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NORMAL STRUCTURE IN BOCHNER //-SPACES

MARK A. SMITH AND BARRY TURETT

It is shown that, for 1 < p < oo, the Bochner LP-space Lp(μ,X)
has normal structure exactly when X has normal structure. With this
result, normal structure in Bochner //-spaces is completely charac-
terized except in one seemingly simple setting.

The concept of normal structure, a geometric property of sets in
normed linear spaces, was introduced in 1948 by M. S. Brodskiϊ and
D. P. Mil'man in order to study the existence of common fixed points
of certain sets of isometries. Since then, normal structure has been
studied both as a purely geometric property of normed linear spaces
and as a tool in fixed point theory [1, 4, 5, 6]. In 1968, L. P. Belluce,
W. A. Kirk, and E. F. Steiner [1] proved that the l°°-direct sum of
two normed linear spaces with normal structure has normal structure.
They were not however able to decide if normal structure is preserved
under an lp-direct sum of two normed linear spaces for 1 < p < oo.
In 1984, T. Landes [5] proved that, if 1 < p < oo, normal structure is
preserved under finite or infinite lp-direct sums. In this article, the cor-
responding theorem is proven in the nondiscrete setting; consequently
it is shown that, if (Ω, Σ, μ) is any measure space and 1 < p < oo, the
Bochner Z/-space Lp(μ,X) has normal structure exactly when X has
normal structure.

A normed linear space X has normal structure if, for each closed
bounded convex set K in X that contains more than one point, there is
a point p in K such that sup{||/? - x | | : x e K} is less than the diameter
of K\ such a point p is called a nondiametral point in K. Brodskiϊ and
Mil'man [2] proved that a space X fails to have normal structure if
and only if there is a nonconstant bounded sequence (xn) in X such
that the distance from xn+\ to the convex hull of {x\,...9xn} tends
to the diameter of the set {xk: k e N}; such a sequence is called a
diametral sequence in X. One consequence of this fact is that normal
structure is a separably-determined property. Several more conditions
equivalent to normal structure are given in [5] and in Lemma 3 below.

The notation used in this paper is, with perhaps two exceptions,
standard. The two exceptions are as follows: if (xn) is a sequence in a
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normed linear space X, xn will denote (x\ -\ h xn)ln and ΔΣ^ will
denote

Σ
7=1

\\Xn+\ -Xj\ψ -Π

Note that the convexity of || \\p implies that AΣp

n > 0.
The first lemma is probably well-known.

LEMMA 1. Let ε > 0 and letx\,..., xn, xn+\ be elements in a normed
linear space X such that

>di<ιm{xu...,xn+ι}-e.

7=1

Then ||Λ:Λ+I - y\\ > diam{x\9... ,xn+\} - nε for each y in the convex
hullof{xu...,xn}.

Proof. Let y be in the convex hull of {*i,... ,xn} and choose non-
negative numbers a\,...,an such that X);=i aj = 1 a n <^ y = Σ%\ ajxj-
Let

y\ =y>
y2 =

Note that Σ ^ i ^ = Σ y = i ^ / Thus, if ||xΛ+i —y || < diam{x1?.. .,xn+\}

- ε <
7=1

7 = 1

a contradiction which completes the proof of Lemma 1.

The next lemma concerning the monotonicity of a certain expres-
sion will be frequently used. In the case p = 1, this fact can be found
in [5, p. 131].
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LEMMA 2. Let {xu...9xn9xn+\} be a set in a normed linear space
X and let 1 < p < oo. If{xnn.. .,xnk} is a subset of{xu.. .,xn], then

P
k

7 = 1

- Xnj\\P -
1 Vίr -r '

7=1

1 ^

7=1 7=1

Proof. By convexity of || \\p,

n 7=1

~ Xnj)

7=1

n-k
n

l-j- Σ \\χ»+\-χj\rn-k
jφn\,...,nk

n-k

7=1

+ 0.

Multiplying the inequalities by n completes the proof.

In order to study normal structure in a Bochner U -space, various
characterizations of normal structure involving the index p will prove
useful. These characterizations are given in the next lemma.

LEMMA 3. Let 1 < p < oo and let X be a normed linear space. The

following assertions are equivalent.

