ON REGULAR SUBDIRECT PRODUCTS OF SIMPLE ARTINIAN RINGS

Chen-Lian Chuang and Pjek-Hwee Lee

Abstract

We construct a counterexample to settle simultaneously the following questions all in the negative: (1) Is a regular subdirect product of simple artinian rings unit-regular? (2) If R is a regular ring such that every nonzero ideal of R contains a nonzero ideal of bounded index, is R unit-regular? (3) Is a regular ring with a Hausdorff family of pseudo-rank functions unit-regular? (4) If R is a regular ring which contains no infinite direct sum of nonzero pairwise isomorphic right ideals, is R unit-regular? (5) Is a regular Schur ring unit-regular?

In [1] Goodearl proposed a list of open problems on regular rings. Some involve potential sufficient conditions for a regular ring to be unit-regular. The primary aim of this paper is to construct a counterexample for the questions $6,7,8,9$ (second part) and 11 in Goodearl's book.

Among others the sixth question asks: Is a regular subdirect product of simple artinian rings always unit-regular? In [4] Tyukavkin has shown that any regular algebra over an uncountable field, which is a subdirect product of countably many simple artinian rings, is unitregular. Recently, Goodearl and Menal [2] have generalized this result by showing that any regular algebra over an uncountable field, which has no uncountable direct sums of nonzero right or left ideals, must be unit-regular; in particular, any regular algebra over an uncountable field, which has a rank function, is unit-regular. In this paper we shall construct an example of a regular ring which is a subdirect product of countably many simple artinian rings but is not unit-regular.

Let F be a countable field, $F[t]$ the ring of polynomials over F in an indeterminate t, and $F(t)$ the quotient field of $F[t]$. Define an exponential valuation ∂ on $F(t)$ by $\partial r(t)=+\infty$ if $r(t)=0$ and $\partial r(t)=n$ if $r(t)=t^{n} f(t) / g(t)$ where n is an integer and $f(t), g(t) \in$ $F[t]$ with $t+f(t) g(t)$. Let V be the valuation ring associated with ∂, namely, $V=\{r(t) \in F(t) \mid \partial r(t) \geq 0\}$. Note that $F[t], F(t)$ and V are all countable. Consequently, V is a countable-dimensional vector space over F.

Let $v_{0}, v_{1}, \ldots, v_{n}, \ldots$ be a basis of V over F. First, we may assume that $\partial v_{i} \neq \partial v_{j}$ for $i \neq j$. Suppose that n is the least integer such that $\partial v_{n}=\partial v_{i}$ for some $i<n$. Choose $\alpha_{i} \in F$ so that $v_{n} / v_{i}-$ $\alpha_{i} \in t V$; then $\partial\left(v_{n}-\alpha_{i} v_{i}\right)>\partial v_{i}$. If $\partial\left(v_{n}-\alpha_{i} v_{i}\right)=\partial v_{j}$ for some $j<n$, then $\partial\left(v_{n}-\alpha_{i} v_{i}-\alpha_{j} v_{j}\right)>\partial v_{j}$ for some $\alpha_{j} \in F$. Continuing this process we get a v_{n}^{\prime} such that $\partial v_{n}^{\prime} \neq \partial v_{i}$ for all $i<n$ and that $\left\{v_{0}, v_{1}, \ldots, v_{n-1}, v_{n}^{\prime}\right\}$ spans the same subspace as $\left\{v_{0}, v_{1}, \ldots, v_{n-1}, v_{n}\right\}$ does. Next, we assume, by reordering, that $\partial v_{0}<\partial v_{1}<\partial v_{2}<\cdots$. For $v=\alpha_{k} v_{k}+\alpha_{k+1} v_{k+1}+\cdots$ with $\alpha_{k} \neq 0$, we see that $\partial v=\partial v_{k}$. Since $v_{0}, v_{1}, v_{2}, \ldots$ span the whole space V, we must have $\partial v_{0}=0$, $\partial v_{1}=1, \partial v_{2}=2$ and so on.

