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SOMMES EXPONENTIELLES
DONT LA GEOMETRIE EST TRES BELLE:

p-AΌIC ESTIMATES

MICHEL CARPENTIER

In the present work we examine a family of multivariable expo-
nential sums on a connected variety defined over a finite field.

0. Introduction. Let K = ¥q be the field with q elements (charAΓ =
p ^ 2, q = pf), x e Kx, gu..., gn positive integers relatively prime
and prime to p (n > 2) and let Ψ% be the variety defined over K by
f]?=1 tf = x. Let Ω be a complete algebraically closed field containing
Qp, Θ: K —• Ω x an additive character and for each / e {1,...,«} let
Xi'.Kx —• Ω x be a multiplicative character. Let c\,...,cn be non-zero
elements of K, and let f(ή = Σ ? = 1 £$> where ku...,kn are positive
integers prime to p. For each m el+ let Km be the extension of K of
degree m. We consider the twisted exponential sums

(o.i) sm(

and the associated L function:

(0.2) L = L(/, ̂  Γ) = exp ( -
m=l

Our main results are the following:

A. We show that Z,(~1)Λ is a polynomial of degree

1=1

B. We compute explicitly a lower bound for the Newton polygon
of Z/"1)"; this lower bound is independent of the prime number
p and its endpoints coincide with those of the Newton polygon
(Theorem 5.1 and Corollary 5.1).

C. Provided p lies in certain congruence classes, we show that
our lower bound is in fact the exact Newton polygon of Z/"1)"
(Theorem 5.3).
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D. As a consequence we obtain p-adic estimates for the sums (0.1),
since they are related to the reciprocal roots {7/}/=1 of (0.2) by
the equation

(0.3) Smi D

We emphasize that our lower bound for the Newton polygon can be
computed explicitly: To fix notations, we assume that the multiplica-
tive characters χι are of the form χi(t) = ω{t)~^q~^pιlr, where r and
Pi are natural integers, r\q - 1, 0 < pt < r. For a = (au..., an) e 2n,
let σ(a) = Inf/a//& and J{a) = -rΣΪ=\ailki- Let Δ'p be the finite
subset of TLn defined by

{ 0 < σ(a) < r

α, = pi (modr), i = 1,...,n

σ(a) < OLi/gi < σ(a) + rkt/gh i= 1,...,«.

Whenever two elements α and β of Δ^ satisfy /(α) = /(jff) and αf =
βi {mod ki) for all /, we only keep the first of these two elements
for the lexicographic order and eliminate the other: let Ap be the
resulting set. Ap contains h = (Σ* = i &Άi)Π?=i /̂ elements, and the
slopes of our lower bound are the values on Άp of the weight function
w(a) = J(a) - 7^(α)X)"=1 ft/fc/. For example, if Ψ^ is the variety
t\t\t\ = \ and /(ί) = t\+t\+ts9 with trivial twisting characters χiy then
L" 1 is a polynomial of degree 26. When /? = 1 (mod 18) its reciprocal
roots havep-adic ordinal 0, 1/3, 7/18, 4/9, 1/2, 2/3 (twice), 13/18,
7/9, 5/6, 8/9, 17/18, 1 (twice), 19/18, 10/9, 7/6, 11/9, 23/18, 4/3
(twice), 3/2, 14/9, 29/18, 5/3, 2. When/? φ 1 (mod 18), the Newton
polygon of L~ι lies above the Newton polygon whose sides have these
slopes and their endpoints coincide.

If n = 2, k\ = ki = 1, g\ = g2 = 1, and the twisting charac-
ters are trivial, the sum (0.1) is the Kloosterman sum, which was
first investigated from a p-adic point of view by B. Dwork in [9].
More general situations have been studied by S. Sperber ([13], [14],
[15]) and Adolphson-Sperber ([1], [2]). We have made extensive use
of the work of these authors, especially from [15]. On the other
hand, using /-adic cohomology, P. Deligne [6] has shown, in the case
g{ = . . . = gn = k\ = ... = £„ = 1, that the reciprocal roots {y/}f=1

of L(~1)Λ have complex absolute value qn~1/2; this was later extended
by N. Katz [10]—from whom we borrow the title of this article—to
include the case k\= --- — kn and general g\,...9gn. We complement
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here this result, by obtaining p-adic estimates for the y/'s. Our ap-
proach departs from previous literature on the subject by the use of
a new trace formula (Theorem 1.1) which provides a more balanced
treatment and avoids the restriction gn = kn = 1 ([4], [15]).

Using Dwork's methods, we construct cohomology spaces WXtP on
which a Frobenius map acts, &x\ WXiP —• Wχq^p. These spaces have
dimension A, and if x = xq is a Teichmϋller point, the eigenvalues of
Wx are the reciprocal zeros of (0.2). The choice of a good basis for the
space WXyP is crucial in obtaining estimates for the Newton polygon of
the L-function: its elements are those of the set {x~σ^lrta\a e Δ^},
chosen so as to minimize the weight function w(a).

Define /?(0) = /?, /? ( 1),..., pW = p by the conditions

\ Q<p{p <r V/,y

For each a^ e Δpω9 there exist (Lemma 2.8) unique elements α

Άpu+\) and δU) £ 2n satisfying

0 < δ\j) < r

\ΐa = α<°> € Δp, let Z(a) = ̂ =0 w(<*u)). We show that the Newton

polygon of U~^n lies below that of JΓP(T) = Πα G£ (1 ~Pz{a)T), and

their endpoints coincide (Theorem 5.2 and Corollary 5.1). On the

other hand, if p = 1 (modr), the Newton polygon of the L-function

lies above that of JTP(T) = Πα G~ (1 - qw^T) (Theorem 5.1). If fur-

thermore pgi = gi mod(kigj) for all i,j, then 3?P{J) = ̂ P{T) and

therefore their common Newton polygon is that of L^~ι^n.
The precise determination of the Newton polygon in other congru-

ence classes requires finer estimates for the Frobenius matrix. This
question has been solved by Adolphson-Sperber ([2]) in the case n = 2,
gι = g2 = 1, kx = k2. We expect to address this question more fully
in a subsequent article.

In [5], we studied the deformation equation when kn = gn = 1.
With only minor changes, this treatment can be reconciled with the
point of view adopted here. Let us simply indicate that the deforma-
tion operator of [5, p. 9-04] should be replaced by
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where

1. Trace formula. Let g\,...,gn be positive integers (n > 2),
g = (g\,. .,gn). We assume that g.c.d.(gu...9gn) = 1. For a =
(a\,...9an) € 2n we define:

^ » = ^ - p ι,7 = l,...,/i;
(l.i) ' 8ι 8j

Pl g n

Let μ be a fixed positive integer; for any a e 2n let 0 α : ZΛ —> Z///Z
be the group homomorphism defined by φa(y\,> ..,?«) = X)"=i

LEMMA 1.1. L^ί aelN; the following conditions are equivalent:

(i) There exists β eln such that ω, j(α) = μo)ij(β) for all i,j =

(ii) 77zm> exist β e ln and I e {1,...,«} swc/z ^α/ ωυ(a) =
μωij(β) for all i = l,...,n.

(iii) Ker(^) c Ker(0α).

Proof. The equivalence of (i) and (ii) is obvious from the defini-
tions. Suppose that a satisfies condition (ii) and let γ = (γ\,..., γn) €
YLsτ(φg). By assumption, α/^/ = α/^ + μ(βigι - βigi) for all /, hence:

( )
ι=l ^ /=1 ^ i=\

Since gi(ctι-μβι) = gι{μi-μβi) for all / and g.c.d.(^1?...,gn) = 1,
it follows that ft divides α/ - μβ\. Hence 2? = 1 ŷ α,- = 0 (mod//) i.e.
y G Ker(0α) and (ii)=»(iii).

Suppose that Ker(^) c Keτ(φa) and, for / = 1,..., n - 1, let τ, =
g.c.d.(ft,^Λ).

Since

our assumption implies the existence of integers z 1 ? . . . , zw_i satisfying

— α f - — an = μzi for all / = 1,..., /i - 1.

Furthermore, for each such /, there are integers βι and jff̂  such that:
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Thus

2 £ 2 ( 2 L 2 ϊ λ forallι = l π - 1.μ (
gi gn \gi gn

Observe that, if (βhβfi) is a solution of equation (1.2(i)), then so

is (βi + gi/τi, βn

ι) + gnhi). We must show the existence of solutions

satisfying β™ = ... = β{

n

n~ι\ Let ij e {1,..., Λ - 1} with i + j :

«i aJ = μ(βn1 ~ βn] , βi βj\
gi gj \ gn gi gj)'

On the other hand, just as above, we can find integers e, and ε, such
that:

gi gj \gi gj

Hence, letting δt = βi - εz, δj = βj - ε7 and Xij = g. c. d. (τ, , xj) we can
write:

(βn - βn ) * "i. lJ = " J'J(δjgi ~ δigj)-
XiXj XiXj

Since gnXij/XiXj and gigjXij/XiXj are relatively prime, there exists
Z G Z such that

In turn, there exist ξ, η G Z such that Zτ/j = f τ, + f/τ7 and therefore

β β ^ ξ + η ^ .
τj τi

If we let rk = ^ / τ ^ (/c = 1,...,«- 1), we have just proved that, for
all / j G { l , . . . , / i - 1}:

(1.3) fiP-filpeni + rji.

We now proceed by induction. Let A: < n - 1 and suppose that we

have found solutions (βhβn^) of equations (1.2(i)) for all /, with the

property that jj<1} = = β{

n

k) (= βn).

Letm i t = Lc.m.(r 1 , . . . , r i t ) . By (1.3), βn-β{

n

k+l) e m^Z+r

therefore there are integers λ, C such that ^ π + λm^ = )?^+1^ +
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όίί

\<i<k

\<i<k

βk+ϊ=βk+l+ζ
8k+\
τk+l

For each / = ί,...,n — 1, (/?/,/$') is a solution of (1.2(i)) and we
have β{n] = ••• = βj,k+ι). Finally we obtain β = (βu...,βn) with
ωUn(a) = μωi>n(β) V/ = 1,.. . ,«.

Hence (iii)=Φ>(ii). D

Notation. If a, β € Z" satisfy ω i j 7(α) = μωjj(β) for all 1,7 = 1,..., n
we shall write:

(1.4) ω(α) =

REMARK 1.1. Let α , ^ € ZΛ satisfying (1.4) and let I e {l,...,n},
then

(1.5) σ(a) = ^&

Let:

(1.6) S = {aeln\O<σ(a)<l}.

