\end{equation*}
$$

where the sum is indexed by the set $S(\beta, \alpha)$ of all $(\eta, \sigma, \lambda) \in E^{(0)} \times$ $E^{\left(\rho^{\prime}\right)} \times \mathbb{N}$ satisfying:

$$
\left\{\begin{array}{l}
p s(\beta)-s(\alpha)+s(\alpha+\eta)-p s(\sigma)+\lambda+p \mu=0 \tag{5.50}\\
\sigma \sim \beta+\mu a, \quad \mu \in \mathbb{N} \\
J(\sigma)=J(\beta)+\mu a \\
\omega_{i, j}(\alpha+\eta)=p \omega_{i, j}(\sigma) \quad i, j=1, \ldots, n \\
\eta_{i}+\lambda a_{i} \equiv 0 \bmod d_{i} \quad i=1, \ldots, n
\end{array}\right.
$$

Let $(\eta, \sigma, \lambda) \in S(\beta, \alpha)$. If $\sigma \sim \beta+\mu a$ and $J(\sigma)=J(\beta)+\mu a$ for some $\mu \in \mathbb{N}$, then necessarily $s(\sigma) \leq s(\beta)+\mu$. On the other hand, $s(\alpha+\eta) \geq s(\alpha)+s(\eta)$. Hence:

$$
\begin{aligned}
0 & =p s(\beta)-s(\alpha)+s(\alpha+\eta)-p s(\sigma)+\lambda+p \mu \\
& \geq s(\alpha+\eta)-s(\alpha)+\lambda \geq s(\eta)+\lambda \geq 0
\end{aligned}
$$

We conclude that $s(\alpha+\eta)=s(\alpha), s(\sigma)=s(\beta)+\mu, \lambda=0, s(\eta)=0$. Furthermore, since σ and β are elements of $E, s(\sigma)<1$ and $s(\beta)<1$; hence $\mu=0$. Thus

$$
\begin{equation*}
\bar{C}_{\beta, \alpha}(0)=\sum u(\sigma) B(\eta) \tag{5.51}
\end{equation*}
$$

where the sum is indexed by the set $T(\beta, \alpha)$ of all $(\eta, \sigma) \in E^{(0)} \times E^{\left(\rho^{\prime}\right)}$ which satisfy

$$
\left\{\begin{array}{l}
s(\alpha+\eta)=s(\alpha) \tag{5.52}\\
s(\eta)=0 \\
s(\sigma)=s(\beta) \\
\sigma \sim \beta \\
J(\sigma)=J(\beta) \\
\omega_{i, j}(\alpha+\eta)=p \omega_{i, j}(\sigma) \text { for all } i, j \\
\eta_{i} \equiv 0 \bmod d_{i} \quad \text { for all } i
\end{array}\right.
$$

Let $(\eta, \sigma) \in T(\beta, \alpha)$: there is an index l such that $\eta_{l}=0$ and $s(\alpha)=$ $s(\alpha+\eta)=\alpha_{l} / a_{l}$ and, by Remark 1.1, $s(\sigma)=\sigma_{l} / a_{l}$. Hence:

$$
\begin{equation*}
p\left(\frac{\sigma_{i}}{d_{i}}-s(\sigma) \frac{a_{i}}{d_{i}}\right)-\left(\frac{\alpha_{i}}{d_{i}}-s(\alpha) \frac{a_{i}}{d_{i}}\right)-\frac{\eta_{i}}{d_{i}}=\nu_{i} \in \mathbb{N} \quad \text { for all } i \tag{5.53}
\end{equation*}
$$

By assumption:

$$
\begin{equation*}
p\left(\frac{\alpha_{i}^{\prime}}{d_{i}}-s\left(\alpha^{\prime}\right) \frac{a_{i}}{d_{i}}\right)-\left(\frac{\alpha_{i}}{d_{i}}-s(\alpha) \frac{a_{i}}{d_{i}}\right)=\delta_{i} \in \mathbb{N} \quad \text { for all } i \tag{5.54}
\end{equation*}
$$

by Lemma 2.8, $s\left(\alpha^{\prime}\right)=\alpha_{l}^{\prime} / a_{l}$ and we deduce from (5.53) and (5.54) that

$$
p g_{i} \frac{\left(\sigma_{l}-\alpha_{l}^{\prime}\right)}{g_{l}} \in \mathbb{Z} \quad \text { for all } i=1, \ldots, n
$$

