
PACIFIC JOURNAL OF MATHEMATICS
Vol. 142, No. 2, 1990

EXTENSION THEOREMS FOR FUNCTIONS OF
VANISHING MEAN OSCILLATION

PETER J. HOLDEN

A locally integrable function is said to be of vanishing mean os-
cillation (VMO) if its mean oscillation over cubes in R^ converges to
zero with the volume of the cubes. We establish necessary and suffi-
cient conditions for a locally integrable function defined on a bounded
measurable set of positive measure to be the restriction to that set of
a VMO function.

1. Introduction. Let F be a locally integrable function on R^ and
let Q be a cube in R^ with sides parallel to the axes. (We denote the
set of all such cubes in R^ by #'.) We denote the Lebesgue measure
of Q by \Q\ and the length of Q by l(Q). We denote the average of F
on Q by FQ; that is FQ = TL fQ F dt. We say F is of bounded mean

oscillation (abbreviated B M O ^ ) or simply BMO) if

(1.1) sup ^7 / \F-FQ\<oo.
Qe$' Iŵ l JQ

We denote this supremum by ||i<Ί|*. || ||* defines a norm on BMO
and BMO is a Banach space with respect to this norm. (We identify
functions which differ by a constant.) If in (1.1) we restrict the cubes
to be dyadic we obtain the space dyadic-BMO and we denote the
corresponding norm by || H* .̂ (By a dyadic cube we mean a cube
of the form Q = {kj < Xj < (kj + 1)2-*; I < j < d} where n and
kj, 1 < j < d, are integers.) We will denote the set of dyadic cubes
of length 2~~n by Dn and Qo will denote the dyadic unit cube. The
function space BMO was introduced in 1961 by John and Nirenberg
[7] who proved the following fundamental theorem:

THEOREM 1.1. Let F be a locally integrable function on Rd, and for
each n e Z define:

i n f 4 / eλ\F-a\

Then,

( l ) F e BMO if and only if

(2) sup/ιΛ(F) <oo.
neZ
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The implication (2) =» (1) is straightforward while (1) => (2) is
obtained by means of a Calderon-Zygmund stopping time argument.
(This result and other basic results on BMO can be found in [4] and
[12].)

A closed subspace of BMO that we will be mainly concerned with,
is the space of functions of vanishing mean oscillation (VMO) which
was introduced by Sarason in [11] and is defined as:

\

VMO = <F e BMO: lim sup ^ / \F - Fo\I a-ol ov \Q\JQ\Q\ Q

= 0

Equivalently, by the theorem of John and Nirenberg, F e VMO if and
only if F e BMO and lim^ooμn(F) = 0.

If E is a Lebesgue measurable subset of R^ of positive measure
(throughout we will always assume E has positive measure), we can ask
for necessary and sufficient conditions for a locally integrable function
defined on E to be the restriction to E of a function in BMO(R^). This
characterization was given by Wolff [15] and is based upon a technique
due to Rubio de Francia [10] which generalizes Jones' factorization
theorem for ^-weights [8]. The main result of this paper is to obtain
a similar characterization for VMO functions and this is the content
of the following theorem:

THEOREM I. Let E be a bounded measurable subset ofRd and let f
be a locally integrable function defined on E. For each n e Z define:

μn(f) = mΐ{1-: sup

Then the following are equivalent:

(1) f is the restriction of a VMO function on R^ to E
(2) sup^€Zμn(f) < oc and ]imn-+ooμn(f) = 0.

The proof of this theorem consists of two parts. In the first part
we obtain a dyadic-VMO extension of / . We then obtain a dyadic-
VMO extension for each translation of / and E and the second part
of the proof consists of averaging these extensions to obtain a VMO
extension of / .
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Throughout C will denote a positive constant which will be inde-
pendent of the variables in the equation in which it occurs but which
may be different at each occurrence.

2. Preliminary Results. Let E be a measurable subset of R^ and let
£ be a collection of cubes in Rd with E c \j{Q: Q e $}.