LEMMA 1.2. Let a,βeS; then a = β o ω(a) =

Proof. The first implication is obvious. Conversely, suppose that
ω(a) = ω(/?) and let / be an index such that σ(a) = α//g/. By the
remark above, σ(β) = /?//#/.

By assumption, g/(α/ - j?/) = g/(αz - /?,•) for all /. If yi, , yπ are
integers satisfying ]Γ?=1 y, g| = 1, then α/-jβ/ = g/ Σ ? = 1 γi(ai-βi) and
therefore g/ divides aι - β[.

Since α and /? are elements of S, -gι < aι - β[ < gι, hence α/ = j?/
and it follows that α/ = βi for all /. D

(1.7)

We fix r, a positive integer, and for each a e ϊn we set

r
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Let:

(1.8) E = {a G 2n I 0 < 4a) < 1} = {a G Zn | 0 < σ(α) < r}.

If /? G ZΛ, with 0 < pi < r we set

(1.9) Z ( / ? ) = {α G Zπ I α/ = Pi (modr) for all /},

(1.10) E^p) = Z^nE.

LEMMA 1.3. Let a,β e E^\ then a = β o ω(α) = ω(β).

Proof. Suppose that ω(α) = ω(/?) and assume that α/ > )?/ for
some index /. Then α/ > /?/ for all / and, letting y, = (α/ - βi)/r,
γ — {yx?... 9 γn) is an element of S, with ω(γ) = 0. Lemma 1.2 implies
that y = (0, - ,0). •

We now fix/?, a prime number, with (p,r) = I. If p e 2n, 0 < pi < r,
we let p1 G ZΛ be the unique element satisfying

(1.11) (
I M - Λ Ξ O (modr).

LEMMA 1.4. Lei a E Z^ satisfying the equivalent conditions of
Lemma 1.1 with μ— p. Then, in (i) and (ii), /? cαft be chosen uniquely
so that

(1) βW
(2) ,(α

Proof. Suppose that ω(a) — pω{δ). Certainly, δ may be chosen
(uniquely) so that 0 < σ(δ) < 1. By Remark 1.1, gi(σ(a) - pσ{δ)) =
ai -pδi V/. Let γu..., γn be integers satisfying Σn

i=x γigi = 1:

iϊi(σ(ct) -pσ{β)) =
/=1 ί = l

hence σ(a) —pσ(δ) G Z. In particular, pδ — a belongs to the cyclic sub-
group of ln generated by g. Since g. c. d. (p, r) = 1 = g. c. d.(gi,. ..,gn),
there is a unique integer A, 0 < A < r, such that /?(<?+ A#) - α G rZ n .
Now set β = δ + λg. D

Let Qp be the completion of the field of rational numbers for the
p-adic valuation, and Ω an algebraically closed field containing Qp.
We denote by "ord" the valuation on Ω normalized so that ord/? = 1.
Let / be a positive integer such that r \ p^ - 1, let q = pf and let
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x e Ω x be a Teichmϋller point: xq = x. Let K be an extension of
Qp in Ω containing x. Let t\9...9tn be indeterminates. We shall use
multi-index notation: if a = (αi , . . . , an) e Nn, ta = f * 1 . . . t%\

Fix k\,...,kn positive integers. Given b,c eR with b > 0, let:

and ' - ~ ' A α /

ϊ = l

(1.13)

For each p = (p\9...,pn) eZn with 0 < px< r we let

(1.14) ^p(*,c) = {ί = X ^ Γ e

(1.15) ^ ( 6 )

, c),^(6),.2^(6, c),oS^(ό) are /7-adic Banach spaces with the norm

ι = l

Let jr = ΣU 8i/ki and

(1.16) J?(b,c)= iη = ^dCat
a\CaeK and

ordCα >

(1.17) ^ ( 6 ) = \jΊ?{b,c);
ceR

(1.18) &p(b,c) = \η = ΣCat
a(EΊ?φ,c) I Cα = 0 i f α

(i.i9) :

J?(b,c),J?(b),J?p(b,c),J?p{b) are /7-adic Banach spaces with the
norm

= Suppc% ca = b(Στ--yrσ(a)) - oτdBa.
i=i Λ I
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If α, β G 2n, there exist τ el and δ G E9 uniquely defined, such that
a + β = δ + τrg and we set

(1.20) ta*tβ =xτtδ.

Since σ(a + β) > σ(a) + σ(β) and σ(δ + τrg) = σ(δ) + τr, this
operation makes ^f(b) (respectively £? p{b)) into a AΓ-algebra; if ζ is
an element of 2?(6, d)9 then η —> C * η maps .5^(6, c) continuously into

Let 0 be the ^-linear map whose action on monomials is given by

(1.21) 0(ία) = *? l**2 2* •••*#•-

For each p, φ is a continuous algebra homomorphism from .2^(6, c)
into J?(b, c). If α G Z^> we define

X4<*)-Mβ)tβ if a^ € £(^') such that ω(α) =
(1.22) ψ{T) I Q o t herwise.

Note that if α,)? G Zπ, then

(1.23)

It follows from Lemma 1.4 that ψ extends to a continuous linear
map from J?p(b,c) into Ί?p<{pb,c). Since r \ q- 1, ψ/ m a p s ^ ( 6 , c )
into J?p(qb, c). If 6' > b, then Ί?p(bf, c) is a subspace of J?p(b, c) and
the canonical injection i:J?p(b',c) —> <5*p(b,c) is completely continu-
ous [12, §9].

We fix JF(ί) = Σα€N« ^ α ^ a n element of &{rb) and we let
φ{F{tr)) G Ί?o(b). We define ^ to be the composition:

By [12? §3], &p is a completely continuous endomoφhism of Jϊf(qb).
Its trace and Fredholm determinant are well defined and

/ oô  yvw\

det(/ - T&p) = exp ί - 2 J t r ( ^ m ) — 1 is a p-adic entire function.
^ m-\m

For m G N* we let

(1.24) Tm = {(/!,...,*„) eKn I /f"1 = 1 and if x ... x *£»=*}.

THEOREM 1.1.
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Proof. Write F{t) = Σaes ΣΛGN Ba+λgt
a+λg Let G{t) = Σaes Caf*>

with Ca = ΣλeN Ba+λgχλ F o r e a c h i = 1,..., Λ let δt = -pi{q - \)/r
and set Xp{t) = Uli if- Then Σte^x

P^)F{t) = E,€*f*/>(OG(O-
On the other hand, F(ί) = ^ ( f ) ) = Σaes c ^ m = G{tr).
Note that for each β e Tn we can find γ e ln such that ω(y) =

(q- l)ω(β). Since r | q- 1, we can choose y so that γt = 0 (mod r) for
all i. Furthermore, after adding or subtracting multiples of rg, we may
assume that γ eE. Accordingly, for each β e ZΛ, we denote by /? the
unique (by Lemma 1.3) element of S satisfying ω{rβ) = (q - l)ω(β).

For fixed β e

aeS

where the last sum is indexed by the set of all a e S such that
ω(ra + β) = qω(γ), γ e E^p\ The coefficient of tβ in this sum is

C~χ<(rβ)-(<i-^(β)y and therefore,
P

(1.25)

There remains to show that (q- l)n~ι t r ( ^ ) = Σterx Xp{t)G{t), and
it is sufficient to check this when G{t) is a single monomial, G(t) =
Cat". UtG = (l/(q-ί)l)n; if α = ( ^ , . . . , α 4 a n d 6 = (bi9...,bn)
are two elements of G, we let α 6 = Σ / L i ^ A F i χ C a primitive
(^ - l)-st root of unity. Since g.c.d.(g\9...,gn) = 1, we can find
γeG such that x = ζ^. Let H = {η e G \ η J = 0}:

ηeH

The homomorphism from G into l/(q - 1)1 sending η e G into
g" is surjective, with kernel H\ hence \H\ = (q-l)n~ι. Furthermore,

^ ζη is a character of /f. Therefore

0 otherwise.

By Lemma 1.1, η {δ + a) = 0 Vη G H if and only if there exists
ε G ϊn such that ω(δ + a) = (q - l)ω(e) or equivalently ω(rά) =
(q - \)ω(rε + p).
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Thus η (δ + a) = 0 Vη G H if and only if there exists β e
(necessarily unique) such that ω{ra) = (q - l)ω(β). If so,

«/ - Λ ^ T ^ = SiWot) -{q- l)*(β)} (mod^r - 1) for all /;

hence ζ? $+«) = ̂ (rα)-(ί-iM^). D

LEMMA 1.5. Let F(t) G ̂ ( r 6 ) ; then ψf o (*F(ί«)) = *F(t) o ψf.

Proof. It is sufficient to check that, for a monomial tβ, β el":

ψ/(tqβ * ta) = tβ * ψf{ta) for all a€E.

i f

0 otherwise.

Suppose that ω{qβ + α) = qω{δ). Then ω(α) = <?ω(̂  - )9); let λ e Z
be such that δ - β + λrg = γ is an element of E:

ψ/(ta) = χ<(<*)-<i<(v)ty; hence

tβ *

Suppose that σ(δ) — δ\lg\\ Remark 1.1 shows that σ(qβ + a) —
on)lgι. Thus,

a) - q*(δ) = — (qβi + α7 - qδ{) = — ( α 7 - ήfyz) + qλ.

Likewise, if σ(a) = &klSk>

σ(γ) = Z^ and — (α/ - ^y7) - —{ak - qγk).
Sk Si Sk

Hence
a) - <3̂ (<5) Ξ ^(α) - ^(y) +λ modq - 1. D

COROLLARY 1.1.

= Σ

2. Special subsets of ZΛ. Let α = (a\,...9an) and ύ? = (d\,...,dn)
be two «-tuples of positive integers.
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Let M = l.c.m.(fli α Λ ) and D = I.c.m.(dι9...,dn). If α
(αi, . . . ,α Λ ) eln we let

(2.1) s(α) =

Let / : Z" —• ̂ Z be the map defined by

(2.2) J{a) = V .α /

We define an equivalence relation on 2n by setting:

(2.3) a ~ o! if and only if α, = α' (modrf/) for all / = 1,..., n.

There are Π/=i ̂ / equivalence classes, which we call "congruence
classes"; if a e Zπ, we denote by ά its congruence class.

Let

(2.4) Δ ' = ( α G r | ^ ) < ^ < 5 ( α ) + ̂  V/= l,...,

If α and )8 are two elements of Δ' we set

ί a^β if and only if a - β and J(ά) = J(β)\
( } l Δ = Δ'/^.