(a) X fails to have normal structure.
(b) For every sequence (en) of positive real numbers converging to

0, there exists a diametral sequence (xn) in X such that

(*) - Xj\\P -Xj\\

7 = 1

1
<εn.
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(c) There exist a sequence (εn) of positive real numbers converging
to 0 and a sequence (xn) in X satisfying (*) and, for all k in N,

0 < lim \\xn+\ - Xk\\ = diam(x«) < oc.
n—>oo

Proof. In order to show (a) implies (b), assume that X fails to
have normal structure and let (εn) be a sequence of positive real
numbers tending to 0. From the work of Brodskiϊ and Mil'man [2],
there exists a nonconstant bounded sequence (xn) in X such that
dist^H+ijCO^i,...,.*/,}) > D - an where D denotes diam(x^) and
an is such that (D - an)

p = Dp - en/n. Then (xn) is a diametral
sequence in X and

7=1

< nDp - n(D - an)
p = εn.

This proves that (a) implies (b) and it is clear that (b) implies (c).
Suppose that sequences (εn) and (xn) are given as in (c). Fix k in

N and let m > k. Lemma 2 implies that

7=1 7=1

-Ύn'

Letting m -+ oc yields kDp - k\imm-^oo \\xm+\ - Xk\\p = 0. Thus
limw_^oo \\xm+\ —XicW - D- Either by applying Lemma 1 to obtain a
subsequence of (xn) which is a diametral sequence in X or by applying
Proposition 1 in [5], it follows that X fails to have normal structure.
This completes the proof of Lemma 3.

As mentioned earlier, Brodskiϊ and Mil'man characterized normal
structure in terms of the nonexistence of a diametral sequence. For
their characterization, it appears to be crucial that the limit of the
distance from xΛ + 1 to the convex hull of {x\,...9xn} is the diameter
of {xk: k G N}. However, in [5], Landes notes that appearances can
be deceiving and that, in fact, any positive number may take the place
of the diameter of {Xk: k G N}. More specifically, Landes [5, p. 131]
proves that a Banach space X has normal structure if and only if
there is no bounded sequence (xn) in X such that lim^oo \\xn -Xk\\ =
limw_>oo \\xn -xm\\>0 for all k, m in N. Landes' theorem, as well
as the next lemma which is based on Landes' idea, will be used in the
proof of the main theorem.
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LEMMA 4. Let 1 < p < oo and let (xn) be a sequence in a normed
linear space X such that lim^oo \\xn+\ - Xk\\ = L > 0 for all k in N
and

n

lim
n—>-oo

Σ\\xn+x-Xjf-n = 0.

Then

lim
«—>-oo

1 *

each k in N.

Proof. Fix k in N and let « > k. By Lemma 2,

1 k

\xH+ϊ - Xj\\p -

Therefore

1
-xj\\p - F

^ < \\xn+ι -xkψ

7=1

- Xj\\P
Xj\\

; = i

by the convexity of || | |p. Holding k fixed and letting n —• oo yields
x^|| = L and the proof of Lemma 4 is complete.

Since normal structure is a property that is inherited by subspaces
and since X and Lp(μ) are subspaces of Lp{μ,X) (exclude the trivial
cases where μE = oo for every nonempty E in Σ or where X = {0}),
the Bochner 1/ -space can only have normal structure whenever both X
and LP{μ) have normal structure. The main result of this paper is that
this necessary condition on X for Lp(μ,X) to have normal structure
is also sufficient in the case that 1 < p < oo. Before proceeding to that
result, consider the casesp = 1 and/7 = oo. If p = 1, then, since I1 and
Lι (μ), where μ is not purely atomic, do not have normal structure, the
Bochner LP-space Lι(μ,X) can have normal structure only if X has
normal structure and the measure space (Ω,Σ,μ) consists of a finite
number of atoms, that is, only if Lι(μ9X) is a finite /^direct sum of
X. In this setting it remains unknown whether Lι(μ,X) has normal
structure (see [5]). If p = oo, then it follows in like manner that the
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Bochner ZAspace L°°(μ,X) can have normal structure only if it is
a finite /°°-direct sum of X. In this case it is known that L°°(μ,X)
has normal structure (see [1]). Thus, with the theorem below, normal
structure in Bocher LP -spaces is completely characterized except in
the seemingly simple setting of a finite /^direct sum.

THEOREM. Let (Ω, Σ, μ) be a measure space and let X be a normed
linear space. If 1 < p < oo, the Bochner Lp-space Lp(μ, X) has normal
structure if and only ifX has normal structure.