DEFINITION. (1) if F is a locally integrable function on Rd

9 we
define the maximal function of F relative to # by

(MdF)(x) = sup ^ - / Fdt for all x e \J{Q: Q e ff}.
xeQ \U\ JQ

If £ = £'5 this is the usual Hardy-Littlewood maximal function.
(2) If / is a locally integrable function on E, we define the maximal

function of / relative to # by

(mtf)(x) = sup ±- / fdt for all xeE.
xeQ \U\ JQΠE

DEFINITION. (1) Let w be a positive locally integrable function on
E and let 1 < p < oo. We say w is an Ap(E)-weight relative to # if

(2.1) sup ^ / wdΛlj^- ( - ) dt\ <oo
β€^ VIGI JQΠE J \\Q\ JQΠE \wj )

and we denote the collection of all such weights by AP(E, $). IfE = Rd

and ^ = & we abbreviate AP(E,$) by ̂ 4P and say w is an ^-weight.
(2) We say a positive locally integrable function w is an A\(E)-

weight relative to # if

[\\Q\jQi
s u p λ \ϊn\ / w d t ) e s s s u P ^ ^ τ f < oo.
Qe$ [ \\U\ JQπE ) xeQ

We denote the collection of all such weights by A\(E,$).
We record some properties of AP(E, $)~weights in the following

proposition.

PROPOSITION 2.1.

(i) Ifw e AP(E9 S) then w e Ar(E9 39 for all ι

(ii) Ifwχ,w2 eAx{E,$) thenwuw\~p e AP(E,$) for all 1 < p <

oo.
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(iii) IfwEAp then F = \o%w e BMO. By the theorem of John
andNirenberg {Theorem 1.1), ifF e BMO there exists δ > 0 such that
eδF e Ap.

(iv) We mention here the following result ofCoifman and Rochberg
[3]: IfF e L\og(Rd) and Md,f(x) < oo a.e., then for each 0 < δ < 1,
(Mrf)*eAx.

DEFINITION. Let 1 < p < oo and let w e AP(E9$). We say w
satisfies a reverse Holder inequality if there exists ε > 0 such that

REMARK. If w e Ap then u> satisfies a reverse Holder inequality
with ε depending on p and supremum in (2.1). This fact may be
deduced from (2.1) by a repeated application of a Calderon-Zygmund
stopping time argument. See [1], [9].

The next theorem is a variation of a theorem of Muckenhoupt [9].
The proof is the same and so will be omitted.

THEOREM 2.1. Let 1 < p < oo and let w e AP(E,$) where 5 is a
collection of dyadic cubes or $ = $. If w satisfies a reverse Holder
inequality then there exists a constant C > 0 such that

(2.2) ί {mt{f)Yw dx<C ί \fψw dx
JE JE

and

r ί \\qlP Γ ( 1 \ q l P

(2.3) I &,{/)}'(-) dx<cjE\f\^-) wdx

where q = p/(p - 1).

By a theorem of Rubio de Francia [10], (2.2) and (2.3) imply that
there exist w\, wι € A\(E,$) such that w = W\w\~p. We summarize
what we need from the above in the following corollary.

COROLLARY 2.1. If w e A2{E,$) and w satisfies a reverse Holder
inequality then there exist W\, W2^L A2(E,$) such that w =

We are now in a position to give the BMO extension theorem of
Wolff [15].
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THEOREM 2.2. Iff is measurable on E, then the following are equiv-
alent:

(1) f is the restriction of a BMO function on Rd to E\
(2) 3λ > 0 such that

s * f eλ^m^L^<oo;
Qed' Iv l̂ JQr\E

(3) 3λ > 0 such that

1 f
sup inf —γ jsup mi rprr I eλ\f α | < oo.

We give the proof as it provides one of the basic steps needed in
proving Theorem I.

Proof. The equivalence of (2) and (3) are straightforward and the
implication (1) =* (3) is similar to the proof of (1) => (2) in Theorem
I which we give in §3.