We identify Δ with the subset of A* obtained by choosing, in each
equivalence class for &9 the first element in lexicographic order.

LEMMA 2.1. Let a e A and let β e ln be such that β ~ a and
J(β) = j{μ); then

s{β) < s{a).

Proof. If β Φ α, there is an index / such that βι < α/. Since β — α,
we have in fact β[ < α/ - d\. Hence

af ~

For each i e {1,...,«} we denote by £/, the element of Z" with 1 in
the i-th position and 0 elsewhere.
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LEMMA 2.2. Let K e j^l and let a be a congruence class in ΊLn such
that a n J~x(K) Φ 0. Then there exists a unique element β e Δ such
that β e a and J(β) = K.

Proof. Let S(S,K) = Max{s(δ) \ δ e a and J(δ) = K}.

Pick δea with J(δ) = K and s{δ) = S(ά9 K).
If δildi < s(δ) + di/at for all /, then δ e A' so Δ' n J~ι(K) φ 0 and

we are done.
Suppose now that <5//Λ, > s(δ) + di/aj for some index / and let k

be the index such that δ^/a^ is maximum among those satisfying the
last inequality. Let also / be an index such that s(δ) = δ\la\\ note that
necessarily k Φ /.

Let

y = δ-dkUk + dιUι\ ^>s(δ) and %-> s(δ).
ak aι

Hence s(γ) > s(δ) and Lemma 2.1 implies s(γ) = s(δ).
Furthermore yιja\ — s(γ)+dι/a[. Repeating the process if necessary,

after a finite number of steps we obtain ε e A' n a with J(ε) = K. π

Notation. If β satisfies the conditions of Lemma 2.2 we write

(2.6) β = τ(a,K).

Let

(2 1) N — 7(a) —

ι=l ~'

Observe that aeA&a + aeA. Thus, if a Π J~\K) φ 0:

LEMMA 2.3. 2>ί K e j^l and let a be a congruence class in ln such
thataΓ)J-ι(K) φ 0; let β = τ(a,K),δ = τ(a,K+ 1); there exists an
index λ = λ(a,K) e {1,...,«} such that β = δ - dλUλ. Furthermore
s(β) = βλ/aλ.

Proof. Let
δ\ - d\ δn- dn

s — max
ax
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and let / be the smallest index such that s — (δj - dι)/a/. Let γ =
δ-dιUf. for all iφl,

- > s(δ) > ̂ —^- = %-, hence s(γ) = γ,/a, = s.
Λi aι aι

Furthermore, for all / Φ /, (y, - dfi/ai < s(γ) so γ e A'. Suppose that
there exists ε € Δ' such that &3ίy and ε precedes γ in the lexicographic
ordering. Let j be the smallest index such that ε7 φ γy, then ε7 < Jj-dj
and there exists k> j such that ε^ > y^ + d^ .

aj aj

- ak ~ ak ~

Hence s(γ) = s(ε) = s, ε7 = γj - dj, εk = γk + dk; in particular
5 = (γj — dj)/cij so we must have j Φ /; hence ε7 = δj — dj and
therefore j > I. Let now δ' = δ - djUj + dkUk:

<

 εj =

 δJ ~ dJ <

aJ
<s(δ)

Thus

aJ
Furthermore,

δ' δi . <.,. d; . „ . , . , , δl δv + dk , c./, dk-ί- = - i < s(δ') + — iί i φj,k, and-t = — = s(δ') + — .
en α, - α, ^ % % %

Hence <5' e Δ, δ'&δ and ^' precedes δ in the lexicographic ordering.
This contradicts the choice of δ. Hence γ = β = τ(α, AT) and / =
λ(α,K). Ώ

We now let

(2.9) A = {αeA\0<s{α)< 1}

(2.10) Δ = { α € Δ | 0 < / ( « ) < # }

LEMMA 2.4. |Δ| = |Δ|.

Proof. We construct two maps:
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Let a G Δ: we can find μa G N, ra G ̂ N, unique such that J{ά) =
NμQ + ra and we set:

(2.11) ι(ά) = a- μaa.

Clearly^(α) G Δ with s{ι(a)) = s(a) - μa and 0 < J{ι{a)) < N; hence
z(α) G Δ. If /? G Δ, there exist Vβ G N and kβ < \ unique such that
s(β) = ιyβ + kβ'<>we set:

(2.12) ι*(β) = β-vβa.

Clearly i*QJ) G Δ with 0 < s(ι*(β)) < 1, i.e. i*(jff) G Δ.
It is now straightforward to check that / and i* are inverse to each

other. D

LEMMA 2.5. Let δ = £ΠίU<*i IfKe £z, ίΛe/i Z " 1 ^ ) meets
exactly δ congruence classes in ΊLn.

Proof. Let G = Z/d{l x x Z/<4Z and let H = ^Z/Z. / : ZΛ -> ^Z
induces a group homomorphism:

(2.13) Ί:G^H.

It is sufficient to prove that |7~ {h)\ — δ for any h e H. Let

*= π *•
7V/

Observe that J = g. c. d. (δ\,..., δn) and therefore there exist integers
α i , . . . , α Λ such that 5 = X)^=1 α/ί/. Dividing by Π/=i ̂ / w e obtain
^ = ]Γ/Li a/M, showing that 7 is surjective. Hence, for heH,

| Z)

LEMMA 2.6. |Δ| = Λ^Π"=i dt.

Proof. By Lemma 2.5, J~ι(K) n Δ has exactly ί elements for each
A: e ^2. Hence, using the definition of Δ, |Δ| = iVΠ/Li^ T n e

conclusion follows from Lemma 2.4. D

Let r be a fixed positive integer and let g = (g\,...,gn), k =
(kι,...,kn)be H-tuples of positive integers, with g. c. d . ( ^ , . . . , gn) =
1.
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From now on we shall assume that α, = rgi and dι = rki for all
ι = l,...,/i. Thus, in (1.7) and (2.1):

(2.14) s(a)=j(a) VαGZ".

If p = (pu...,pn)e ZΛ, with 0 < pi < r we let

(2.15) Ap = {a e Δ | αz = /?/ modr};

(2.16) Δ/,

(2.17) Δp

LEMMA 2.7. |Δ,| = \AP\ = NUt\ ki

Proof. The map ι:A —• Δ of Lemma 2.4 restricts to a bijection
between Άp and Δ^. Hence IΔ Î = \AP\. Let η = (ηι,...,ηn) e 2n,
with 0 < i// < r. If α G Δ^ we let γ = α - p + */. There is a unique
integer λα such that Ka = J(γ) + λaN satisfies 0 < Ka < N, and we
set FPiη(a) = τ(γ + λaa,Ka). FPyη maps Ap and Δ^ and is easily seen
to be injective. Hence, the rn sets Δp, 0 < px < r, all have the same
cardinality

\AP\ = ±\A\ = Nflki. •
ι = l

LEMMA 2.8. Let p be a prime number, with (p,α, ) = (p,*//) = 1 ./or
α// /; teί p eln, with 0 < Pi < r and let p' e 2n satisfying 0 < p\ < r
andpp\ - pi = 0 (mod r) V/. //α' £ Δ /̂, /Λ r̂̂  ^xwί α e Δ^ α«̂ f integers
δ\9...,δn uniquely determined by the conditions:

0<δι <p- 1.

rmore:

(i)

j(α) = ^ <^ j(α ;) = ^ ^ (5/ = 0.

(ii) α ; H^ a is a bijection between Ap> and Ap.

Proof. Certainly, using notation (1.4), there exists β e ln such that
ω(β) = pω(af), and an argument similar to that of Lemma 1.4 shows
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that β can be chosen uniquely in E^p\ Furthermore, if s(a') = αj/fl/,

then s(β) = βι/a/. Since a' G Δ, we have

0<<-^L<d-l,
at a\ at

hence

at a/ cii

for all i.
If

there is a unique integer δh 0 < δ( < p - 1, such that

Q<βi-δidi βj <di

di dι a{

If

we set δi• — p - 1.
Now let α, = β\ - δidi for all /. It is straightforward to check that

α = (αi , . . . ,α π ) and δ = (δ\,...,δn) have the required properties, ϋ

LEMMA 2.9. Let p = (pu...9pn) € Nrt, wϊΛ 0 < /?/ < r. Then

n

Σ («-D

Proof. Let G = Π?=i Z/rf/Z and let /,: G ~> (Z/rZ)w and ̂ : ZΛ

be the natural quotient maps. Let ~ρ = /* o ̂ (/?) and ̂  = / ^"
Note that

\KP\ — PJ fc/, α e Δ ^ α + αeA^ and η e Kp oη + ?(d) G

Let // be the cyclic subgroup of G generated by p(a) and let {G:

/}|f1

//)

be the orbits of G under addition by elements of H: G = LI/ff/) G/

We have tf, - MKpnGι^Gι and Δ^ = U ί f ^ Δ ^ / ) , where Δ,(/) =

{α G Δ I ̂ (α) G ̂  Π G/}.

Let / be such that Kp Π Gι ^ 0 and let 7/ G Δ/)(/) be such that
J(η) is minimum. Let ε = \H\; e is the smallest integer such that
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εαz = 0 (modd{) for all i. For any a G Δp(/), there is a unique integer
μ G N such that 0 < μ < ε and α, + μαz = /// (mod dϊ) for all /, and
we have J(η) < J(a + μa) < J(η) + εN. Conversely, if β G Δ satisfies
J{ή) ^ J(β) < Ji1!) + £N a n ( i βi = Άi (modrf, ) for all /, there is a
uniques G N, 0 < v < e such that J{η)+vN < J(β) < J(η)+(v+l)N.
Let γ = β - va\ then J(η) < J(γ) < J{η) + N. If J(γ) > N, then
J(y - a) > 0 and J(γ - a) < J(η)9 contradicting the minimality of
J(η). Hence γ G Δ.

Let Dp(l) = {ae Δ|α, = η, (modt//) Vι and J(η) < J(a) < J(η) +
eN}. Since w(a + a) = tί (α) for all a G Zw we deduce that:

τι (α) =
ι = ι

 p { )

It follows from Lemma 2.3 that Dp(l) = {τ(η,J(η) + k) \ 0 < k <
εN - 1}. For each ifc G N, let α(fc) = τ(7f? J(η) + k), sk = s(a^), Jk =
/( α W) = / 0 + fc,4= λ% Jk)' By Lemma 2.3, a™ = α^" 1 ) + ^ Uλk

and ^ = α ^ laλk+x F ° r e a c h / G {1,... n} let /// be the integer satisfy-
ing εa,i = μjdi. Since α ( ε Λ Γ ) = η + εa, it follows that εa = Σ | = ! ̂  ^
and //,: = #{A: | 1 < k < εN and λk = /}.

