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ASYMPTOTICS FOR CERTAIN WIENER INTEGRALS
ASSOCIATED WITH HIGHER ORDER

DIFFERENTIAL OPERATORS

RICHARD J. GRIEGO AND ANDRZEJ KORZENIOWSKI

The aim of this paper is to derive a large deviation principle for
a certain class of higher order operators by combining the ideas of
Donsker and Varadhan with the random evolution point of view of
Griego and Hersh.

1. Introduction. It has been known for some time how to recover the
principal eigenvalue for operators that generate Markov semigroups by
means of the Large Deviation Principle of Donsker and Varadhan ([3],
[4], [5]). The principal eigenvalues for such operators will be obtained
as limits of certain functionals of Brownian motion.

We shall consider operators of the form L = jAx + c(x)Ay, where
the Laplacian Ax is stochastic in the sense that it generates the Brown-
ian motion semigroup; whereas Ay is analytic and does not correspond
in general to a Markov process. The operator L can be interpreted as
either the averaged result of randomization of the evolutions c(x)Ay

driven through the variable x in the coefficient c(x) by Brownian mo-
tion or as a perturbation of the Laplacian by an operator-valued po-
tential V(x) = c{x)Ay.

We follow the notation of [7], and we will recall some necessary
facts. Let Ay = Y^\a\<ιr da{y)Da be a formally self-adjoint elliptic
operator of order 2r on a bounded open set G c Rm, with domain
D(Ay) being a subset of the Sobolev space H2r{G), such that (Ayg, g) <
0 for g e D(Ay) with the inner product of L2(G).

In what follows we shall consider the following initial-boundary
value problem

(I.I) ut(y,y',t) = Ayu, t > 0,y,/ e G,

subject to given homogeneous conditions on the boundary dG. We
shall assume that the (fundamental) solution to this problem can be
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written as follows:

(1.2) u(y,y>,t) ^e-^φn{y)φn{y'\ • < - α 2 < -*ι < 0

where {φn} are complete and orthonormal eigenfunctions of Ay with
corresponding eigenvalues {-an}. We assume the multiplicity of a{

is k.
As shown by Garding [6], this assumption is satisfied whenever

Dirichlet boundary conditions are imposed, i.e., dJu/duJ = 0 for
j = 0,1, . . . , r - 1, where d/du is differentiation with respect to the
outward normal to G.

Let c : Rn —• [0, oo) be a locally Holder function that approaches
infinity for large x, i.e.,

c(x) —•oo, as |JC| —• oo and

)|JC - x'|Q, 0 < α < 1

for x' in some neighborhood of x for every x in i?.
Then, by Lemma 2 of [7], L = ^Δ^ + c ^ ) ^ acting on ψ(x,y) €

L 2(iί" x G) with ^( ,y) G D(ΔJC) and ^(x, ) € £>(^y) itself has neg-
ative eigenvalues {-λw}, λ2 < -λ\ < 0, with a complete set of
orthonormal eigenfunctions ψn(x,y) e L2(Rn x G). See also below for
a direct derivation of these facts.

We will consider functionals Φ satisfying the conditions of [3].
Thus, let & be the space of probability distribution functions on Rn

with the Levy metric. Let Φ : 9* —> [0, oo] be a function such that (a) Φ
is lower semicontinuous on &\ (b) Φ " 1 ((-oo, K]) is compact in & for
each 0 < K < oo; (c) if Fm -> F and suρpFm c [a\, b\] x x [an, bn],
then Φ(Fm) -• Φ(F); (d) let F G ̂  with Φ(F) < oo and let gm:Rn ->
[0,1] be continuous with ^ w (x) = 1 for x e [-n, n] x x [-«, n]. If
F w is defined by

If F has density / , we write Φ(/) for Φ(F).
Let Ω be the space of continuous functions ω : [0, oo) -* Rn and let

X(s, ω) = ω(s). Define for B cRn,

L(t,ω,B) = (1/ί) [ΊB(X(s,ω))ds,
Jo
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which is the proportion of time in [0, t] that the path X(-9ω) spends
in the set B. Also, let Ex denote expectation with respect to Wiener
measure Px on Ω, so that Px{ω : X(0, ω) = x) = 1.