(2) => (1): (2) implies that w = eλf'2 e A2(E,&) and satisfies a re-
verse Holder inequality. Hence by Corollary 2.1, there exist wu w2 £
Aι(E9ff) such that w = eλfl2 = Wι/w2. Define Wt = M^{χEWi)λl2,
i = 1,2. By Proposition 2.1 (iv), Wu W2eAΪ9 i.e. 3C > 0 such that
Wi < Mv{Wi) < CWh i = 1,2. Since Mr(χEWi) = mv(Wi), a.e. on
E, (i =1,2), it follows that 3# e Loo(R^), g > 0, such that

w2

Define F = \ {log^ + 2\o%{WxjW2)). Then F = / a.e. on E and by

Proposition 2.1 (ii) and (iii), F e BMO(R^). D

Finally we prove 2 lemmas which are needed in the next section.
The first is a variation of the theorem of Coifman and Rochberg men-
tioned above while the second is based on Lemma 2.2 in [5].

LEMMA 2.1. Let neN and let 3 = {Q: Q dyadic, Q c Qo, 1{Q) >
2~n}. Let g G Zqoc(Qo) and suppose (M$g)(x) < oo a.e. Then for all
0 < δ < 1, there exists Q > 0, depending only on δ and the dimension,
such that

( δ ) (x) < δ
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Proof. It suffices to show 3 Q > 0 such that Vβ e &

(2.4) jlj I (Msg)δ dt < Cδ mf (M^)^(x).

This result is established by Coifman and Rochberg in [3] for the usual
Hardy-Littlewood maximal function. The proof of (2.4) for Q e $
with l(Q) < 2 is essentially the same; the relevant property of such
cubes is the following:

3βi € &/(βi) = 21 (Q) such that β c Q{ and whenever β 2 <E £
satisfies | β 2 Π β | > 0 and | β 2 Π β [ | > 0 we have β c β 2 .

For Qe$ with /(β) > ^, (2.4) follows by integrating the weak-type
estimate for the Hardy-Littlewood maximal function.

LEMMA 2.2. Let E be a measurable subset of the unit cube β 0 with
0 < \E\ < 1. Then ifθ<β< log l/ |£ | , 3H e dyadic-VMO(β0),
\\H\U,d < C such that:

(1) 0<H< β,supp(H) CQ0, H = β on E,
(2) ^

Proof. This is a version of Lemma 2.2 in [5] where H is constructed
in BMO(βo) satisfying (1) and (2). The argument below is the dyadic
version of this construction. (See also the proof of Lemma 1.2 in [14]
where a similar result is obtained.) Without loss of generality we may
assume \E\ < 2~4d (otherwise we may take H to be constant). Let
{β/}/>i be the maximal subcubes of β for which |β/Πis| > j | β / | . Let
no = 1 and for each j > 1 choose π7 so that

>v iog|U<2/|

and define G^ = {Qr. rij < i < nj+ι} so that £ β e G 0 ) \Q\ < A~β'd\QQ\

where βj = Vβ0, β0 = [^ | log |(J (2/111 a n d [ 1 denotes the greatest
integer function.

For each j we now construct a sequence of generation {G^}flzl as
follows:

(1) Set G\J) = GW.

(2) Suppose G\j) has been defined. For each Q € G\i] let (?<*)
denote that dyadic cube of length 2kl{Q) containing Q. Choose k
minimal so that
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We define G ^ to be the maximal cubes in {Q{

r

k): Qr e G^}. We
note that

and hence if Q is any dyadic cube then

A
Σ, \Qk\<c\Q\.

ί=1

Hence by an argument similar to the proof of Lemma 2.1 in [5] we
see that the function

A

belongs to dyadic-BMO(βo) with Htf/H*̂  < C. Furthermore α, = βj

on [j{Qk '• Qk £ ̂ i } a n d since α7 is constant on small dyadic cubes,

we have in fact that α7 € dyadic-VMO(βo)- We now define

REMARK. We note that Lemma 2.2 may be established without
using the above construction. Indeed, it is not hard to see that the
function

(βj on[j{Q:QeG[j)l

1 0 on Qc

0

satisfies the hypothesis (3) of Theorem 2.2 with

E = [j{Q:QeG[j)}uQc

0

and with $ replaced by those dyadic cubes of length > min{/(ζ?):
Q G G[J^} and so can be extended to a dyadic-BMO function F with
II-ΉI*,*/ ^ C a n d which is constant on small dyadic cubes. This will
become clear after reading §3(i) below.