Proof. By the remarks above, it is only required to show that nor-
mal structure lifts from X to Lp(μ,X) whenever 1 < p < oo. Note
that it suffices to establish this implication in the case that (Ω, Σ, μ) is
a nonatomic probability space. Indeed, since normal structure is se-
quentially determined and elements in LP(μ, X) have σ-finite support,
there is no loss of generality in assuming that (Ω, Σ, μ) is a σ-finite mea-
sure space. Then, since Lp{μ,X) can be written as the lp-sum of two
spaces (a countable lp-sum of X's and a Bochner ZZ-space over a σ-
finite nonatomic measure space), two applications of Landes' /^-result
[5, p. 135] show that it suffices to prove the theorem in the case that
μ is σ-finite and nonatomic. Since, in this case, Lp(μ,X) can be writ-
ten as a countable /^-sum of Bochner LP -spaces over finite nonatomic
measure spaces, another application of Landes' result shows that it
suffices to prove the theorem when μ is finite and nonatomic. Finally,
since it is clear that, in this case, LP{μ,X) is linearly isometric to
LP{v, X) where v is the probability measure μ/μΩ, it suffices to prove
the result for a nonatomic probability measure.

Under the assumptions that μ is a nonatomic probability and 1 <
p < oo, suppose that Lp(μ,X) fails to have normal structure. By
Lemma 3, there exists a diametral sequence (fn) in Z/(μ, X) such that

P

(**) 0 <Σ\\f«+ι -
7=1

< 1/2".

P

By translating and taking scalar multiples, if necessary, it may be as-
sumed that d i a m ^ ) = 1. Then, in particular, since (fn) is diametral,
lim^oo | |/ π + 1 - fk\\p = 1 for all k in N.

Claim 1. {fn — fi) does not converge to 0 in measure.

Suppose (fn - f\) converges to 0 in measure. Choose e such that
0 < e < {2X'P - \)l(2χlp + 2). Since limπ-oo \\fn - fι\\P = 1, choose a
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natural number N > 1 such that n> N implies \\fn - f\\\p > 1 - e/2.
Well-known theorems of Riesz and Egoroff yield a subsequence (fnj)
of (fn) such that (fn. - f\) converges to 0 almost uniformly. Using
this, the nonatomic nature of (Ω,Σ,μ), and the absolute continuity of
/(.) UN - f\ \\p dμ, choose a measurable set A with μ(Ω \ A) > 0,

WN -Ά)XΩ\A\\P < e/2, \\(fN-fi)XA\\p > 1 - e,

and (fn. - f\) converging to 0 uniformly on A. Then choose a natural
number / so that, with M = nh

MfM-fi)XA\\p<e/2<ε and \\(fM - fι)χΩ\A\\P > 1 - e.

Set g = fN-fuh = fM-fu g' = gXλ, and h! = hχΩ\A. Then, by the
choice of ε,

>\\gf-h%-\\g-gf\\P-\\h'-h\\p

a contradiction which proves the claim.
By Claim 1 and the fact that \\fn - f\ \\p < 1 for all n in N, there

exist δ > 0, ζ > 0 and a subsequence of (/„), called (/„) again, such
that the first term of the subsequence is the original f\ and such that

μ{s e Ω: ί/δ > \\fn(s) - /i(s)|U >δ}>ζ for all n>2.

Note that Lemma 2 implies that the new subsequence (fn) still satisfies
(**). In the remainder of the proof whenever subsequences of(fn) are
chosen, they will always be chosen so that the first term is the original
fι, and, automatically, (**) is satisfied.

Claim 2. There exist a subsequence (fnm) of (fn) and a measurable
set E with μE < ζ/2 such that

for all /, j 9 k with k > 3 and 1 < /, j < k - 1 and for all s in Ω \ E.

The subsequence (yj,w) and the set E will be constructed inductively.
Let n\ — 1 and #2 = 2. Note that
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Since (fn) is a diametral sequence with diameter 1, the left-hand side
of the inequality tends to 1 as n increases. The uniform rotundity of
Lp(μ) then implies that

IKIIΛ( ) - Λ,( )lk - IIΛ( ) - fn2( )\\χ)\\P - o.
Then, by well-known theorems of Riesz and Egoroff, there exists a sub-
sequence (h\) of (fn) with h\ = fUλ and h\ = fni so that the sequence
(&J), defined by

converges to 0 almost uniformly. Thus there exists a measurable set
E\ with μE\ < ξ/4 such that (g^) converges uniformly to 0 on Ω\E\.
Choose M > 2 such that if n > M9 then | ^ | < 1/2 on Ω \ E{. Let
n3 be the index such that hx