We begin by constructing a ring which is similar to that in Bergman's example [1; Example 4.26]. Let S be the set of those $x \in E=\operatorname{End}_{F}(V)$ such that $(x-a) t^{n} V=0$ for some $a \in F(t)$ and some nonnegative integer n. As in $[1 ; \mathrm{p} .47]$ we observe that a depends only on x, that is, for each $x \in S$ there is a unique element $\varphi x \in F(t)$ such that $(x-\varphi x) t^{n} V=0$ for some $n \geq 0$. Also, it can be verified that S is an F-subalgebra of E containing $F[t]$ and that φ is an F-algebra map of S onto $F(t)$. In addition, $\operatorname{ker} \varphi$ is a regular ideal of S and $S / \operatorname{ker} \varphi \simeq F(t)$, and therefore S is a regular ring. However, S is not unit-regular because of the existence of $t \in S$ which is injective but not surjective on V.

Let us fix a basis $v_{0}, v_{1}, v_{2}, \ldots$ of V over F with $\partial v_{n}=n$ for all n. Then v_{n}, v_{n+1}, \ldots form a basis of $t^{n} V$ over F. Let π_{n} be the projection of V onto the subspace spanned by $v_{0}, v_{1}, \ldots, v_{n}$ with kernel $t^{n+1} V$. Consider the matrix of $a \in S$ with respect to the basis $v_{0}, v_{1}, v_{2}, \ldots$. Certainly, it is column-finite. That is, for any $m \geq 0$ there exists $n \geq 0$ such that ($1-\pi_{n}$) a $\pi_{m}=0$. Also, it is row-finite: for any $m \geq 0$ there exists $n \geq 0$ such that both $(a-\varphi a) t^{n} V=0$ and $(\varphi a) t^{n} V \subseteq t^{m+1} V$, consequently, $a\left(t^{n} V\right) \subseteq t^{m+1} V$ and $\pi_{m} a\left(1-\pi_{n}\right)=0$.

Set $W=S \times \prod_{k=0}^{\infty} \pi_{k} E \pi_{k}$ and write elements of W as sequences $w=\left(w_{-1}, w_{0}, w_{1}, \ldots\right)$ where $w_{-1} \in S$ and $w_{k} \in \pi_{k} E \pi_{k}$ for $k \geq 0$. Let R be the set of elements $w \in W$ satisfying the following two conditions: (i) for any $m \geq 0$ there exists $n \geq 0$ such that $w_{k} \pi_{m}=$ $w_{-1} \pi_{m}$ for all $k \geq n$; (ii) for any $m \geq 0$ there exists $n \geq 0$ such that $\pi_{m} w_{k}=\pi_{m} w_{-1}$ for all $k \geq n$. It is clear that R is an F-subspace of W. To show that R is a ring, we consider any $u, w \in R$ and $m \geq 0$. There exists $n \geq 0$ such that $w_{k} \pi_{m}=w_{-1} \pi_{m}$ for all $k \geq n$. Now because $w_{-1} \in S$ is column-finite, $w_{-1} \pi_{m}=\pi_{j} w_{-1} \pi_{m}$ for some $j \geq 0$. Also, there exists $n^{\prime} \geq 0$ such that $u_{k} \pi_{j}=u_{-1} \pi_{j}$ for all $k \geq n^{\prime}$. Then
$u_{k} w_{k} \pi_{m}=u_{k} w_{-1} \pi_{m}=u_{k} \pi_{j} w_{-1} \pi_{m}=u_{-1} \pi_{j} w_{-1} \pi_{m}=u_{-1} w_{-1} \pi_{m}$ for all $k \geq \max \left\{n, n^{\prime}\right\}$. Similarly, we can show that there exists $n^{\prime \prime} \geq$ 0 such that $\pi_{m} u_{k} w_{k}=\pi_{m} u_{-1} w_{-1}$ for all $k \geq n^{\prime \prime}$. Thus, $u w \in R$. Therefore R is an F-subalgebra of W.