We have

7=1 4=7 7=1

On the other hand:

ε ^ r A r r N(εN-l)

A:=0

Thus
fiJV-l

a€Dp(l) k=0
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Hence

£ w(a) = \KP\N&^±. D

3. Cohomology: The generic case.

a. Definitions. Let Kr be the unramified extension of Qp in Ω of
degree r, ζp G Ω a primitive /?-th root of unity, Ωo = Kr(ζp) and let
τ G Gal(Ω0 | Qp(ζp)) denote the Frobenius automorphism. Let &§ be
the ring of integers of Ωo.

Let M — 1.c. m.(αi,...,αΛ) and, for m G N*:

(3.1) Sm = {(α; y) G NΛ x Z | γ > -mMs(a)};

(3.2) £ m = {(α; y) G £ x Z | y > -mMs(a)};

(3.3) ^ m = Ωo-algebra generated by {taYγ \ (α; 7) G 5m};

(3.4) p W =

(3.5) Am =

(3.6) ^ m = Ωo-span of { ί " ^ | (α; γ) G

If aeln, γ GZ, we set:

(3.7)

REMARKS.

(3.8) wm(a γ)>0 for all (α; y) G 5 m

(3.9) If FT e Q, the set {(α; y) G £ m | t/;m(α; y) = Ŵ } is finite.

If a,β G Zw, there exist J = δ(a,β) e E, λ = λ(a,β) G Z unique,
such that a + β = δ + λa and we set:

(3.10) f**mtβ = YλmM1*.

If (α; y) and (jff; ε) are two elements of Sm, δ = δ(a, β), λ = Λ(α, )8)
as above, then (δ, y + e + λ) G Em. In particular, the operation * m

makes £%m into an ΩQ[Γ] algebra and, if we set

(3.11) Φm(ta) = C *m tf * w • • * w C (α 6 ZΛ),

then Φ m extends to an Ω0[Γ]-algebra homomorphism Φm:Am^ 3lm.
Furthermore, Φm induces an Ωo[Γ]-algebra isomorphism.

(3.12) Φm:Hm^^m.
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Am,Am, 3%m are graded algebras with

(3.13) wm(Yγta) = Wm(a;γ).

Both Φm and φm are homogeneous of degree 0.

Note. When no confusion can arise, we shall omit the subscript "m"
and write * instead of *m.

For b, c e R, b > 0, let

(3.14) L(b,c) = {η = Y^A{a)ta | α e Nπ, A(a) G Ωo,

ord A(a) >

(3.15) L(b) = \jL(b,c).
ceR

L(b) and L(b,c) are p-adic Banach spaces with the norm

(3.16) ll̂ ll = Supp~c% ca = ord^(α) - bJ(a).
a

Let

(3.17) Lm{b,c) = | ί = ΣB{a;γ)taγy \ (a γ) e Em, B(a γ) G Ωo,

oτdB(a γ) > bwm(a;γ) + c \;

(3.18) Lm(b) = (JLm(b,c).
ceR

Lm(b) and Lm(b, c) are /?-adic Banach spaces with the norm

(3.19) \\ξ\\m = Sup{a.γ)p~c^, ca,γ = ovdB(a γ) - bwm(a\γ).

Let

(3.20) Rm(b, c) = Ω 0[[r]] Π Lm(b, c),

(3.21) Rm(b) = Ωo[[Y]\ΠLm(b) =

The operation * m described in (3.10) makes Lm(b) into an Rm{b)-
algebra. (3.9) ensures that this is well defined. Furthermore, if η e
Lm(b), the mapping ξ *-+ η *m ξ is a continuous endomoprhism of
Lm(b). Note that Lm[b) is the completion of ,91 m for the norm || | | w .
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For each c e R, there is a continuous Ω0-linear map from L(b, c)
into Lm(b, c) whose action on monomials is given by (3.11). This map
will again be denoted Φm.

Let c\9... 9cn be non-zero elements of F^ and, for each / let c, be
the Teichmϋller representative of c, in ΩQ (SO cj = q).

Let:

(3.22)

Let {7j}JLQ be a sequence of elements of %(ζp) such that

If ta Yy is a monomial, we set

(3.24) Ei(taYγ)= (2L-?l

Note that 2s/(ία * ί^) = Ei{ta) *tβ + ta * £/(^) so that £/ acts as a
derivation on all the rings and Banach spaces which have been defined
so far.

Let

(3.25)37(0 = y
oo oo / n \

(3.26)//(/) = E w/1*^) = Σ Yi ( Σ <? 'ίf*)
/=0 /=0 ^ i = l ^

(3.27) Ήi =

(3.28) Hi = EiH{t), / = 1 Λ — 1;

(3.29) Di = Ei + Hi, I = 1 , . . . , / I - 1 ;

From now on we assume:

(3.30) g.c.d.(/;,M) = g.d.c.(/>,Z>) = l,

and we let

(3.31) β/ = c Λ I = 1,...,Λ.

Each β/ is therefore a unit in ̂ o
Let^ = b-l/(p-l): we have^/ G l ( 6 , - ^ ) a n d ^ z eLm(b,-e)Vm.
Also, if £ < /?/(/? - 1), #/ G L(ft, -^) and H£ e Lm{b, -e) Mm.

b. Reduction.
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LEMMA 3.1. Let a e Nn, K = J(a), β = τ(ά9K); then ta = u{μψ

7Q1 Σ/=~/ Hipi^a, where u{a) e &§ is a unit and, for each i, p^a

Furthermore, Pi^a has unit coefficients and, iftδ is any monomial of
Pi^a having non-zero coefficient, then

' (i) J(δ) = J(a) - 1
(ii) s(δ) > s(a).

Proof. If δ e 2n, we can write

tδ = tn^e-

By assumption, there are integers λ\9...,λn such that a = β +
Σn

i=xλidiUi, with Σni=xλi = 0. The result follows immediately, ex-
cept maybe for (ii): if a Φ /?, there is an index i such that A/ > 0;
hence α/ > A + rf, . Thus (αf - rf/)/α/ > A7^/ > ̂ (^) and s(β) > s{a)
since jS e Δ. D

LEMMA 3.2. Let Yγta be a monomial in &m and let 5 € Δ, τ eN,
satisfying a ~a + τa and J(a) = J{a) + τN. Then

where u(a) G ̂ o is a unit and, for each i, qi^y e 3lm. Furthermore,
each qi^y has unit coefficients and, ifYδtε is a monomial ofq^y with
non-zero coefficient, then wm(e;δ) = wm{a\γ) - 1.

Proof. Using Lemma 3.1 we can write:

(3.32) YT = u{*)Yn* + γόι ΣHa>iM,
i=\

where β is the unique element of Δ such that β&a, snappy — YγPi,a-
Let tδ be a monomial of p^a with non-zero coefficient:

Lemma 3.2 (ii)=> y > -mMs(δ) so that pit0[fγ e Am and equation
(3.32) is valid in Am.

Applying the map Φm:Am —• &m to equation (3.32) we obtain the

desired result with q^γ = Φm{Pi,a,γ) D

Let Vm{b) be the i?m(6)-vector space generated by

and let Vm(byc) = Vm(b)nLm(b,c).
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PROPOSITION 3.1.

n-\

/=1

Proof. Let ξ = Σ{a;y)eEm

A(a^)taγγ e £»,(*, c). We apply Lemma
3.2 to alljhe monomials in ξ.

If S G Δ and v > -mMs(a) we let

(3.33) B£v) = A(a; y)w(α),

where w(α) has been defined in Lemma 3.2 and the sum is taken over
the set

E(a, v) = {(a; γ) G Em \ v = μmM+γ, a ~ a+μa, J(a) = J{a)+μN}.

If (α,y) G E(a,v), then wm(α;)>) = wm(a;u); hence by (3.9) the
sum (3.33) is finite and ordB~{y) > bwm(a\ v) + c.

Thus, for each 5 G Δ, Bz(Y)t« = Σu>-mMs(a) BZ^γv^ i s a n e l e "
ment of Vm(b9 c). On the other hand, let £ = γ^1 Σ(a;γ)eEm

 A(a>
and write

(3.34) ίι =

If (α; y) G ism we can write q^y = X) A>,y(^;^)ί ε ^, the sum being
taken over all (e δ) G Em such that wm(ε;δ) = wm{a\y) - 1. Thus

(3.35) Q(β9u) = 7vl p w ( | ί , ^ ( α ; Λ

the sum being over the set {(a γ) e Em \ wm{a\γ) — wm(β\v) + 1}.
This set is finite and

β ) > b [ ( β ) + ^ +

Hence the sum (3.34) is meaningful, £/ G Lm(b,c + e), and we can
write

c.

PROPOSITION 3.2. Vm(b) n Σ,"=\ H i * Lmφ) = (0).
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Proof. Let v e Vm(b). For W G Q we let υ^ be the compo-
nent of υ which is of homogeneous weight W: we can write v^w^ —
Σ ^Pa{Y)ta, where each Pa(Y) is a Laurent polynomial in Y.

Let ι:Ά -> Δ be the map described in the proof of Lemma 2.4. Let
Z = YmM and, for α G Δ let β = i(α) = α - τα (τ G N):

ία = Z V + (ίfl - Z)(ίQ" f l + Zta~2a + •- + Zτ~ha~τa).

Hence we can write:

v(W) = Σ Qβ(γ)*β + ̂  - z ) Σ Rβ& γ^
βeK βeA

where for each β, Qβ(Y) is a Laurent polynomial in Y and Rβ(t, Y)
is a Laurent polynomial in Y, t\y...9tn. Furthermore:

(i) if y e Ω x and α e Δ, then Pα(y) = 0 o βl(α)0>) = 0;
(ii) if Yytδ is any monomial in Rβ(t9 Y) with non-zero coefficient,

then J{δ) > 0.

Suppose v e Σ"~ι Hi * Lm(b): we can write

7 = 1

where, for each /, £, G Ωo[F, y , ί i , . . . , ί π ] and is of homogeneous
weight W — 1.