3. Proof of Theorem I. If Q is a cube and r > 0 we will denote by
rQ the cube with the same center as Q and of length rl(Q).

Without loss of generality we will assume E is contained in ^

where Qo is the unit cube in R^.
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(1) => (2): Let F e V M O with FχE = f a n d for each neZ define

ί l 1 /" I/Γ- i 1

μn(F)=mi{Ί: sup inf ^ / ^ αl < 2 V ,

sup ϊ i r / e^-^ <2\,

/(β)<2-» ItJl ./β

Since ,F € BMO, 3C > 0 such that V« > 0,

< C and Hm | | ^ | | ^ = 0.

By Theorem 1.1, 3C > 0 such that whenever 0 < λ < C/| |F| |*> n we
have

sup ±ί
<2-« \U\ JQ

Hence %{F) < \\F\U,n/C. Since μn(F) < %{F) and //,(/) < μn{F),
it follows that μn(f) < C for n = 0,1,2,... and lim^-^ooμn(f) = 0
and this proves (1) => (2).

Part (i): Extension to dyadic-VMO.
Condition (2) in Theorem I implies there exists a sequence

0 < λn t oc such that

1 f
SUp r^rr / e

λλf-fa^E\ < 2,
n \Q\ JQΠE

Let ΠQ — 0 and define a sequence {%}^>i C N by the condition
λn > 2λnk if and only if n > ft^+i To simplify the notation we will
write λk for λnk. Now define for each k > 0

$k = {Q:Q dyadic, Q C β o ,/(β) > 2-^}.

For each n = 0,1,2,... we define /π = Eβez)π /QΠE/QΠE-

The idea of the proof is as follows: We write

/ = /θ + Σ^(Λk+i - fnk)
k>0

and note that in order to extend / it suffices to extend each of the
functions fo, fnk+ι — fnk, k > 0. These functions are constant at ev-
ery point of E which belong to the same small dyadic cube and so
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we would like to extend each of these functions to dyadic-BMO func-
tions which are constant on small dyadic cubes and in particular will
therefore be in dyadic-VMO. To do this we proceed as in the proof of
Theorem 2.2; that is, we first show (in Lemma 3.1) that

and

and satisfy a reverse Holder inequality. We then factor and extend
these weights using a truncated dyadic maximal function instead of
the full dyadic maximal function. We do this to ensure that the
^i(£2o>3i)-weights we obtain using Lemma 2.1 (that is, the weights
W\9 W2 in the notation of Theorem 2.2) will be constant on small
dyadic cubes. The difficulty that now arises is that we cannot con-
clude as in Theorem 2.2 that the quotient of each factored A\(E,$k)-
weight with the corresponding truncated maximal function is uni-
formly bounded on E. To accommodate this possibly large quotient
into an appropriate VMO function we will appeal to Lemma 2.2. We
proceed with the dyadic extension:

LEMMA 3.1. There exists C > 0, depending only on the dimension,
such that for all k>0,

(1)

SUp ( _ L f e(hi2){fnk+λ-fnk)\ (±_ f e-W*/2)(A+I-/"*A < C,
e$k+ι \\Q\ JQΠE ) \\Q\ JQΠE )

(2)

\Q\ JQQΠE ) \\Q\ JQΠE

Proof. Let Q be a dyadic cube with l(Q) > 2~n> and let {(?/} be
those dyadic subcubes of Q of length 2~nL Then for all λ<λj,

1 ί \O\ ί 1 C

W\JQnEeMf '"'' = ^W\\Qi\JQlnE
< \^\M(-Lf
~ ^ 1(21 \\Qi\JQ,nE

and hence

eλ\f-fQtnE\

( 3 ' 1 } IQUQΠE^ * IQIJQΠE
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areNow if Q is a dyadic cube with l(Q) < 2 n> then for all λ < λj we
given