M = fm and note n3 > ni. Define (ft) by
// = fnι9 fl = fn2, fl = U and ft = hι

M^3 if n > 4. Then

Wfn(') ~ fnλ')\\x ~ Wfn{')-fn2{')\\x - 0 uniformly o n Ω \ £ ,

and, if n > 3,

KIIΛ'C )-Λ.COIU- II/.C ) - Λ 2 ( )IU)I < 1/2 o n Ω \ £ 1 .
Assume the following have been chosen:

(i) natural numbers Π\ < Πι < < ft&+2>
(ii) measurable sets E{ c E2 c c Ek with μEk < ξ/2 - ζ/2k+\

and
(iii) a subsequence (f%) of (fk~ι) such that, if 1 < /, j < k + 1,

\\fnk(') -fnX')\\x - \\fnk(') ~ fn^Wx - 0 uniformly o n Ω \ 4
and, for n > k + 2,

KIL/ί(•) - ΛXOIk - ll/"( ) - 4 ( )IU)I < 1/2" on Ω \ ε k

and
/ f = / Λ y ifj = l,2,...,A: + 2.

(For the sake of completeness, define f% = fn )
Choose a natural number N > nkJrl such that, if n > N9

\(\\fnk(') ' fnX')\\X ~ \\fk{') ~ fnj( )\\x)\ < l ^ 2 < l/2

on Ω \ Ek for 1 < /, j < k + 1. Note that

Win' ~ l

2(fn^ fnk+2)\\p

< WWn(') - Λ. (Oik + \\fnk(') ' fnk+2( )\\x)\\p
< 1.
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Since the left-hand side approaches 1 as n increases and LP(μ) is uni-
formly rotund,

/?( ) " / * , ( * - IL/ί(•) - fnk+2( )\\x)\\p - 0 as n - oo.

Then, by theorems of Riesz and Egoroff again, there exists a subse-
quence (hk+ι) of (fn

k) with hk+ι = fk = fnj if 7 = 1,...,*+ 2 so that

the sequence (#* + 1 ), defined by

converges to 0 almost uniformly. Thus there exists a measurable set
Fk+{ with μFkJrX < ζ/2k+1 such that (gk+ι) converges uniformly to
0 on Ω \ Fk+γ (and hence uniformly to 0 on Ω \ Ek+X where Ek+χ =
^ U i ^ + 1 ) . Note that μEk+ϊ < ξ/2-ξ/2k+2. Choose Λ/ > TV such that
if n>M9 then | ^ + 1 | < l/2*+ 2 on Ω \ £^ + 1 . Let /ιfc+3 be the index
such that AJ+1 = fnM and note nk+3 > nk+2. Define (fk+ι) by ̂ + 1 =
Aj+i = fnj if j = 1,...,k + 2; f^l = / ^ and J * " = AK,_ (,+ 3 ) if
j>k + 4.

Now, by the triangle inequality, for n > k + 3 and 1 < /, j < k + 2,

o n Ω \ £ w .

This completes the induction step. The subsequence (fnm) of (fn) and
the set E = \J(

k

>

=ι Ek have the properties in Claim 2.
Denote the subsequence obtained from Claim 2 by (fn) again. With

7=1

the convexity of || \\p and inequality (**) yield that gn is a non-negative
integrable function with fΩgndμ < \/2n. Since, by the Monotone
Convergence Theorem, Y^LX gn is integrable, the sequence (gn) con-
verges to 0 almost everywhere.

Since

μ (liπ^sup{5 G Ω: l/δ > \\fn(s) - fx{s)\\x > δή > ξ

and μE < ξ/2, choose a point t such that

(1) t is in limsup^oofs G Ω: l/δ > \\fn(s) - fi{s)\\χ > δ},
(2) t is not in E, and
(3) limn->oo gn{t) = 0.
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Using (1), choose a subsequence of (fn)9 called (fn) again, so that
lim^oo \\fn+\(t) - f\(t)\\χ, defined to be L, exists and is positive. By
Claim 2 and (2), it follows that lim^oo \\fn+\(t) - fk(ή\\x = L for
each k in N. Also, by Lemma 2 and (3), the (sub-)sequence (fn(t))
satisfies

p i

lim

7=1

= 0.

Thus, with xn = fn(t), Lemma 4 combines with Landes' theorem
(stated prior to Lemma 4) to prove that X fails to have normal struc-
ture. This completes the proof of the theorem.

As a corollary, note that if 1 < p < oo and X is a reflexive Banach
space with normal structure, Lp{μ,X) is also a reflexive space [3, p.
100] with normal structure and hence, by a well-known theorem of
W. A. Kirk [4], the space Lp(μ,X) has the fixed point property for
nonexpansive mappings.
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