Let a,βeE and suppose α + j8 = δ + τα, with δ e E and τ G N:
ί« * w tβ = ta+β - {ta+β-a + zta+v-2a + •- + zτ-χta+P-τa)(ta - z ) .
Hence we can write

Hi * Cι = ̂ /C/ + ̂ / ( ^ - Z ) , with m G Ω o [ r , y ,*!,..., ί Λ ] .

For each / = 1,...,«, fix ^ e Ω with ^ ' = εnε~ι and let //^ be the
group of di-th roots of unity in Ω.

Let Si = Π y y / ^ ^ = Π ; = i ^ . Lrt β ( r , 0 = Σ,β&Qβ{Y)tβ and

suppose v(W/) ^ 0: there exists α G Δ such that Pα(Γ) Φ 0; hence

there exists β = ι(a) G Δ such that Qβ(Y) φ 0. For such a fixed /? let

A(β) = {γ G Δ I /(y) = /(jS)} and let yeΩx such that Q^(j ) φ 0.

We claim that there exists (ζ\9...,ζn)€ Π/=i ̂  s u c h

(3.37) «(y,wi,...,«/i)^θ,

w h e r e ut =ξiζitSrί, i=l,...,n.
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Indeed, the coefficient of ts

n

J{β) in (3.37) is

yeA(β)

For each γ = (γu..., γn) e A(β), χγ: (ζu. ., ζn) »-> ζ\x -.. ί*" is a char-
acter of Π?=i βdr

The elements of A(β) all belong to distinct congruence classes, so
these characters are all distinct, and therefore linearly independent.
Our claim follows since Qβ(y) φ 0.

Let now

δeA
n

u = l[(ξiζi)ai and A =
ι = l ι = l ι = l

We have:

(3.38) ϋ(y;ul9...,Un) = (utt-ymM)S(y;ul9...9un).

The left-hand side of (3.38) is a non-zero polynomial in tn, of degree
less than A, while the right-hand side vanishes for any choice of tn

satisfying t^ = u~xymM, a contradiction. Hence v^w^ = 0. D

LEMMA 3.3. Let K be a field of arbitrary characteristic, u\,...9un

elements ofKx,v\,...,vn,λpositive integers; let

...Jn,Y,Y-χtal f=(Y~ιta)λ-l,

B = B/(f), hi = ufl - un?n» (i = 1,..., n - 1); then the family {h^l}
in any order forms a regular sequence on B.

Proof, Let / £ {1,..., Λ -1} and let 21/ be the ideal of ϊ? generated by
{hi}iei- We must show that (21/: h^) = 21/ for any k φ I. By relabelling
we may assume that / = {1,...,./}, with j < n - 1, and that k = j+l.
Accordingly, we write 21/ instead of 21/. Let B\ = K[tu...,tn,Y,Z]
and B{ = Bx/{Zλ -l,YZ- ta). _

The mapping Z *->Y~λta induces a ring isomorphism from B\ into
B. Thus, if 93/ is the ideal of B\ generated by {h\9...,hj,Z - 1,
YZ - ta}, we must show that (93/:A/+i) = 9S7, or equivalently that
hj+\ does not belong to any associated prime of 9$/. Since 95y has
j + 2 generators, its dimension is at least n - j . On the other hand,
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the ring Bι/*Bj is integral over K[tj+λ,...,/„] (note that Yλ - tλa = 0
in 2?i/<8/). Hence dim 33/ = n - j . By Macaulay's theorem [16, Ch.
VII, §8], 93, is unmixed. Likewise, 93y+i = (*Bj9hj+\) is unmixed, of
dimension n — j — \. Let p be an associated prime of 257 and suppose
that hj+\ e ρ:p D (<B/,A7 +i) = 2$/+i; hence dimp < w - 7 - 1, a
contradiction since dim p = n - j . D

Let

(3.39) R = Ω0[tu...,tn,Y,γ-ιta]

(3.40) /(^) = (y

(3.41) R{m) =

(3.42) Λ|m) = eit?Mdl - εnt™
Md\ 1 = 1,...,«- 1.

For any monomial ^Γ3" we set:

(3.43) u;w(α; y) = wm(t«Y?) = ̂ ( / ( α ) +

ΰ;m makes Λ into a graded ring, and each h\m>) is homogeneous of
weight 1.

LEMMA 3.4. Let I be a non-empty subset of {\,...,n - \) and let

{Pi)iei be a family of elements ofR{m) such that £ / € / P/A{m) = 0. Then
there exists a skew-symmetric set {riij}ijei such that Pi = Σ/ G / ^Uj^f^

for each i e /. Furthermore, if each Pi is of homogeneous weight

wm(Pi) = W independent ofi:

(a) if W > 1, each ηtj may be chosen of homogeneous weight
wm(ηij) = W - I with Min7 €/{ordι//j} > ordP; for all i e 7;

(b) ifW < 1 ί/ze« Pi = Ô /or <z// / e 7 (/>. ê cA ι//j may be chosen
to be zero).

Proof. To simplify notation, we write A/ instead ofh\mK We proceed
by induction on the number of elements in 7. By relabelling, we may
assume that / = {l,...,r + 1}, r > 0. If r = 0, then P/ = 0 and
hence we can assume r > 1. Let 2lr be the ideal of Tc generated by
{hiYi=\\ by Lemma 3.3, (2lr: Ar+i) = 2lr; hence Z^+i e 2lr. Thus there

exist y 1,..., yr e ~R such that

(3.44) Pr+x



EXPONENTIAL SUMS AND p-AΌIC ESTIMATES 255

Now

1 = 1 ι = l

r+1

i=\

By induction hypothesis, there exists a skew-symmetric set {ηijYi ; = 1

such that P/ + y/Λr+i = E/=i >7/,A for / = 1,..., r.
We can now set ηr+i,i = .V/ and ι//>r+i = -y/? / = l , . . . , r and the

first assertion follows.
If each Pt is of homogeneous weight W > 1, in (3.44) we can

choose each yι to be of homogeneous weight W - 1. If W < 1, since
wm{hi) = 1 both sides of equation (3.44) must be zero and the induc-
tion hypothesis shows that each Pt- = 0, / = 1,..., r + 1.

For the estimate on ordf//j we refer the reader to [7, Lemma 3.1]
where a similar result is proved. D

The argument of Lemmas 3.5 and 3.6 is due to S. Sperber and can be
used to close a gap in the proof of directness of sum in [15, Theorem
3.9].

LEMMA 3.5. Let Tm = {(a γ) G (mMl)n x 2 | taY? e R}; then
the mapping (a; γ) »-• (mMa; γ) establishes a bijection between Sm and
Tm. In particular, ti ι-+ tfM (/ = 1,...,«) maps Am into a subring of

R and Am into a subring ofR

Proof. Let (α; γ) eSm and let β = mMa:

tβγy = (γ-\

s(β) = mMs(a) is an integer and, by assumption, γ > —mMs(a) and
OLi > s(a)ai for all /. Hence γ + s{β) > 0, βt - s{β)aι > 0 VΪ and
tPγγ eR.

Conversely, if tδYγ is a monomial in R, then γ > -s(δ): this is
clearly true of the generators of R and, for any δ,ε eln, s(δ + ε) >
s{δ) + s(ε). Thus, if {β\ y) e Tm, with β = mMa, then (α; γ) e Sm. π

LEMMA 3.6. Let I be a non-empty subset of{l,...,n- 1}; then the
family {Hi}ieI in any order forms a regular sequence in 3ίm- More pre-
cisely, if {Pi{t, Y)}iei is a set of non-zero elements of 3lm, of
homogeneous weight wm(Pt) = W independent of if and such that
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J2iei^i * Pi — 0, then there exists a skew-symmetric set {ξij}ijei
of elements of<9?m such that

(i) Pi(t,Y) = ΣjeiHj*ξij;
(ii) each ζij has homogeneous weight wm(ξij) = W - 1 for all

(ij)elxl;
(iii) Minjel{oτdξij} > ordP/ - l/(p - I) for all i e I.

Proof. Assume that

(3.45)
iei

Applying Φ~ to equation (3.45) we obtain the following equation
inAm:

(3.46) ΣΉiPi(t,Y) = 0.
iei

Replacing t\ by t^M (i = 1,...,n), and multiplying by γ^\ we get

(3.47) 5^ΛJm)P/(ίmA/,Γ) = 0.
iei

Let β/(ί,y) = Pi(tmM,Y); by Lemma 3.5, Qi(t,Y) e Rm and,
if taYγ is any monomial in Qi(t,Y) with non-zero coefficient, then
Wm(oί\ γ) = W. Lemma 3.4 implies the existence of a skew-symmetric
set {ηij}ijei of elements of ~Rm such that β/(ί, Y) = Σjei ViJ^ f o r

each / G /, with wm{^lij) = W - I and ordι//j > ordPz for all /,7*.
If taYγ is any monomial in (?/(/, 7) with non-zero coefficient then

(α; γ) eTm. The same is true of each /z|m). Hence we may choose the

elements r\u so that f/ZJ = ξf

ij(tmM, Y):

(3.48) P / t ^ , Y) =

Therefore, letting ξUj{U Y) = rt%(t, Y):

(3.49) />.(ί,y)

Equation (3.49) is now valid inAm and, for any monomial taYγ in
^ij(i, 7) with non-zero coefficient, wm(a; γ) = wm(mMa; γ) = W -I.
Applying Φm to equation (3.49) yields the result. D

Using the results already attained in this section, Lemmas 3.7 and
3.8 and Theorems 3.1, 3.2, and 3.3 can be obtained with a slight
reworking of the arguments in [7, §3]. We shall therefore omit the
proofs.
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LEMMA 3.7 (see [7, Lemma 3.4]). Ifb < p/(p - 1), then

n-\

1=1

LEMMA 3.8 (see [7, Lemma 3.5]). Ifb < p/(p - 1), then

n-\

THEOREM 3.1 (see [7, Lemma 3.6]). Ifl/(p - 1) < b < p/(p - 1),
then

n-\

THEOREM 3.2 (see [7, Lemma 3.10]). Let I be a non-empty subset
of {I,..., n - 1} and assume that \/(p - 1) < b < p/(p - 1); if{ξi}iei
is a set of elements of Lm(b,c) such that Σ / G / A * & = 0, then there
exists a skew-symmetric set {ηij}ijei in Lm(b,c + e) such that & =
ΣjeIDj * γ\ij for all i e L In particular, the family { A } ^ 1 in any
order forms a regular sequence on the Rm(b)-module Lm(b,c).

THEOREM 3.3 (see [7, Lemma 3.11]). Ifl/(p - 1) < b <p/(p - 1),
then

n-\

d. A Comparison Theorem.