1 f pλ(f-fQnE)_}_ f e-λ(f-fQnE) < r
\Q\ JQΠE \Q\ JQΠE

and hence

(3.2) ( ' / e'A(±ί e-ήsc.
\\Q\ JQΠE J \\Q\ JQΠE J

We note that if j = 0, (3.2) holds for all Q e do and for all λ < λ0.
Now (3.2) implies that for all Q e £/+i, l(Q) < 2~nJ and for all λ < λj

(3 3) — f e

λ(f-f»j)— f e~
λ(f-fnj) < c

{ ' \π\ / \π\ —
Iv^l JQΠE Iv^l JQΠE

Since

\Q\ JQΠE

< f_L ί ^(/-4)V/2 M /" e-Hf-f«kj)
ι/2

-\\Q\JQnε J \\Q\JQnE J

(and similarly for ^ / 2 n £ e~W2)(^+i "A)) we see that (1) follows from

(3.1) and (3.3).
Now (3.1), (3.2) and Holder's inequality imply that for all λ < λo/2

and for all Q e 3Ό

M / Ml±-( e-A<c
\\Q\JQnE )\\Q\JQnE J-

and this gives (2) which completes the proof of the lemma. D

To simplify the notation we set Mk(g) = M$k(g) and mk(g) =
m$k{g). Corollary 2.1 implies the following:

For each k = 0,1,2,... there exist uk, vk e Aγ(E,$k) such that

and

- / „ , _ , ) ) V Λ = 1 , 2 , . . . .

Furthermore, since the Aι(E,$k)-weights and the maximal function
mk(') are constant at every point of E which belong to the same dyadic
cube of length 2~nk, the proof of Corollary 2.1 given in [2] shows that
the same is true for the A\(E,$k)-weights uk and vk.
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Now for each k = 0,1,2,... and for each x e Rd we define

Uk{x) = Mk{χEuk){x),

Vk(x) = Mk{χEvk){x).

Then, for all x eE,

exp

and

e χ P( -T

where

w ϊ!L-κyκ> \/k>0.
vk mk(uk)

Hence,

- ' * MΨ)m

\VkJ

λk-\

and
l/2 4

+
Now Lemma 2.1 implies 3C > 0 such that

Mk(Uι

k

/2)<CUι

k

/2 and

. 8 . fU0\
/o = y log TΓ +

k)<CUk

and so by Proposition 2.1 (ii), {Uk/Vk)
χl2 e A2(Qo,$k)

Then, by Proposition 2.1 (iii), we conclude that

In particular since Uk, Vk are constant on dyadic cubes of length 2~Hk,

we have \o%{Uk/Vk) e dyadic-VMO(β0).
Finally we need to extend the functions logwk to dyadic-VMO (Qo)

Let Qk be a dyadic cube of length 2~nk with \Qk n E\ > 0. Then since
ŵ  and ^^ are constant on Qkf)E we have for all x e Q^ Π £

uk(x) < l f uk(t) dt < | ( 2 ^ mk(uk)(x)
\QkΓ\£\ jQknE \Qk n £ |

and similarly
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and hence

Hence by Lemma 2.2, there exists hk e dyadic- VMO(Qo) with
supp(/Zfc) Q Qk satisfying

I\o%wk{x) - hk{x)\ <C, VxeQkΓ)E and

sup ±-(hk{t)dt<C.
l(Q)>l(Qύ M JQ

We now define

ί hk(x) ifxeQk,QkeDnk,\QkπE\>Ό,

1 0 otherwise.

It is easy to check Hk e dyadic-VMO(Q0) with \\Hk\\*4 < C and
\\ogwk(x) - Hk(x)\ < C, Vx e E. This implies 3Rk(x) e Loo(Rd)
with ||JR -̂ lloo < C and which is constant on dyadic cubes of length
2~"k and satisfies Rk(x) = \ogwk(x) - Hk(x), \/x € E. In particular,
Rk € dyadic-VMO(Qo) with \\Rk\\*yd < C, VA:. Hence the function
Wk = exp{Rk+Hk) satisfies log Wk e dyadic- VMO(β0)> II log Wk\\*,d <
C and WkχE = wk.

