ON REGULAR SUBDIRECT PRODUCTS OF SIMPLE ARTINIAN RINGS

CHEN-LIAN CHUANG AND PJEK-HWEE LEE

We construct a counterexample to settle simultaneously the following questions all in the negative: (1) Is a regular subdirect product of simple artinian rings unit-regular? (2) If R is a regular ring such that every nonzero ideal of R contains a nonzero ideal of bounded index, is R unit-regular? (3) Is a regular ring with a Hausdorff family of pseudo-rank functions unit-regular? (4) If R is a regular ring which contains no infinite direct sum of nonzero pairwise isomorphic right ideals, is R unit-regular? (5) Is a regular Schur ring unit-regular?

In [1] Goodearl proposed a list of open problems on regular rings. Some involve potential sufficient conditions for a regular ring to be unit-regular. The primary aim of this paper is to construct a counterexample for the questions 6, 7, 8, 9 (second part) and 11 in Goodearl's book.

Among others the sixth question asks: Is a regular subdirect product of simple artinian rings always unit-regular? In [4] Tyukavkin has shown that any regular algebra over an uncountable field, which is a subdirect product of countably many simple artinian rings, is unitregular. Recently, Goodearl and Menal [2] have generalized this result by showing that any regular algebra over an uncountable field, which has no uncountable direct sums of nonzero right or left ideals, must be unit-regular; in particular, any regular algebra over an uncountable field, which has a rank function, is unit-regular. In this paper we shall construct an example of a regular ring which is a subdirect product of countably many simple artinian rings but is *not* unit-regular.

Let F be a countable field, F[t] the ring of polynomials over F in an indeterminate t, and F(t) the quotient field of F[t]. Define an exponential valuation ∂ on F(t) by $\partial r(t) = +\infty$ if r(t) = 0 and $\partial r(t) = n$ if $r(t) = t^n f(t)/g(t)$ where n is an integer and $f(t), g(t) \in$ F[t] with $t \nmid f(t)g(t)$. Let V be the valuation ring associated with ∂ , namely, $V = \{r(t) \in F(t) | \partial r(t) \ge 0\}$. Note that F[t], F(t) and V are all countable. Consequently, V is a countable-dimensional vector space over F. Let $v_0, v_1, \ldots, v_n, \ldots$ be a basis of V over F. First, we may assume that $\partial v_i \neq \partial v_j$ for $i \neq j$. Suppose that n is the least integer such that $\partial v_n = \partial v_i$ for some i < n. Choose $\alpha_i \in F$ so that $v_n/v_i - \alpha_i \in tV$; then $\partial (v_n - \alpha_i v_i) > \partial v_i$. If $\partial (v_n - \alpha_i v_i) = \partial v_j$ for some j < n, then $\partial (v_n - \alpha_i v_i - \alpha_j v_j) > \partial v_j$ for some $\alpha_j \in F$. Continuing this process we get a v'_n such that $\partial v'_n \neq \partial v_i$ for all i < n and that $\{v_0, v_1, \ldots, v_{n-1}, v'_n\}$ spans the same subspace as $\{v_0, v_1, \ldots, v_{n-1}, v_n\}$ does. Next, we assume, by reordering, that $\partial v_0 < \partial v_1 < \partial v_2 < \cdots$. For $v = \alpha_k v_k + \alpha_{k+1} v_{k+1} + \cdots$ with $\alpha_k \neq 0$, we see that $\partial v = \partial v_k$. Since v_0, v_1, v_2, \ldots span the whole space V, we must have $\partial v_0 = 0$, $\partial v_1 = 1$, $\partial v_2 = 2$ and so on.

We begin by constructing a ring which is similar to that in Bergman's example [1; Example 4.26]. Let S be the set of those $x \in E = \text{End}_F(V)$ such that $(x - a)t^n V = 0$ for some $a \in F(t)$ and some nonnegative integer n. As in [1; p. 47] we observe that a depends only on x, that is, for each $x \in S$ there is a unique element $\varphi x \in F(t)$ such that $(x - \varphi x)t^n V = 0$ for some $n \ge 0$. Also, it can be verified that S is an F-subalgebra of E containing F[t] and that φ is an F-algebra map of S onto F(t). In addition, ker φ is a regular ideal of S and $S/\ker \varphi \simeq F(t)$, and therefore S is a regular ring. However, S is not unit-regular because of the existence of $t \in S$ which is injective but not surjective on V.