We now undertake to compare reduction modulo

n-\ I n-\ >
Σ Hi^ * Lm (b, c + e) I respectively ] P Z)/ * Lm (b, c + e)
ι = l V ι = l >

with reduction modulo Σ^Γ/ Hi * Lm(b9c + e) studied in §2.
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Fix ξ e Lm{b9 c). Using Theorem 3.1, Lemma 3.8, and Proposition
3.1 we write:

n-l

(3.50) f = v + £ A * C / , veVm(b9c)9 ζieLm(b9c + e);

n-l

(3.51) ξ = υ + ΣHi*ζi9 veVm{b,c\ leLm(b9c + e);

n-l

(3.52) ξ = v +

LEMMA 3.9. Let ζ9v9ζ\9...9ζn-\ be as in (3.50); then in (3.51) υ
satisfies v — v e Vm(b,c + e) and each ζ\ can be chosen so that ζ\ - ζ, €
Lm(b,c-

Proof,

ι = l /=1 /=1

By Lemma 3.8, there exist υ' e Vm(b,c + e) and ζ\ e Lm(b,c + 2e),
i= 1,...,« - 1, such that

n-l n-l

1 = 1 ι = l

Hence
n-l

ι = l

and we may setΰ = v + v',ζi = & + C'i9 i = l,...,n-I. π

In the rest of this section we fix b = l/(p — 1) (so e = 1).

LEMMA 3.10. For each i e {1,..., /i - 1} ίAere exwί

Γ/gL w (p/(p-l) ,0) and GieLm(p/(p-l),0)

such that Hi = 77/ * G/ + Γ, . Furthermore, Gi is invertible and G~ι e
Lm(p/(p-l),0).

Proof, By definition,

Hi = Y"pιv,(cpl^tp'dι -c

pl(^tpldλ

(recall that c] = C/, and therefore cj = cf).
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Let

/=o L ι x ι/ J /=o
Then

If we set
oo pι-\

1=1 7=0

then formally: Hi = ΉiGi + Γ/.
Since djc/ak e Q and (p,M) = 1 we have

^ - f ^ y i > l foraUA:=l,...,/ι.
«Jfc \akJ J

Hence both Γ, and G, are elements of L(pf{p - l),0). G, is of the
form Gi = ί- Σa,>o Cat

a', such a series is invertible in L(p/(p -1), 0),
with inverse G" 1 = 1 + Σ * o(Σβ l>o c*nj.

Now apply Φm: L{p/{p - 1)) -> LOT(p/(p - 1)). D

LEMMA 3.11. L ^ ξ,v,ζι,...,ζn^ι be as in (3.51); //?en /« (3.52) v
satisfies v -W e Vm(p/(p-l),c+l) and each C, can be chosen so that

Proof. We construct a sequence (£(">, v("), C^, , (JJ,),eN with

by letting <^(0) = ξ9 ι;(0) = v, ζ 0 ) = ζ/ and the following recursion.
Given ξ^ e Lm(p/(p - l),c + i/) we can write, using Lemma 3.8:

1=1



260 MICHEL CARPENTIER

By Lemma 3.10,

n-\

(3.53) ξW = vW + ΣTfi * Gi * ζf]+ξ{v+x\ with
ι = l

Let 5 E N . Writing equation ( 3 . 5 3 ) f o r O < ^ < 5 and adding yields,
after cancellations:

z/=0 /=1 is=0

Letting s —• oo, Σ t = 0 ^ ( ί y ) converges to F € Vm(p/(p - l ) ,c) ,
o ^ converges to £; G Lm(p/(p - l ) ,c + 1) and £ (5+1) converges

to zero. D

THEOREM 3.4. Le/ £ G Lm(p/(p - l),c); //w^ express ζ in the form
ξ = v + Σf~* Ήj * ~ζi on the one hand, with v e Vm(p/(p - 1),c), ζ, G

and if we express ξ in theformζ = v + ̂ r / A * C I

ctfΛer Λαπύf, wzYΛ υ G Vm(p/(p - l),c), C/ G Lm(p/(p - l ) ,c+ 1),
Vm(p/(p - 1),c + 1) and ζ; α/κi £,- may ό^ chosen so that

ζi - G/ * Ci € Lw(p/(p - 1), c + 2) for all I

Proof. This is a consequence of Lemmas 3.9 and 3.11. D

4. Specialization. In order to obtain estimates for the exponential
sum (0.4), we need to specialize the spaces Lm(b9c) by setting Y = y
for some y G Ω x . We first observe that elements of Lm{b,c) are
convergent for ord// > -b/dt and o r d 7 > -Nb/mM. Furthermore,
if we fix Y = y with ordy > -Nb/mM, the resulting series inίι9...9tn

are convergent for ί, satisfying ordί/ > (mM/diN)ordy.
Throughout this section, we assume that (p,M) = 1 = {p9D) and

l/(/7- 1) < ^ < / 7 / ( / 7 - 1).

For a G 2n we let

(4.1)

For;cGΩ£,let

(4.2) L(JC; />, c) = {{ = Σ A{a)f \ A(a) G Ωo,
^ a€E

α) > bw(a) - s(a) ordx + c >;
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(4.3) L(x;b)=\jL(x,b,c);
ceR

(4.4) V = Ωo-span of {ta \ a G Δ};

(4.5) V(x;b9c) = VnL(x,b,c).

L{x\ b) is a Banach space with the norm

(4.6) \\ξ\\x = Sup/?"S ca = ord^(α) - bw(a) + s(a) ordx.
aeE

We equip L(x;b,c) with an Ω0-algebra structure in the following
way: if α, β G E, there exist δ G E, λ G N unique such that a + β =
δ + λa and we set:

(4.7) ta*tβ = x ¥ .

If 7/ = Σα €£i?(α:)ία is a n element of L{x\b9d)9 then <̂  \-^ η * <̂  is a
continuous mapping from L(x; b, c) into L(JC; δ, c + c'). Note that ///
and /// (as defined in (3.27) and (3.28) respectively) can be viewed
as elements of L(x; b, 0) and that ///, ///, and D\ act continuously on
L{x\ b, c) for any C G R . Given x € ΩQ , ordx m > -JVfc, we fix y G Ω x

with y M = x. Let Lm(δ,c)', Lw(6) ;, ^ ( f t ^ y , L(x;b,c)', L(x;b)f, V
be defined as their unprimed counterparts, with the difference that
the coefficients are allowed to lie in Ω'o = Ωo(y). We can define an
Ω'0-linear specialization map

Sy:Lm(b)'^L(xm;b)'

by sending Y into y. Sy is continuous of norm 1 and is surjective,
sending Vm(b)' onto V and Dx * Lm(b)' onto A * L(xm,b)' for all /.
Indeed, there is an Ω'0-linear section

(4.8) Ty:
aeE

PROPOSITION 4.1. K e r ^ | Lm(b,c)f) = (Y -y)Lm(b,c- ordy).

In particular, Lm(b)'/(Y -y)Lm(b)' ^ L(x™;b)'.

Proof. Let ξ = Σ{a.y)eE A(a;γ)taYγ G Lmφ9c)' and assume that
Sy{ξ) = 0.
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For each aeE we must have Σγ>-mMs(a) Λ(a\ ϊ)yγ = 0. Multiply-
ing by ymMsW we obtain Σy>0A{a\ γ - mMs{a))ty = 0. Thus

\A(a>? ~ ™Ms(a))(Yy -yrλγmM*(«)f*= (y- y)ξ ι\ with
a€E L γ>0 *

<̂ ; € Lm(b, c - ordy)' since ordy > -Nb/mM. D

It follows from Theorem 3.2 that the operators Z>z, / = 1, . . . ,
n - 1, acting on the i?m(Z>)-module Lm(ft) (respectively the Rm{b)'-
module Lm(b)') form a completely secant family ([3, §9, n° 5, Propo-
sition 5]). In other words, the associated Koszul complexes are acyclic:
if

»μ({Di}^{9Lm(b)) [respectively ^ ( { A j J L p I m i W ]

is the μ-th homology group of the corresponding complex, then:

(4.9) H A ? 1

(4.10) ^({A}?:, 1 , !,^) ' ) = 0, // > 1.

LEMMA 4.1. (Γ-y) is not a zero divisor in Lm(b)'/ Σΐ=ΐ Di*Lm(b)'.

Proof. Let ξ e Lm(b)f and assume that

n-\

(4.11) {Y-y)ξ = ΣDi*ζh beLm(b)'.

By Theorem 3.1, we can write

n-\

(4.12) ί = v +

Thus (4.11), (4.12), and Theorem 3.3 imply (Y - y)v = 0; hence
v = 0. D

THEOREM 4.1.

(i) H,({Di}»Il\L(x™;b)') = 0 for all μ> 1;
(ii) 1
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Proof, (i) Let Dm = Y - y. As a consequence of Lemma 4.1, the
family {A}/=i forms a regular sequence on the i?m(ft)'-module Lm{b)'.

In particular,

(4.13) » μ ( { D i } U 9 L m ( b y ) = 0 f o r a l l μ > L

Using [11, Ch. 8, Theorem 4] and Proposition 4.1, for all μ > 0 there
is an Ω'o-linear isomorphism.

(4.14) Hμ({Di}«=ι,Lm(b)') ^ HμdD^Mx^by).

(ii) Sy maps Vm(b,c)' onto V{xm\b,c)' and Dt * Lm{b,c + e)' onto
Di * L(jcm; 6, c + e)' for all / = 1,..., n - 1.

Hence using Theorems 3.1 and 3.3:
n-\

(4.15) L{xm\b9cy ^V{xm\b,c)9 +

Now

H0({A}?Γ/, ̂ ( ^ w ; b)1) = L(xm; b)f/

PROPOSITION 4.2. L(x; ft, c) = K(JC; ft, c) + ]£?=/ A * ^ ( ^ ft, ^ + ^)

. Let /̂ = Σ^aeEA(a)ta ^ e a n element of L(x;b9c). Assume
that, for any a e E such that A(a) Φ 0, s(a) is equal to some value s
independent of α, and let ξ = y~MsTy(η).