Now define

(3.4) F(x)=

( 0 otherwise,

where Gk = 41og(C4/^)1//2 and by λ-\ we mean /l0. Since Gk +
Rk + Hk e dyadic-VMO(Qo) with \\Gk + Rk + Hk\\^d < C and since
Σk>o l/(h~\) < oc? it follows that F e dyadic-VMO and \\F\\^d < C.

Furthermore

oo 2

Σ J—^ + Rk + Hk)χE = £ C 4 + 1 - fnk) + /o = / a.e. on E.
k=o k ι

 k>o

Hence F is a dyadic-VMO extension of / .

Part (ii): Extension to non-dyadic VMO.
If S is a set in R^ we will denote by S - a the set {x - a: x e S}.
For each a e ^Qo the function βa\x) = f(x - a) satisfies the

hypothesis of Theorem I with the set E replaced by E - α. Hence
by the proof in part (i) above, there exists F^ e dyadic-VMO with
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\\FW\\* < C, FW = /<*) a.e. on E-a and supp(F^) c QQ. We claim
that the function

= 3d ί
JaeQo/3

is a VMO extension of / . It is clear that F = / a.e. on E. It will
follow from Lemma 3.2 below that F e VMO.

LEMMA 3.2. Let Q be a cube and let {f^: a e Q} be a collection
of dyadic-VMO functions satisfying

(1) s u p α 6 β | | / W | | ^ < l ,

(2) there exists r > 0 swcA ί/zαί/or α// a e Q, supp(/<α)) C ΎQ.

Then the function

belongs to VMO with | |/| |* < Cr where Cr depends only on r and the
dimension.

REMARKS. (1) The idea of averaging dyadic-BMO comes from [6]
where the BMO version of Lemma 3.2 is stated (and proved implic-
itly). Our argument is different to that used in [6] and the simpler
BMO version of our argument can be used to provide an easy proof
of the theorem in [6].

(2) Let BMO(/?) denote the space of those VMO functions whose
mean oscillation over any cube is O(p(l(Q))) where p is a positive,
non-decreasing function with p(0+) = 0. In the case when each fla)
belongs to BMO(p), Lemma 3.2 may be deduced from the results in
§3 of [13]; the conclusion in this case being that / e BMO(/>) where
p(t) = t Jt°° p(θ)/θ2dθ. The argument in [13] is a version of the
averaging argument in [6]. The proof below can be easily modified to
obtain this result.

Proof of Lemma 3.2. Without loss of generality we may assume Q =
<2o, the unit cube in Rd.

We first show that for each ε > 0 there exists δ > 0 such that if Q
is any cube with l(Q) <δ then

< ε.
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Fix 0 < ε < \. For each a e Qo, / ( α ) € dyadic-VMO and hence there
exists na e N so that

whenever Q is a dyadic cube of length < 2~Πa. Hence by EgorofFs
theorem there exists N\ G N so that the set

€ β 0 : I ^ I I l/(α) - (/(Ω))el < εd+ι

whenever Q is a dyadic cube of length <2~N] >

has measure > 1 - ε. Choose N2 so that N22~N* < ε2~Nl and let Q be
any cube with l(Q) < 2~N\ Let

5Ί = {a e Qo' Q-a is contained in a dyadic cube of length < \1{Q)}

and note that \Q0 Π 5"[| < Cε.
If α G 5Ό Π Si we claim that

(3-5) ^ y |/β>(x + α) -/«)(• + α) e μjc<2β.