Since g.c.d. $\left(g_{1}, \ldots, g_{n}\right)=1$ and $(p, M)=1$, this implies $\sigma_{l} \equiv$ $\alpha_{l}^{\prime} \bmod g_{l}$; but σ and α^{\prime} are elements of $E^{\left(\rho^{\prime}\right)}: \sigma_{l} / g_{l}<r, \alpha_{l}^{\prime} / g_{l}<r$ and $\sigma_{l} \equiv \alpha_{l}^{\prime} \bmod r$. Hence $\sigma_{l}=\alpha_{l}^{\prime}$ and $s(\sigma)=s\left(\alpha^{\prime}\right)$. (5.53) and (5.54) now imply $p\left(\sigma_{i}-\alpha_{i}^{\prime}\right) \equiv 0 \bmod d_{i}$ for all $i ;$ since $(p, D)=1$ we deduce $\alpha^{\prime} \sim \sigma \sim \beta$. In particular, $T(\beta, \alpha)=\varnothing$ if β and α^{\prime} lie in distinct congruence classes, or if $s(\beta) \neq s\left(\alpha^{\prime}\right)$. Furthermore, since $s(\sigma)=s(\beta)$, (5.53) yields

$$
\begin{equation*}
p\left(\frac{\beta_{i}}{d_{i}}-s(\beta) \frac{a_{i}}{d_{i}}\right)-\left(\frac{\alpha_{i}}{d_{i}}-s(\alpha) \frac{a_{i}}{d_{i}}\right)=\varepsilon_{i} \in \mathbb{Z} \quad \text { for all } i \tag{5.55}
\end{equation*}
$$

Suppose $\beta \neq \alpha^{\prime}$: by Lemma 2.8 there exists an index j such that $\varepsilon_{j}<0$ or alternatively an index k such that $\varepsilon_{k}>p-1$.

If $\varepsilon_{j}<0,(5.53)$ and (5.54) imply $p\left(\sigma_{j} / d_{j}-\beta_{j} / d_{j}\right)=\nu_{j}-\varepsilon_{j}>0$, hence $\sigma_{j}>\beta_{j}$ and therefore $\sigma_{j} \geq \beta_{j}+d_{j}$; but $J(\sigma)=J(\beta)$, hence there exists an index m such that $\beta_{m} \geq \sigma_{m}+d_{m}$. Subtracting (5.53) from (5.54) then yields $\varepsilon_{m}-\nu_{m} \geq p$; hence $\varepsilon_{m}>p-1$. Now subtracting (5.54) from (5.55) we obtain

$$
p\left(\frac{\beta_{m}}{d_{m}}-\frac{\alpha_{m}^{\prime}}{d_{m}}\right)=\varepsilon_{m}-\delta_{m}>0
$$

hence $\beta_{m}>\alpha_{m}^{\prime}$. If $\beta \sim \alpha^{\prime}$, this last inequality implies that $\beta_{i} \geq \alpha_{i}^{\prime}$ for all i (Lemma 2.3) and therefore $w(\beta)>w\left(\alpha^{\prime}\right)$ since $s(\beta)=s\left(\alpha^{\prime}\right)$. Thus, if $\beta \sim \alpha^{\prime}, \beta \neq \alpha^{\prime}, s(\beta)=s\left(\alpha^{\prime}\right)$, and $w(\beta) \leq w\left(\alpha^{\prime}\right)$ the set $T(\beta, \alpha)$ is empty and $\bar{C}_{\beta, \alpha}(0)=0$.