Let us fix a basis $v_0, v_1, v_2, ...$ of V over F with $\partial v_n = n$ for all n. Then $v_n, v_{n+1}, ...$ form a basis of $t^n V$ over F. Let π_n be the projection of V onto the subspace spanned by $v_0, v_1, ..., v_n$ with kernel $t^{n+1}V$. Consider the matrix of $a \in S$ with respect to the basis $v_0, v_1, v_2, ...$ Certainly, it is column-finite. That is, for any $m \ge 0$ there exists $n \ge 0$ such that $(1 - \pi_n)a\pi_m = 0$. Also, it is row-finite: for any $m \ge 0$ there exists $n \ge 0$ such that both $(a - \varphi a)t^n V = 0$ and $(\varphi a)t^n V \subseteq t^{m+1}V$, consequently, $a(t^n V) \subseteq t^{m+1}V$ and $\pi_m a(1 - \pi_n) = 0$.

Set $W = S \times \prod_{k=0}^{\infty} \pi_k E \pi_k$ and write elements of W as sequences $w = (w_{-1}, w_0, w_1, ...)$ where $w_{-1} \in S$ and $w_k \in \pi_k E \pi_k$ for $k \ge 0$. Let R be the set of elements $w \in W$ satisfying the following two conditions: (i) for any $m \ge 0$ there exists $n \ge 0$ such that $w_k \pi_m = w_{-1}\pi_m$ for all $k \ge n$; (ii) for any $m \ge 0$ there exists $n \ge 0$ such that $\pi_m w_k = \pi_m w_{-1}$ for all $k \ge n$. It is clear that R is an F-subspace of W. To show that R is a ring, we consider any $u, w \in R$ and $m \ge 0$. There exists $n \ge 0$ such that $w_k \pi_m = w_{-1} \pi_m$ for all $k \ge n$. Now because $w_{-1} \in S$ is column-finite, $w_{-1} \pi_m = \pi_j w_{-1} \pi_m$ for all $k \ge n'$. Then $u_k w_k \pi_m = u_k w_{-1} \pi_m = u_k \pi_j w_{-1} \pi_m = u_{-1} \pi_j w_{-1} \pi_m = u_{-1} w_{-1} \pi_m$ for all $k \ge \max\{n, n'\}$. Similarly, we can show that there exists $n'' \ge 0$ such that $\pi_m u_k w_k = \pi_m u_{-1} w_{-1}$ for all $k \ge n''$. Thus, $uw \in R$. Therefore R is an F-subalgebra of W.

Let $\alpha: R \to \prod_{k=0}^{\infty} \pi_k E \pi_k$ be the projection $(w_{-1}, w_0, w_1, \ldots) \mapsto (w_0, w_1, \ldots)$. Given any $w \in \ker \alpha$, $w_k = 0$ for all $k \ge 0$. For any $m \ge 0$ we have $w_{-1}\pi_m = w_k\pi_m = 0$ for some k. Hence, $w_{-1} = 0$ and so w = 0. Thus α is injective. If $w_k \in \pi_k E \pi_k$, $k = 0, 1, \ldots, n$, then $w = (0, w_0, w_1, \ldots, w_n, 0, \ldots) \in R$ and $\alpha w = (w_0, w_1, \ldots, w_n, 0, \ldots)$. In other words, $\bigoplus_{k=0}^{\infty} \pi_k E \pi_k \subseteq \alpha R$.

Let $\beta: R \to S$ be the projection $(w_{-1}, w_0, w_1, \ldots) \mapsto w_{-1}$. For $x \in S$, set $w = (x, \pi_0 x \pi_0, \pi_1 x \pi_1, \ldots) \in W$. Let $m \ge 0$. Since x is columnfinite, there exists $n \ge 0$ such that $(1 - \pi_k) x \pi_m = 0$ for all $k \ge n$. Then $w_k \pi_m = \pi_k x \pi_k \pi_m = \pi_k x \pi_m = x \pi_m = w_{-1} \pi_m$ for all $k \ge \max\{m, n\}$. Similarly, there exists $n' \ge 0$ such that $\pi_m w_k = \pi_m w_{-1}$ for all $k \ge n'$. Thus $w \in R$ and $\beta w = x$. Hence, β is surjective.

It remains to show that R is regular. But since $R/\ker\beta \simeq S$ is regular, it suffices to show the regularity of $\ker\beta$. Let $w \in \ker\beta$. For each $m \ge 0$ there exist $n_m \ge 0$ such that $w_k \pi_m = \pi_m w_k = 0$ for all $k \ge n_m$. Without loss of generality, we may assume that $0 < n_0 < n_1 < \cdots$. For $0 \le k < n_0$, choose $u_k \in \pi_k E \pi_k$ such that $w_k u_k w_k = w_k$. For $n_m \le k < n_{m+1}$, we have $w_k \in (1 - \pi_m)\pi_k E \pi_k(1 - \pi_m)$, and so choose $u_k \in (1 - \pi_m)\pi_k E \pi_k(1 - \pi_m)$ such that $w_k u_k w_k = w_k$. Thus $u = (0, u_0, u_1, \ldots) \in W$ and wuw = w. Moreover, $u_k \pi_m = \pi_m u_k = 0$ for all $k \ge n_m$ by construction. Hence, $u \in R$ and so $u \in \ker\beta$. Therefore, ker β is regular, and so R is regular. On the other hand, S, which is not unit-regular, is a homomorphic image of R. Consequently, R cannot be unit-regular.