Finally, let F+ = {/ e L2(Rn) n Cι(Rn) : | |/ | | i = 1 and / > 0
on Rn or on Interior(supp(/)) if supp(/) is compact} and let & =
{geL2(G)nD(Ay):\\g\\2 = l}.

Under the above conditions on the functional Φ, Donsker and
Varadhan [3, Theorem 2.1] have proved the following asymptotic eval-
uation.

THEOREM (Donsker-Varadhaή). For each x in Rn

f

(1.3) \im
t—KX) t

The following corollary follows by considering

Φ{f) = fv{x)f{x)dx.

COROLLARY. IfV>0is continuous and V(x) -* oo as \x\ -> oo,
then the principal eigenvalue —λ\ of the operator \ΔX- V(x) on L2(Rn)
is given by

(1.4) -λx = lim -t \ogEx [exp (- f V{X{x)) d

{ L l Σ § f L v { x ) f { x ) d x :

-MIL\Vψ{x)\2dx

ί V(x)ψ2(x)dx:ψeL2(Rn),\\ψ\\2=l}.

These results appear in [3] for n = 1, but they readily carry over to
higher dimensions by mimicking the proofs there.

The main result of this paper is the following version of the Donsker-
Varadhan theorem in our setup.
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MAIN THEOREM. Let u(y,yf, t) be as in (I.I). Then,

(1.5) lim \\ogEx 17 u(y,y,tΦ(L(t,ω,-)))dy

= -lnfmf { -

COROLLARY. The principal eigenvalue -λ\ of L = 1/2ΔX +
L2(Rn x G) w ̂ /ve/z by

(1.6) -A! = lim ) l o g £ x [ / u{y,y9a{t))dy

= - mf inf { - I ' ^ v " ύfx
/ ^ 18 7^ f(x)

+(-Ayg, g) I c{x)f{x) dx:fe
jRn

= -infinfU [ \Vψ(x)\2dx
Ψ 8 I 2 JRn

+ (-Ayg,g) c(x)ψ2(x)dx:

ge¥,ψeL2(Rn

where a(t) = /Q C(X(S)) ds.

Observe that when Ay = - 1 , then u(y,yf, t) = e~tδ(y - / ) and we
recover (1.4).

Proofs are given in the next section.

EXAMPLES. AS a simple illustration, consider the fourth order op-
erator

which arises in elasticity theory. We impose boundary conditions
*(0) = S(l) = g"(0) = g"(l) = 0 on Ay. Then (-Ayg,g) = {g\g")
and we obtain
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Since a\ = inf{(g",g") : g e &} = π4 with corresponding eigen-
functions φ(y) = sinπy. See [1, p. 146] for other examples of possible
boundary conditions.

Another example is Ay — —Δ2 with u = 0 and du/dv = 0 on dG in
jR2 that corresponds to a vibrating plate; see [2, p. 460].

II. Proofs.

L E M M A . Let 0 < p < oo <2m/ 0 < β < α < o o δ e g7 ve«. ΓΛen for real
numbers such that 0 < αi < ot2 < αnί/ an ~ CnP as n —• oo, //ẑ r̂
w a constant M = M(aΪ9p9 C,e) such that Σ™=2e~a"a < Me~aιa.

Proof. Let b = C/2a\. Then by the assumption there is an N
such that an > axbnp and bNp > 1 for n > N. Hence, Σ7=2e~a"a ^
Ne~aχa + Σ™=N+\ e-(*na a n ( j t ^ e s e c o n ( i term on the right is dominated
by

roo p—a\d roo
/ e~^abχPdx = ^-ΎTΓ e-aχa(z-l)z(\-p)lpdz

JN Pbχ/P JbNp

r Γe-^εz{\ + z)^-p)lp dz] .
VP Jo J

Letting M be the finite constant in the brackets we otain the result of
the lemma.