Suppose finally that $\beta=\alpha^{\prime}$. Since $J(\sigma)=J\left(\alpha^{\prime}\right)$, if $\sigma \neq \alpha^{\prime}$ there is an index i such that $\alpha_{i}^{\prime} \geq \sigma_{i}+d_{i}$; but this implies $\delta_{i}-\nu_{i} \geq p$ in (5.53) and (5.54); hence $\delta_{i} \geq p$, a contradiction. Hence $\sigma=\alpha^{\prime}$ and the set $T\left(\alpha^{\prime}, \alpha\right)$ contains the single element $\left(\eta, \alpha^{\prime}\right)$ with $\eta=\left(\delta_{1} d_{1}, \ldots, \delta_{n} d_{n}\right)$. In particular, ord $\bar{C}_{\alpha^{\prime}, \alpha}(0)=\sum_{i=1}^{n} \delta_{i}$.

Summarizing:
(i) ord $\bar{C}_{\alpha^{\prime}, \alpha}(0)=\left(p w\left(\alpha^{\prime}\right)-w(\alpha)\right) /(p-1)$;
(ii) if $\beta \neq \alpha^{\prime}$ then $\bar{C}_{\beta, \alpha}(0)=0$ whenever one of the following holds:
(a) β and α^{\prime} lie in distinct congruence classes;
(b) $\beta \sim \alpha^{\prime}$ and $s(\beta) \neq s\left(\alpha^{\prime}\right)$;
(c) $\beta \sim \alpha^{\prime}, s(\beta)=s\left(\alpha^{\prime}\right)$, and $w(\beta) \leq w\left(\alpha^{\prime}\right)$.

The proposition now follows from the fact that, by (5.36) and Theorem 3.4:

$$
\begin{align*}
C_{\beta, \alpha}(Y)-\bar{C}_{\beta, \alpha}(Y) \in R_{p}\left(\frac{p}{p-1}, \frac{p w(\beta)-w(\alpha)}{p-1}+1\right) \tag{5.56}\\
\forall \alpha, \beta \in \Delta .
\end{align*}
$$

Let π be a uniformizer of $\mathbb{Q}_{p}\left(\zeta_{p}\right)$ and let π^{\prime} be a root of $Z^{M D}-\pi$ in Ω. If \mathscr{T} is the completion of the maximal unramified extension of \mathbb{Q}_{p} in Ω, we let $\mathscr{T}=\mathscr{T}\left(\pi^{\prime}\right)$ and we extend τ to \mathscr{T}^{\prime} by setting $\tau\left(\pi^{\prime}\right)=\pi^{\prime}$.

Let $\mathscr{C}^{(j)}(Y)$ be the matrix of $\overline{\mathscr{F}}_{X}^{(j)}: W_{X, \rho}^{(j)} \rightarrow W_{X, \rho}^{(j+1)}$ with respect to the bases $\left\{\pi^{w(\alpha)} Y^{-p^{\prime} s(\alpha)} t^{\alpha} \mid \alpha \in \widetilde{\Delta}_{\rho(j)}\right\}$ of $W_{X, \rho}^{(j)}$ and $\left\{\pi^{w(\beta)} Y^{-p^{j}(\beta)} t^{\beta} \mid\right.$ $\left.\beta \in \tilde{\Delta}_{\rho^{(u+1)}}\right\}$ of $W_{X, \rho}^{(j+1)}$.
For $x \in \Omega_{0}^{\times}$, with ord $x=0$, let also $\mathscr{A}^{(j)}(x)$ be the matrix of $\overline{\mathscr{F}}_{x}^{(j)}: W_{x, \rho}^{(j)} \rightarrow W_{x, \rho}^{(j+1)}$ with respect to the bases $\left\{\pi^{w(\alpha)} t^{\alpha} \mid \alpha \in \tilde{\Delta}_{\rho()}\right\}$ of $W_{x, \rho}^{(j)}$ and $\left\{\pi^{w(\beta)} t^{\beta} \mid \beta \in \tilde{\Delta}_{\rho(u+1)}\right\}$ of $W_{x, \rho}^{(j+1)}$.