Let $\alpha: R \rightarrow \prod_{k=0}^{\infty} \pi_{k} E \pi_{k}$ be the projection $\left(w_{-1}, w_{0}, w_{1}, \ldots\right) \mapsto$ $\left(w_{0}, w_{1}, \ldots\right)$. Given any $w \in \operatorname{ker} \alpha, w_{k}=0$ for all $k \geq 0$. For any $m \geq 0$ we have $w_{-1} \pi_{m}=w_{k} \pi_{m}=0$ for some k. Hence, $w_{-1}=0$ and so $w=0$. Thus α is injective. If $w_{k} \in \pi_{k} E \pi_{k}, k=0,1, \ldots, n$, then $w=\left(0, w_{0}, w_{1}, \ldots, w_{n}, 0, \ldots\right) \in R$ and $\alpha w=\left(w_{0}, w_{1}, \ldots, w_{n}, 0, \ldots\right)$. In other words, $\bigoplus_{k=0}^{\infty} \pi_{k} E \pi_{k} \subseteq \alpha R$.

Let $\beta: R \rightarrow S$ be the projection $\left(w_{-1}, w_{0}, w_{1}, \ldots\right) \mapsto w_{-1}$. For $x \in$ S, set $w=\left(x, \pi_{0} x \pi_{0}, \pi_{1} x \pi_{1}, \ldots\right) \in W$. Let $m \geq 0$. Since x is columnfinite, there exists $n \geq 0$ such that $\left(1-\pi_{k}\right) x \pi_{m}=0$ for all $k \geq n$. Then $w_{k} \pi_{m}=\pi_{k} x \pi_{k} \pi_{m}=\pi_{k} x \pi_{m}=x \pi_{m}=w_{-1} \pi_{m}$ for all $k \geq \max \{m, n\}$. Similarly, there exists $n^{\prime} \geq 0$ such that $\pi_{m} w_{k}=\pi_{m} w_{-1}$ for all $k \geq n^{\prime}$. Thus $w \in R$ and $\beta w=x$. Hence, β is surjective.

It remains to show that R is regular. But since $R / \operatorname{ker} \beta \simeq S$ is regular, it suffices to show the regularity of $\operatorname{ker} \beta$. Let $w \in \operatorname{ker} \beta$. For each $m \geq 0$ there exist $n_{m} \geq 0$ such that $w_{k} \pi_{m}=\pi_{m} w_{k}=0$ for all $k \geq$ n_{m}. Without loss of generality, we may assume that $0<n_{0}<n_{1}<\cdots$. For $0 \leq k<n_{0}$, choose $u_{k} \in \pi_{k} E \pi_{k}$ such that $w_{k} u_{k} w_{k}=w_{k}$. For $n_{m} \leq k<n_{m+1}$, we have $w_{k} \in\left(1-\pi_{m}\right) \pi_{k} E \pi_{k}\left(1-\pi_{m}\right)$, and so choose $u_{k} \in\left(1-\pi_{m}\right) \pi_{k} E \pi_{k}\left(1-\pi_{m}\right)$ such that $w_{k} u_{k} w_{k}=w_{k}$. Thus $u=$ $\left(0, u_{0}, u_{1}, \ldots\right) \in W$ and $w u w=w$. Moreover, $u_{k} \pi_{m}=\pi_{m} u_{k}=0$ for all $k \geq n_{m}$ by construction. Hence, $u \in R$ and so $u \in \operatorname{ker} \beta$. Therefore, $\operatorname{ker} \beta$ is regular, and so R is regular. On the other hand, S, which is not unit-regular, is a homomorphic image of R. Consequently, R cannot be unit-regular.

Thus, we have constructed a regular ring R which is not unit-regular. Since $\bigoplus_{k=0}^{\infty} \pi_{k} E \pi_{k} \subseteq \alpha R \subseteq \prod_{k=0}^{\infty} \pi_{k} E \pi_{k}$, where α is a monomorphism and $\pi_{k} E \pi_{k} \simeq M_{k}(F), R$ is a subdirect product of simple artinian rings. This settles Question 6 in the negative.