To see this let Q\ be that dyadic cube of length < \1{Q) that contains
Q-a. Then,

Q

- 2 J § / i έ ί / l/(α)(x)"(/(a))eJ^ - 2ε~v+1=2ε

For each k > 0 let /^α) = ΣρeD^/^^G^β a n d c n o o s e w s o t h at

2-(m+i) </(β) < 2 - w . Let

g[a) = f{a) - Aa) and ^ β ) = ^ β ) .
Now for all a e Qo,

j^ ί \g\a\x + α)| dx < C2md ί \f^(x) - Aa

\Q\ JQ JQ-a
\g\\ )| \f() A\)\ dx

Q J
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where the sum is taken over those dyadic cubes β/ of length 2~m which
intersect Q — a. If a e SQ then for each such <2/,

1 ί

while if a e Qo Π 5g

Since there are at most a fixed number of such cubes we have

Cε if a G SQ,
( 3 6 ) ι Λ ι I .o, v- - , , — - i c i f a e Q o Π S C t

Now for each 0 < j < m let

ĵr = {α G Qo: β ~ a is contained in a dyadic cube of length 2~J}

and note that \A<}\ < CV~m.

Since supp(/(α)) c 2rQ0, and | |/ ( α ) | |* < 1, it follows that there
exists C > 0 depending only on r and the dimension such that if
ae(AjΠAc

j+ι)nSo then

sup \g2*\x + a)- g2*\y
χ,yeQ-a

and if α G ̂ o n ^o then

SUp \g2*\x + <

while if a G (Λ, Π ^ + 1 ) n S o

c

sup |#2α)C* + <

and if α € A% Π 5^ then

sup \g
x,yeQ-a

Hence if j > N\ then

sup \g^\
AjnAc

j+ιnsoχ,yeQ-a

<Cε(m-j)2j-m
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and if 0 < j < N{ then

sup
,yeQ-

< C(m - j

Also

sup
:c

onso χ,yeQ-a

and

/ sup
JAjΠAc

j+ιnSc

0 χ,

<C(m

I
JA

sup \gt\x + CL)-g
AC

OΠSC

O χ,yeQ-a

C(m + r)min(2~m,ε).

Hence

(3.7) / sup \g{

2

a\x + α) - g{

2

a\y + a)\ da
JQo\{SonSι)χ,yeQ

m

~~ - j) min(2^-w, ε) + C(m + r) min(2-"\ ε)
j=o

m

< Cεlog- + Cm2-m + Cε + (m- Nι)2N'-m + Cm2

< Cε log - + Cε + C(m2~m)2Nl

< Cεlog- + Cε + Cε< Cεlog-.

ε ε
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Combining (3.5), (3.6) and (3.7) we get

/ sup \gf\x + a) - gM(y + a)\da
JQo\(SonSι)χ,yeQ

< Cε + Cεlog- + Cε + Cε < Cεlog-.
" ε ~ ε

It remains to show that

(3.8) s u p ^ ί | / - / β | < o o .
Q \Q\ JQ

It is clear from what we established above that it suffices to prove (3.8)
when the supremum is taken over all cubes with 1{Q) > 1. Fix Q with
l(Q) > 1. Then for all a e Qo,

Since each / ( α ) is supported on 2 rβo there exists C > 0, depending
only on r and the dimension, such that \jla\x)\ < C for all x e Rd.
Hence

f4
Q

Let {Qi} be those dyadic cubes of length 1 with Qι Γ\ (Q - a) Φ 0 .
Then for all a e Qo,

[

nf
ill JQ,
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Hence

and (3.8) now follows. This completes the proof of Lemma 3.2 and
Theorem I.

A consequence of Theorem I which has useful applications is the
following corollary:

COROLLARY 3.1. Let E\, E2 be measurable subsets of the unit cube in
R^ and suppose there exists an increasing sequence of positive numbers
{λn}(£=o with λn —* oo such that for each n e N and for each cube Q
with l(Q) < 2~n we have

min (Iβn^ί MlM) <
\ 161 ' 161 y

Then there exists F e VMO, | |F | | * < Cλo with F = 0 on E{ and F = 1
on E2.

Proof.

and

Set E = EX

aQ

u

=

E2 in

/(*) =

M
0

Theorem I

JO ifx
= I 1 ifx

if|βn£,|/

otherwise.

and define

€E2,

\Q\ < e~λ",
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