By Proposition 5.2, the following estimates hold:

$$
\begin{align*}
& \begin{cases}\operatorname{ord} \mathscr{C}_{\beta, \alpha}^{(j)}(0) \geq w(\beta) & \text { for all }(\alpha, \beta) \in \widetilde{\Delta}_{\rho(i)} \times \widetilde{\Delta}_{\rho^{(u+1)}} ; \\
\operatorname{ord} \mathscr{C}_{\alpha^{\prime}, \alpha}^{(j)}(0)=w\left(\alpha^{\prime}\right) & \text { for all } \alpha \in \widetilde{\Delta}_{\rho(u)} ; \\
\mathscr{C}_{\beta, \alpha}^{(j)}(0)=0 & \text { if } \beta \text { and } \alpha \text { satisfy condition (a), } \\
\begin{cases}\operatorname{ord} \mathscr{\mathscr { A }}_{\beta, \alpha}^{(j)}(x) \geq w(\beta) & \text { for all }(\alpha, \beta) \in \widetilde{\Delta}_{\rho^{(u)}} \times \widetilde{\Delta}_{\rho^{(u+1)}} ; \\
\operatorname{ord} \mathscr{A}_{\alpha^{\prime}, \alpha}^{(j)}(x)=w\left(\alpha^{\prime}\right) & \text { for all } \alpha \in \widetilde{\Delta}_{\rho(u) ;} \\
\operatorname{ord} \mathscr{\mathscr { ~ }}_{\beta, \alpha}^{(j)}(x)>w(\beta) & \text { if } \beta \text { and } \alpha \text { satisfy condition (a), }\end{cases} \\
\quad \text { (b), or (c) of Proposition } 5.2 \text { (ii). }\end{cases} \tag{5.57}
\end{align*}
$$

If $\alpha \in \widetilde{\Delta}$, we let $Z(\alpha)=w(\alpha)+w\left(\alpha^{\prime}\right)+\cdots+w\left(\alpha^{(\rho-1)}\right)$ and, for fixed ρ, we let

$$
\mathscr{K}_{\rho}(T)=\prod_{\alpha \in \widetilde{\Delta}_{\rho}}\left(1-p^{Z(\alpha)} T\right) \in \Omega_{1}[T]
$$

$\operatorname{Let} Q=f N \prod_{i=1}^{n} k_{i}$.

Theorem 5.2. The Newton polygon of $L(\bar{f}, \Theta, \rho, T)$ lies below the Newton polygon of $\mathscr{K}_{\rho}(T)$ and their endpoints coincide at $(0,0)$ and $(Q, Q(n-1) / 2)$.

Proof. Let $R=N \prod_{i=1}^{n} k_{i}=\operatorname{dim}_{\Omega_{0}}\left(W_{X, \rho}\right)$. We can write

$$
\operatorname{det}_{\Omega_{0}}\left(I-T \overline{\mathscr{F}}_{X} \mid W_{X, \rho}\right)=1+\sum_{i=1}^{R} m_{i}(Y) T^{i},
$$

and by Proposition 5.1 each $m_{i}(Y)$ is analytic in the disk $\{y \mid$ ord $y>$ $-N p / M q(p-1)\}$. If y satisfies ord $y=0$, by the maximum modulus theorem, $\operatorname{ord}\left(m_{i}(y)\right) \leq \operatorname{ord}\left(m_{i}(0)\right)$. Observe that if $\alpha, \beta \in \widetilde{\Delta}$ satisfy $\alpha \sim \beta, s(\alpha)=s(\beta)$ and $w(\alpha) \leq w(\beta)$, then $w\left(\alpha^{\prime}\right) \leq w\left(\beta^{\prime}\right)$. Thus, using (5.57), we can order the elements of $\widetilde{\Delta}_{\rho^{(j)}}$ for each $j, 0 \leq j \leq$ $\ell-1$, so that the matrices $\mathscr{C}^{(j)}(0)$ are simultaneously upper triangular, with diagonal entries $\left\{\mathscr{C}_{\alpha(l+1), \alpha^{(j)}}^{(j)}(0) \mid \alpha \in \widetilde{\Delta}_{\rho}\right\}$ and $\operatorname{ord} \mathscr{C}_{\alpha(j+1), \alpha^{(j)}}^{(j)}(0)=$ $w\left(\alpha^{(j+1)}\right)$. Hence for each $i, 1 \leq i \leq R$, ord $\left(m_{i}(0)\right)$ is the infimum of all the i-fold sums $\sum Z(\alpha)$, where α runs over a subset of i distinct elements of $\widetilde{\Delta}_{\rho}$. This establishes the first assertion. By Lemma 2.9, $\sum_{\alpha \in \widetilde{\Delta}_{\rho}} w(\alpha)=R(n-1) / 2$ for any ρ. Hence ord $m_{Q}(0)=f R(n-1) / 2$.