Thus, we have constructed a regular ring R which is not unit-regular. Since $\bigoplus_{k=0}^{\infty} \pi_k E \pi_k \subseteq \alpha R \subseteq \prod_{k=0}^{\infty} \pi_k E \pi_k$, where α is a monomorphism and $\pi_k E \pi_k \simeq M_k(F)$, R is a subdirect product of simple artinian rings. This settles Question 6 in the negative.

A ring R is said to be of bounded index if there exists a positive integer n such that $x^n = 0$ for all nilpotent elements x in R. The seventh question is: If R is a regular ring such that every nonzero twosided ideal of R contains a nonzero two-sided ideal of bounded index, is R unit-regular? This question is in fact equivalent to Question 6. Instead of showing this, one can verify easily that the example constructed above satisfies the condition of this question. Let I be a nonzero two-sided ideal of αR . Let $w = (w_0, w_1, w_2, ...) \in I$ with $w_n \neq 0$ for some $n \geq 0$. Since $\bigoplus_{k=0}^{\infty} \pi_k E \pi_k \subseteq \alpha R$ and $\pi_n E \pi_n$ is simple, it follows that *I* contains a nonzero two-sided ideal isomorphic to $\pi_n E \pi_n$ which is clearly of bounded index. This gives a negative answer to Question 7.

A pseudo-rank function on a regular ring R is a map $N: R \to [0, 1]$ such that (a) N(1) = 1, (b) $N(xy) < \min\{N(x), N(y)\}$ for all $x, y \in R$, (c) N(e+f) = N(e) + N(f) for all orthogonal idempotents $e, f \in R$. If, in addition, N(x) = 0 only if x = 0, N is called a rank function on R. The set of all pseudo-rank functions on R is denoted by $\mathbf{P}(R)$. Given a family $X \subseteq \mathbf{P}(R)$, we use ker(X) to denote the kernel of X, namely, $ker(X) = \{x \in R | N(x) = 0 \text{ for all } N \in X\}$. Since all simple artinian rings have rank functions [1; Corollary 16.6], then $\sum_{k=0}^{\infty} (1/2^{k+1}) N_k$ defines a rank function on $\prod_{k=0}^{\infty} M_k(F)$, where N_k is a rank function on $M_k(F)$. Thus any regular subdirect product R of $\prod_{k=0}^{\infty} M_k(F)$ has a rank function and hence $ker(\mathbf{P}(R)) = 0$. Therefore we have obtained a counterexample to the eighth question: If R is a regular ring such that ker($\mathbf{P}(R)$) = 0, is R unit-regular? Since a regular ring with a rank function contains no infinite direct sums of nonzero pairwise isomorphic right or left ideals [1; Proposition 16.11], the second part of Question 9 is also settled: If R is a regular ring which contains no infinite direct sums of nonzero pairwise isomorphic right ideals, is R unit-regular? Finally, a regular ring with a rank function satisfies the hypothesis of Question 11 [3; Theorem 5]: Let R be a regular ring, and assume that whenever x, $y \in R$ such that xy = yx and xR + yR = R, then Rx + Ry = R. Is R unit-regular? Thus our example also provides a negative answer to this question.

Acknowledgment. This is a revised version of our original paper. The referee pointed out that the technique of D. V. Tyukavkin in [4; proof of Theorem 2] which was not known to us then can streamline our proof considerably. He also indicated the existence of rank function in our example which enables us to settle Questions 8, 9 (second part) and 11 also in the negative.

References

- [1] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
- [2] K. R. Goodearl and P. Menal, *Stable range one for rings with many units*, J. Pure Applied Algebra, **54** (1988), 261–287.
- [3] D. Handelman and R. Raphael, *Regular Shur rings*, Arch. Math., **31** (1978), 332-338.

[4] D. V. Tyukavkin, Regular rings with involution, Vestnik Moskov. Univ. Ser. I Mat. Meh., 39 (3) (1984), 29-32. (English translation: Moscow Univ. Math. Bull., 39 (3) (1984), 38-41.)

Received January 10, 1988.

National Taiwan University Taipei, Taiwan 10674