A ring R is said to be of bounded index if there exists a positive integer n such that $x^{n}=0$ for all nilpotent elements x in R. The seventh question is: If R is a regular ring such that every nonzero twosided ideal of R contains a nonzero two-sided ideal of bounded index, is R unit-regular? This question is in fact equivalent to Question 6. Instead of showing this, one can verify easily that the example constructed above satisfies the condition of this question. Let I be a nonzero two-sided ideal of αR. Let $w=\left(w_{0}, w_{1}, w_{2}, \ldots\right) \in I$ with
$w_{n} \neq 0$ for some $n \geq 0$. Since $\bigoplus_{k=0}^{\infty} \pi_{k} E \pi_{k} \subseteq \alpha R$ and $\pi_{n} E \pi_{n}$ is simple, it follows that I contains a nonzero two-sided ideal isomorphic to $\pi_{n} E \pi_{n}$ which is clearly of bounded index. This gives a negative answer to Question 7.

A pseudo-rank function on a regular ring R is a map $N: R \rightarrow[0,1]$ such that (a) $N(1)=1$, (b) $N(x y) \leq \min \{N(x), N(y)\}$ for all $x, y \in R$, (c) $N(e+f)=N(e)+N(f)$ for all orthogonal idempotents $e, f \in R$. If, in addition, $N(x)=0$ only if $x=0, N$ is called a rank function on R. The set of all pseudo-rank functions on R is denoted by $\mathbf{P}(R)$. Given a family $X \subseteq \mathbf{P}(R)$, we use $\operatorname{ker}(X)$ to denote the kernel of X, namely, $\operatorname{ker}(X)=\{x \in R \mid N(x)=0$ for all $N \in X\}$. Since all simple artinian rings have rank functions [1; Corollary 16.6], then $\sum_{k=0}^{\infty}\left(1 / 2^{k+1}\right) N_{k}$ defines a rank function on $\prod_{k=0}^{\infty} M_{k}(F)$, where N_{k} is a rank function on $M_{k}(F)$. Thus any regular subdirect product R of $\prod_{k=0}^{\infty} M_{k}(F)$ has a rank function and hence $\operatorname{ker}(\mathbf{P}(R))=0$. Therefore we have obtained a counterexample to the eighth question: If R is a regular ring such that $\operatorname{ker}(\mathbf{P}(R))=0$, is R unit-regular? Since a regular ring with a rank function contains no infinite direct sums of nonzero pairwise isomorphic right or left ideals [1; Proposition 16.11], the second part of Question 9 is also settled: If R is a regular ring which contains no infinite direct sums of nonzero pairwise isomorphic right ideals, is R unit-regular? Finally, a regular ring with a rank function satisfies the hypothesis of Question 11 [3; Theorem 5]: Let R be a regular ring, and assume that whenever $x, y \in R$ such that $x y=y x$ and $x R+y R=R$, then $R x+R y=R$. Is R unit-regular? Thus our example also provides a negative answer to this question.

Acknowledgment. This is a revised version of our original paper. The referee pointed out that the technique of D. V. Tyukavkin in [4; proof of Theorem 2] which was not known to us then can streamline our proof considerably. He also indicated the existence of rank function in our example which enables us to settle Questions 8, 9 (second part) and 11 also in the negative.

References

[1] K. R. Goodearl, Von Neumann Regular Rings, Pitman, London, 1979.
[2] K. R. Goodearl and P. Menal, Stable range one for rings with many units, J. Pure Applied Algebra, 54 (1988), 261-287.
[3] D. Handelman and R. Raphael, Regular Shur rings, Arch. Math., 31 (1978), 332-338.
[4] D. V. Tyukavkin, Regular rings with involution, Vestnik Moskov. Univ. Ser. I Mat. Meh., 39 (3) (1984), 29-32. (English translation: Moscow Univ. Math. Bull., 39 (3) (1984), 38-41.)

Received January 10, 1988.
National Taiwan University
Taipei, Taiwan 10674