Let cs = s ordx; ξ = ΣaeEA{a)taY-Ms is an element of

Lx{b,c + cs) and, by Theorem 3.1, there exist v = Σβζ£
pβ(γ)tβ €

Ki(ft,c+Cy) and ζ/ G l i ( ί , c + c ί + ^ ) such that <!; = V + Σ ^ J Ί 1 A*C/ For
each / ? G Δ , write /^(Γ) = X)7Pβ i yγy and, for each / = 1,...,/ι - 1,

Σ(α y) >,y

For / G N, 0 < / < M we let:

PβΛγ)= Σγ+Ms=l (modM)

γ+Ms=l (modAf)

Note that if taYγ is any monomial in Z)f * Cz / with non-zero coeffi-
cient, then again γ + Ms = / (modM). Thus, if / Φ 0:
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Applying Theorem 3.3, Pβ,ι(Y) = 0 f°Γ all jff G Δ and we may choose
each ζjj to be zero. Therefore:

βel

Certainly yMsPβfi(Y) e Ωo for all β e Δ and yMsSy(ζu0) has its coef-
ficients in ΩQ for all / = 1,...,«- 1. Hence

Now observe that if α e Is, s(a) can assume only a finite set of
values. Finally, directness of sum follows from (4.15). D

COROLLARY 4.1.

(i) Hμ({Di}»-ι

ι

9L(xmlb)) = 0 for all μ> 1.
(ii) {

Proof, (i) follows from Theorem 4.1 and the fact that

(ii) follows from Proposition 4.2 and the fact that

n-\

HoUA}?-/, L(xm; b)) = L(xm; b)/ ̂  Dt * L(x w ; b). π
ι = l

5. The Frobenius map. We first review some of the definitions and
results in [7, §4] concerning the lifting of characters. Let

be the Artin-Hasse exponential series. For s € N* U {oo}, fix γSto e
%(ζp) satisfying

and let θs be the splitting function

(5.1) θs(z) = E(γsβz).
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Let

ί L l ( r l ) if SEN*,
(5.2) as = _

- if s = oo.
p-\

As a power series in z:

(5.3) 0,(z) =
/=o

with

ί ordi?^ > las+ι for all / > 0.

» ( Ϊ ) _ _ M forθ</<p-l.

In particular:

(5.5) oτdB^ =-!—r forO<l<p-l.

For a fixed choice of s, we can choose ys$ so that
(5.6) θs(t) = 0(7) whenever tp = t,
where 0 is the additive character of Fp chosen in (0.5). Let

ί Fit) = Π?-i ̂ (ci ί);

(5.7) I _ A J p'

As a consequence of [7, §4], for all m > 0:

(5.8)

Clearly, F(ί) € L(ras+u0) and G(ί) 6 L(f ras+ϊ,Q).

Let p e N", 0 < pi < r. We define elements />(0) = p, p' =
p(ι\...,pW — p satisfying:

I 0 < p(p < r,
For each of the Banach spaces which have been defined, we indicate

by the subscript "/?" the subspace where all monomials ta have zero
coefficient unless aeZ(p\ Thus, for example,

Lm,p(b,c)

= {ξ = Σ ^ α y ) ^ ' € £„(!»,c) I 5(α;y) = 0 if α <
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Let X = YM. If a e ZW we set

(5.10) ^(ί α ) = -̂
t 0, otherwise.

(5.11) ψx{f)

(5.12)

0,

^ i f 3β

otherwise.

ψX{f) = Sy O ψχ{f).

ψ defines a continuous Ωo-linear map ψ:Lp(b/p,c) —• Lp\b,c)\ ψx
defines a continuous i?i(δ)-linear map ψχ:LlίP(b/p,c) —> Lp>p>(b,c);
ψx defines a continuous Ωo-linear map ψx: Lp(x; b/p, c)-+Lpi{xp; b, c).
For all m > 0 the following diagram is commutative:

(5.13)

Let:

(5.14)

Lm,p(b/p)

ψxm

Sy
Lp(xm; b/p) ®ΩoΩ'o

LAb)

Ψx =

Fj(t,X) = [φpl{F(f))r e V(α ί + 1,0), 0 < j < / - 1;

If 6 < pα s + i we define maps

(5.15) I

(5.16)

ST;Lp(b,c)-+ Lp(b/q,c)

Srχ:LlιP(b,c)->LUp(b/q,c)-

Lp(x;b/q,c)

Lp(bJq>c) JC Lp(b,c);

*G0(i,x)

LltP(b/q,c)-±+LqιP(b,c);

Lp(x;b/q,c)^Lp(χi;b,c).

By [12, §9], ̂  (respectively ^j-, respectively ^ ) is a completely
continuous Ωo-linear map (respectively i?i(6)-linear, respectively Ωo-
linear).

Let δ be the operator defined on 1 + TΩ[[T]] by

(5.17) g(τy =
s_ 8{T)
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If x € ΩQ is the Teichmϋller lifting of Λ: € Fq, it follows from Corol-
lary 1.1 that

(5.18) L(f,?$,e,P,τ)(-ιr = det(i-τrxf-
1.

We now fix the choice of constants in (3.23) by setting

(5.19)
/=0
0, if j > s.

Let F{f) = expH(t) (H(t) has been defined in (3.26)).
We recall ([7, (4.22)]) that

(5.20)

As operators on L(0):

(5.21) Z>,=

F(t) = -
F(t)

G(l)=m

On the other hand, 9~ = ψfoG{tr) maps L(0) into itself, and it follows
from (5.20) that

(5.22) XX
F(f)

o/o F(f).

Since ψ/ o Ei = qEi o ψf for all /, we deduce:

(5.23) $-oDi

and this last equation is now valid in L(b) c £(0). Using (5.13) and
the definition of φm we deduce:

(5.24)

Let

(5.25)
(b)/ Σ,"~ί A * Lm,p{b)\

As a consequence of (5.24), &x acts on the Koszul complex
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K({Di}"=i9Lp(x;b)). Specifically, there is a commutative diagram:

O-+Lp(x;b) — > Lp(x\bf~{) -> > M * ; δ ) — ^ — 0

(5.26)
0->Lp(x«;b) -* > Lp(x*;b)(nil) -+ > Lp(x<t;b)

Corollary 4.1 implies that both rows of diagram (5.26) are exact.
Therefore, taking the alternating product of the Fredholm determi-
nants, we obtain

(5.27) det(/ - T9-Xf'~
x = det(/ - tWx).

For j > 0 let

{ 9-W = ψ o

^ 7 ) maps LplpU){b,c) into LpJ+1)Po+i)(b,c), while ^ ( ; ) maps
Lpω(xpJ;b,c) into Lpu+»(xpJ+l;b,c). If we set:

(5.29) D^^Ei + Hf, i=l,...,n-l;j = 0,...,/,

then, as above,

(5.30) &U) o Dψ = pZ)^ 1 ) o

Hence:

C5 3Π ^ ι

Let

—Ji1 D?] *
^ J ) and ̂ 7 ) define quotient maps:

(5.33) I _^ Xφ

With these notations, WJfJ = Wχg9p, W^Q — WxqiP and the following
factorizations hold:

(5.34) ^

We now fix:

(5.35)
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PROPOSITION 5.1. (i) Let C^(Y) = (C{

β

J)

a(Y)) be the matrix of

~^(χ' wxl -" wx,+pX) w i t h respect to the bases {γ-MP>s(a)ta | a € ^ y

°fwΆ a n d {Y~Mpl+is(aha I α G V + υ } ofW(J+

p

λ) respectively; then

for any a e ApU) and β € Apίl+\), C^\{Y) is analytic in the disk

{y I ordy > -N/MpJ(p - 1)}.

(ii) Let x G Ω x with oτdx = 0 and let AW> = (A{pa(x)) be the matrix

ofW{i]: W^p -> W^p

+X) with respect to the bases {ta\ae Δ,ω} ofwQ

and {Γ I a € Δ^O+D} ofW^p

+X) respectively, then for any a e Apω and

β e Apy+ί),oτdA^Q(x) > (pw(β) - w(a))/(p - 1).

Proof, (i) If a € Δ^o+υ, then

p \p - 1 p-l

so that

Using Theorem 3.1, we may write

(5.36) gr(J)(γ

= Σ

with
p pw{β)-w(a)

a n d

(ii) Applying the map Sy to equation (5.36) and multiplying by
XP's(a) w e

(5.37)

1=1
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Since 9"^ is defined over Ωo, Proposition 4.2 shows that in fact
{) € Ωo and we may write:

(5.38) Λ% £

The estimates now follow from the fact that

THEOREM 5.1. Let p = (p\,...,pn) £ Zw, 0 < pi < r and suppose
that p = 0orp=l (modr); let jη,(T) = Π α G ^ (1 - qw{a)T). Then the

Newton polygon ofL(f, θ , p, T) lies over the Newton polygon of%?p{T).

Proof. Let y be the completion of the maximal unramified exten-
sion of Qp in Ω. For x e ^{ζp) satisfying ordx > 0 and τ( c) = xp

we can define

(5.39) τ-ι:WW-+w P

by sending ζ = ΣaeEω A(a)ta € Lp(x
p; b, c) into

τ~l(A(a))t«eLp(x;b,c).

Certainly,

τ'ι(D\ι) *p L{xp\b)) c Di *i L(x b) for all i,

so that τ" 1 is defined on the quotient. Let x e ΩQ with x^ = x and
let

(5.40) Ή = τ~ι°&χ0)

If p = I (modr), then p^ = p for all j Έ N and 9% is a τ"1-semi-
linear map and a completely continuous endomorphism of Lp(x\b)
over Ω! = %{ζp). If we let

(5.41) P*x = τ-ι

then:

(5.42) Wx

It follows from [8, Lemma 7.1] that the Newton polygon of
detΩo(/ - tWx) can be obtained from that of detΩ l(/ - TW'X) by
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reducing both ordinates and abscissae by the factor \j/ and inter-
preting the ordinates as normalized so that ord# = 1. If x e ΩQ is the
Teichmϋller representative of x e Fq, we let sf(x) = ( ^ , α M ) be
the matrix of 3^: Wx>p —• WXiP over Ωo with respect to the basis
{tn I a e Ap}. By Proposition 5.1:

(5.43) oπi.*fr,tt(jc) > PwW)-™(«) ϊoraM ajeλp.

We fix an integral basis {*li}(=x of Ωo over Ωi with the property

that {rji}{={ is a basis of F^ over Fp. In particular, if ω e Ωo, ω =

Σ{=\ c°irli^ ωi € Ωi, then ordω = Infi</<^{ordω/}. Write:

(5.44) K(mn=Σ, Σ *((βJ)Λ",i))ηjtfi.