We also need some information about the eigenvalues {-an} of
—Ay in the form of a Weyl-type theorem. First, define w(y) =
m(ξ : 0 < a°(y,ξ) < 1) where m is Lebesgue measure and W(G) =
fGw(y)dy, where a°(y,ξ) = Σ|β|=2r«α(>'Kβ Garding has shown
the following asymptotic expression for the eigenvalues:

N(a) = J2 ι ~ {2π)-mW{G)aml2r as α -> oo (see [6, p. 239]).
an<a

Since N(a) = n for a = an we have that

(II. 1) an~Cnp as n -+ oo

with p = 2rjm and C = (2π):

Comparing this with our examples, we have in the case Ay —
-d4/dy4 that an = π4n4 and for Ay = - Δ 2 we obtain

a - ( 4 π )2

n2
n \area of the plate/

Both of these results agree with (II. 1).
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Returning to the proof of the Main Theorem, in order to show (1.5)
put a = Φ(L(ί, ω, •)) and assume for now that a > ε > 0. Then by
(1.2) we have

n=\

Integrating with respect to y in this expression we obtain by orthonor-
mality of the φn's that

j^u y,y,a>

Applying the Lemma and (II. 1) we get

00

(II.2) ke'aιat < Σ e~anat < e~aιat(k + M)

where k is the multiplicity of a\ and the constant M does not depend
on the sample path ω. Taking Ex and then (l/ί)log of both sides of
(11.2) and letting t —• oo we obtain

(11.3) lim -\o%Ex I u(y,y,tΦ(L(t,ω,
t—+oo t LJG

1
ί-+oo t

where the second equality comes from the Donsker-Varadhan result
(1.3).

This proves (1.5) for Φ > ε > 0 because a\ = infge&(—Ayg9g). To
see that the ε condition is immaterial, apply (II.3) for Φ = Φ + ε then
-a\ε cancels on all sides of (II.3) proving (1.5) for all functionals sat-
isfying the conditions of Donsker-Varadhan as required by the Main
Theorems. This proves the Main Theorem.

Turning to the proof of the Corollary and (1.6), the way that one
obtains the eigenvalues and eigenfunctions for L = jAx + c(x)Ay in
[7] is a two-stage process that leads to a double index for both eigen-
values and eigenfunctions as follows. Fix n and consider the operator
jAx - anc(x) operating on L2(Rn). By the conditions on c(x) and
a result of Ray [8, Theorem 3], this operator has negative eigenval-
ues {-βm,n, m = 1,2,...} and complete orthonormal eigenfunctions
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{u>m,n{x)> m = 1,2,...} in L2(Rn). This implies

A

2

= ( 2&x - ocnc{x) j um,n{x)φn{y)

Hence, the —βm,n for m, n = 1,2,..., are eigenvalues of L = jAx +
with corresponding eigenfunctions um,n{

χ)Φn{y)
Now, by the Feynman-Kac formula, if the largest eigenvalue of
ix - ac(x) is λ(α), then

λ(a) = lim - expf-α

implying that Λ(α) decreases as a increases, which in turn implies
-βxι = supmfn(—βm9n)9 i.e., the supremum is itself an eigenvalue. We
label the eigenvalues in a linear array < —λi < -λ\ < 0, so that
-λ\ = -β\,\.

By (1.4) we have that

(II.4) - λx = Inn j \ogEx Jexp (-ax j * c{X(s)) <

c(x)f(x)dx:fer
Rn

\Vψ(x)\2dx

+ax ί c(x)Ψ

2(x)dx : ψ e L2(Rn),\\ψ\\2 = l) .
JR» )

For Φ(/) = / c(x)f(x) dx we have that

fΦ(L(ί,ω, )) = / c(X(5))ύf5 = α(ί);

thus by (II.3) and the fact that a\ = infge&(-Ayg,g) we obtain (1.6)
upon substitution into (II.4), there by proving our corollary.

REMARK. Under an additional weak condition on the operator Ay,
it is possible to show for each y0 e G that

lim - log

= lim -loglΓx

t—>oo t [Lu(v'v tΦ(L(t,ω,-)))dy\.
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Note that the absolute value on the left-hand side is necessary since
w(yo> y> 0 is not nonnegative in general.

Our results can be extended to operators of the form L = D +
V{x) where D is the generator of a wide class of Markov processes
satisfying the assumptions of the Donsker-Varadhan theory and for
fairly general operator-valued potentials V(x) treated in the theory of
random evolutions.
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