On the other hand, estimates (5.58) imply that, for all $j, 0 \leq j \leq$ $f-1$,

$$
\operatorname{ord}\left(\operatorname{det} \mathscr{A}^{(j)}(x)\right)=\sum_{\alpha \in \tilde{\Delta}_{\rho}(j)} w(\alpha) .
$$

The second assertion follows.
Corollary 5.1. If $p \equiv 1(\bmod r)$, the endpoints of the Newton polygons of $L(\bar{\ell}, \Theta, \rho, T)$ and of $\mathscr{H}_{\rho}(T)$ coincide.

Theorem 5.3. If $p \equiv 1(\bmod r)$, (or $\rho=(0, \ldots, 0)$), and $p g_{i} \equiv$ $g_{i}\left(\bmod k_{i} g_{j}\right)$ for all $i, j \in\{1, \ldots, n\}$, the Newton polygons of $L(\bar{\ell}, \Theta, \rho, T)$ and of $\mathscr{H}_{\rho}(T)$ coincide.

Proof. Under our assumptions, the permutation $\alpha \mapsto \alpha^{\prime}$ of Lemma 2.8 is the identity on $\widetilde{\Delta}_{\rho}$. Using the estimates (5.58), the remainder of the proof is identical to that of [15, Theorem 5.46].

Remark. Theorem 5.3 holds in particular when $p \equiv 1(\bmod M D)$.

References

[1] A. Adolphson and S. Sperber, Twisted Kloosterman sums and p-adic Bessel functions, Amer. J. Math., 106 (1984), 549-591.
[2] , Twisted Kloosterman sums and p-adic Bessel functions II, Amer. J. Math., 109 (1987), 723-764.
[3] N. Bourbaki, Algèbre, Ch. X, Algèbre Homologique, Masson (1980) Paris.
[4] M. Carpentier, p-adic cohomology of generalized hyperkloosterman sums, Thesis, University of Minnesota, (1985).
[5] _-, Cohomologie des fonctions o F_{n}, Groupe d'Etude d'Analyse Ultramétrique, (1984/85), $n^{0}=9$.
[6] P. Deligne, Applications de la Formule des Traces aux Sommes Trigonométriques, in S.G.A. 4 1/2 Cohomologie Etale, Lecture Notes 569, Springer Verlag (1977), Berlin.
[7] B. Dwork, On the zeta function of a hypersurface, Publ. Math. I.H.E.S., 12, Paris, (1962).
[8] , On the zeta function of a hypersurface II, Ann. of Math., 80 (1964), 227299.
[9] , Bessel functions as p-adic functions of the argument, Duke Math. J., 41 (1974), 711-738.
[10] N. Katz, Sommes exponentielles, Astérisque, 79 (1980), Paris.
[11] D. G. Northcott, Lessons on rings, modules and multiplicities, Chapter 8, Cambridge University Press (1968), London.
[12] J. P. Serre, Endomorphismes complètement continus des espaces de Banach padiques, Publ. Math. I.H.E.S., 12 (1962), Paris.
[13] S. Sperber, p-adic hypergeometric functions and their cohomology, Duke Math. J., 44 (1977), 535-589.
[14] _, Congruence properties of the hyperkloosterman sum, Compositio Math., 40, Fasc. 1 (1980), 3-33.
[15] _, Newton polygons for general hyperkloosterman sums, Astérisque, 119-120 (1984), 267-330.
[16] O. Zariski and P. Samuel, Commutative Algebra, Springer Verlag, (1979), Berlin.
Received December 17, 1986.

21, Avenue des Gobelins
75005 Paris, France