W'x is an Ω!-linear endomorphism of WXyP with matrix

with respect to the basis {ηjf* \ a e Ap, 1 < i < /}. Furthermore:

We now proceed as in [8, §7]:

Q

7=1

where Q = /N]\n

i=xki and my is (up to sign) the sum of the

j x j principal minors of the matrix sf'. Thus, ord nij is greater than

or equal to the minimum of all y'-fold sums X^=1 w(β^)9 in which

> '/)}/=! ^s a s e t °f J distinct elements in {(/?, /) | /? € Δ^, 1 < / <
D

PROPOSITION 5.2. For each a e Apϋ), let a' e ApU+D and δ e l n be
the unique elements such that 0 < <J, < p - 1 and

Let CM = (C^'i(y)) be the matrix of&ψ: wψp

(i) ^ ( ; i ( )
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(ii) Ifβ φ a' then

provided one of the following conditions holds:

(a) β and a' lie in distinct congruence classes;
(b) β ~ a' and s(β) φ s(a');
(c) β ~ a', s(β) = s(ά), w(β) < w(α').

Proof. To simplify notation, we shall assume that j = 0. For each
/ 6 N we write B, instead of 5J00' in (5.3). For a e N" let

(5.45) *(α) = ( Π ? = 1 c ? < M ^ / * i f * I ai f 0 Γ a U /;

1̂  0, otherwise.
By (5.4), oτdB{a) > J(a)/(p - 1), and by (5.5), ord£(α) =
J(a)/(p - 1), if ati/di < p - 1 for all i.

With these notations:

(5 46)

Let α G Δ

(5.47) ^f

where the inner sum is indexed by the set

{(ί/,σ)e£ (0) xEW I ηj + λa,=0 moddh ω(a +μ) =pω(σ)}.

Let

{<*,y)€Ep

If we write

ξ = Y^Eβ{Y)tβ + YdΉ)*ζi,
βel i=ι

we saw in the proof of Proposition 3.1 that the coefficient of γ-PMs(β)
in Eβ(Y) is X) w(α)̂ 4(α; y), where the sum is indexed by the set

{{a; γ) e E x N | -pMs(β) = μpM + γ, a ~ β + μa,

J(a) = J{β) + μa, μ e N},
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and where each u(a) is a unit in <% Thus, if we write
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n-\

(5.48) CβiOί(Y)Y~pMs^tβ + ΣH] * ζh

i=ι

then the constant coefficient of CβjOί(Y) is

(5.49) Cβ,a{O)

where the sum is indexed by the set S(β,a) of all (η,σ,λ) G E^ x
( ) x N satisfying:

' ps(β) - s(a) + s(a + η)- ps(σ) +λ+pμ = 0

σ ~ β + μa, μeN

(5.50) { J(σ) = J(β) + μa

r\i + λdi = 0 mod d\ i = 1,...,«.

Let (η9σ9λ) G S(β9ά). If σ ~ β + μa and J(σ) = J(β) + μa for
some μ G N, then necessarily s(σ) < s(β) + μ. On the other hand,
s(a + η)> s(a) + s(η). Hence:

0 = ps(β) -s(a) + s(a + η) -ps(σ) +λ+pμ

> s(a + η) - s(a) +λ> s(η) + λ > 0.

We conclude that s(a + η) = s(ά)9 s(σ) = s(β) + μ, λ = 0, s(η) = 0.
Furthermore, since σ and β are elements of E, s(σ) < 1 and s(β) < 1;
hence μ = 0. Thus

(5.51) Cβ9a(0) = Σ w(σ)^(^7)5

where the sum is indexed by the set T(β, a) of all (η9 σ) e E^ x
which satisfy

s(a + η)=s(a)

s(η) = 0

s(σ)=s(β)

(5.52) σ~β,

J{σ) = J(β)

o)ij(a + η) = pa)ij(σ) for all /, j

γ\i = 0 mod di for all /.
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Let (η,σ) G T(β,a): there is an index / such that Y\\ = 0 and s(a) =
s(a + η) = aι/aι and, by Remark 1.1, s(σ) = σ//#/. Hence:

(5.53) p ( | - s ( σ ) | ) - ( ^ - s ( α , | ) - | ^ / £ N fora,.,'.

By assumption:

(5.54) P ( | - ^ ' ) | ) -(a?-*»)!)-*6N for alii.

by Lemma 2.8, s(α') = αj/fl/ and we deduce from (5.53) and (5.54)
that

pg(
σi-a'ι) e I for a l l / = 1 , . . . , « .

Si

Since g.c.d.(g\,...9gn) = 1 and (p,M) = 1, this implies o\ =
a\ modg/; but σ and α' are elements of E^: a\lg\ < r, a'j/gi < r
and σ\ = a\ modr. Hence σ/ = oίι and j(σ) = s(a'). (5.53) and (5.54)
now imply p{pι - a\) = 0 modd/ for all /; since (p,D) = 1 we deduce
af ~ σ ~ β. In particular, Γ(/?, a) = 0 if j8 and α' lie in distinct con-
gruence classes, or if s(β) Φ s(a'). Furthermore, since s(σ) = s(β),
(5.53) yields

(5.55) P ( | - s W | ) - ( | - s ( a ) | ) = ε , e z for all i.

Suppose β Φ a1: by Lemma 2.8 there exists an index j such that ε7 < 0
or alternatively an index k such that ε^ > p - 1.

If βj < 0, (5.53) and (5.54) imply p(σj/dj - βj/dj) = i/j - Sj > 0,
hence σ7 > βj and therefore σ7 > βj+d/, but /(σ) = /(j8), hence there
exists an index m such that βm > σm + dm. Subtracting (5.53) from
(5.54) then yields em - vm > p\ hence εm > p - 1. Now subtracting
(5.54) from (5.55) we obtain

hence βm > olm. If β ~ α', this last inequality implies that /?/ > α'
for all / (Lemma 2.3) and therefore w(β) > w(af) since s(β) = s(a').
Thus, if β ~ α', jff τ^α', 5(jff) = s(a'), and tt (^) < w(a') the set
Γ(j?,α) is empty and C^ a(0) = 0.

Suppose finally that jff = a'. Since /(σ) = Z(α'), iϊ σ Φ a1 there is
an index / such that α' > 07 + rf/; but this implies δj - vx > p in (5.53)
and (5.54); hence <5, > p, a contradiction. Hence σ = a' and the set
Γ(α',α) contains the single element (η,a') with ^ = {δ\d\,...,δndn).
In particular, ordCα/ jQ(0) = Σ " = 1 J/.
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Summarizing:
(i) ord Ca AO) = (?w(a') - w(a))/(p - 1);

(ii) if β φ a1 then C^>α(0) = 0 whenever one of the following holds:
(a) β and a' lie in distinct congruence classes;
(b) β ~ α' and s(β) φ s{oί)\
(c) β ~ α', s(β) = s(α'), and ιu(/?) < w{af).
The proposition now follows from the fact that, by (5.36) and The-

orem 3.4:

(5.56)
pw(β) - w{ά)

+ 1

Vα, β eΔ. a

Let π be a uniformizer of Qp(Cp) and let π' be a root of ZMD - π in
Ω. If ^ is the completion of the maximal unramified extension of Qp

in Ω, we let tΓ = ̂ {π') and we extend τ to y ' by setting τ(π') = π'.

Let &V\Y) be the matrix of Wψ: wψp -^ W^+1 } with respect to

the bases {π»(<*)y-p^Wf* | α e Δ^U,} of wψφ and

of wj/;ι\

(5.57)

For x G Ωo

x, with ordx = 0, let also J / W ( X ) be the matrix of

Wχ(i+1) with respect to the bases {πw^aha \ a e Apϋ)} of

'j$ and {πwMtP | β e Ap{J+ι)} of W$ι).
By Proposition 5.2, the following estimates hold:

' ordg^(O) > w(β) for all (α, β) e Apω x V + υ ;

o r d ^ ( 0 ) = w{a') for all α e Apω;

g^^(0) = 0 if β and α satisfy condition (a),

(b), or (c) of Proposition 5.2 (ii).

> w(β) for all (α, β) G Apω x ΔPO+D;

= tt (α') for all a e Δpo >;

> w(β) if j& and a satisfy condition (a),

(b), or (c) of Proposition 5.2 (ii).

If a G Δ, we let Z(a) = w(a) + w{a!) -\ h w(a^~1^) and, for fixed
p, we let

(5.58)
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THEOREM 5.2. The Newton polygon of L(f,Θ,ρ, T) lies below the
Newton polygon of'3fp(T) and their endpoints coincide at (0,0) and
(Q,Q(n -

Proof Let R = #Π?=i kt = dimΩ o(W^). We can write

R

detΩo(/ - TWX I WXtP) = 1 + £ mi{Y)T\

and by Proposition 5.1 each rrii(Y) is analytic in the disk {y \ ordy >
-Np/Mq(p - 1)}. If y satisfies ordy = 0, by the maximum modulus
theorem, ord(m/(y)) < ord(m, (0)). Observe that if a,β e Δ satisfy
a ~ β, s(a) = s(β) and w(a) < w(β), then w(af) < w{βf). Thus,
using (5.57), we can order the elements of ΆpU) for each j , 0 < j <
/-\,so that the matrices ^J\0) are simultaneously upper triangular,
with diagonal entries {^,,^,(0) | a e Ap} and ord^] 1 ) Q U )(0) =
w(αC/+1)). Hence for each /, I < i < R, ord(m/(0)) is the infimum of
all the /-fold sums X)Z(α), where a runs over a subset of / distinct
elements of Δ .̂ This establishes the first assertion. By Lemma 2.9,
Σ«eΔ w(<*) = R(n-l)/2foτ any p. Hence ordmρ(0) =/R{n-l)/2.

On the other hand, estimates (5.58) imply that, for all j , 0 < j <

ord(detJ/ω(;c)) =

The second assertion follows. D

COROLLARY 5.1. Ifp = 1 (modr), the endpoints of the Newton poly-
gons ofL(/9 θ, />, T) and ofjη>(T) coincide.

THEOREM 5.3. Ifp = 1 (modr), (or p = (0,...,0)), and pg\ =
/̂ (modkigj) for all i,j e {l,...,n}, the Newton polygons of

L(/, θ , /?, Γ) αn̂ f of&p(T) coincide.

Proof. Under our assumptions, the permutation a \-> a1 of Lemma
2.8 is the identity on Ap. Using the estimates (5.58), the remainder of
the proof is identical to that of [15, Theorem 5.46]. D

REMARK. Theorem 5.3 holds in particular when p = 1 (modMD).
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