ON THE RESULTANT HYPERSURFACE

A. D. R. Choudary

The resultant $R(f, g)$ of two polynomials f and g is an irreducible polynomial such that $R(f, g)=0$ if and only if the equations $f=0$ and $g=0$ have one common root.

When $g=f^{\prime} / p$, then $D(f)=R(f, g)$ is called the discriminant of f and the discriminant hypersurface $D_{p}=\left\{f \in \mathbf{C}^{p}, D(f)=0\right\}$ can be identified to the discriminant of a versal deformation of the simple hypersurface singularity $A_{p-1}: x^{p}=0$. In particular, the fundamental group $\pi=\pi_{1}\left(\mathbf{C}^{p} \backslash D_{p}\right)$ is the famous braid group and $\mathbf{C}^{p} \backslash D_{p}$ in fact a $K(\pi, 1)$ space.

Here we prove the following.
Theorem. $\pi_{1}\left(\mathbf{C}^{p+q} \backslash R_{p, q}\right)=Z$.
As $\mathbf{C}^{p} \backslash D_{p}$ can be regarded as a linear section of $\mathbf{C}^{p+q} \backslash R_{p, q}$, this theorem shows that by a nongeneric linear section the fundamental group may change drastically, in contrast with the case of generic section.

Let $f=x^{p}+a_{1} x^{p-1}+\cdots+a_{p}$ and $g=x^{q}+b_{1} x^{q-1}+\cdots+b_{q}$ be two monic polynomials with complex coefficients of degree p and q respectively.

The resultant of them $R(f, g)$ is an irreducible polynomial in the coefficients a_{i}, b_{j} such that $R(f, g)=0$ if and only if the equations $f=0$ and $g=0$ have at least one common root. Explicitly, the resultant is given by the next formula (see for instance [5], p. 136):

When $g=f^{\prime} / p$, then $D(f)=(f, g)$ is called the discriminant of the polynomial f and the discriminant hypersurface $D_{p}=\left\{f \in \mathbf{C}^{p}, D(f)=\right.$ $0\}$ has occurred several times in Singularity Theory, since it can be identified to the discriminant of a versal deformatioin of the simple hypersurface singularity $A_{p-1}: x^{p}=0$, see for instance [1], [3], [9]. In
particular, the fundamental group $\pi=\pi_{1}\left(\mathbf{C}^{p} \backslash D_{p}\right)$ is the famous braid group [1] (with p strings) and $\mathbf{C}^{p} \backslash D_{p}$ is in fact a $K(\pi, 1)$ space.

In this note we consider the analogous resultant hypersurface

$$
R_{p, q}=\left\{(f, g) \in \mathbf{C}^{p+q} ; R(f, g)=0\right\}
$$

and prove the following.
Theorem. $\pi_{1}\left(\mathbf{C}^{p+q} \backslash R_{p, q}\right)=Z$.
Since $\mathbf{C}^{p} \backslash D_{p}$ can be regarded as a linear section of $\mathbf{C}^{p+q} \backslash R_{p, q}$, this theorem shows that by a nongeneric linear section the fundamental group may change drastically, in contrast with the case of generic section [4].

It is also interesting to note that the complements $F_{p, q}=\mathbf{C}^{p+q} \backslash R_{p, q}$ have already occurred in an important topological problem [7], going back to certain questions in Control Theory [2]. In short, consider the space of rational real functions of the form

$$
\phi=\frac{x^{n}+\alpha_{1} x^{n-1}+\cdots+\alpha_{n}}{x^{n}+\beta_{1} x^{n-1}+\cdots+\beta_{n}}
$$

with $\alpha_{i}, \beta_{j} \in R$ and the numerator and the denominator having no common root. Then ϕ induces a continuous map $P^{1}(\mathbf{C})=\mathbf{C} \cup\{\infty\} \rightarrow$ $\mathbf{C} \cup\{\infty\}=P^{1}(\mathbf{C})$ of degree n and its restriction to the equator $R \cup$ $\{\infty\}=S^{1} \subset S^{2}=P^{1}(\mathbf{C})$ gives a map $S^{1} \rightarrow S^{1}$ having degree r such that $-n \leq r \leq n$ and $n-r \equiv 0 \bmod 2$. Let E_{n-r} denote the space of these mappings with n and r fixed, with the obvious topology. Then Segal has shown in [7] that $E_{n, r}$ is homeomorphic to $F_{p, q}$ with $p+q=n$ and $p-q=r$. He has also proved our Theorem in the special case $p=q$, by a method completely different from ours.

We derive our Theorem from some basic properties of the resultant hypersurface (which are also interesting in themselves) combined with a deep result of Lê-Saito [6] on the connectivity of the Milnor fiber of non-isolated singularity.

Lemma 1. $R \in \mathbf{C}[a, b]$ is a weighted homogeneous polynomial of degree $p q$ with respect to the weights $\mathrm{wt}\left(a_{i}\right)=\mathrm{wt}\left(b_{i}\right)=i$.

Proof. Note that the polynomial $t \cdot f=x^{p}+t a_{1} x^{p-1}+\cdots+t^{p} a_{p}$
has as roots the elements $t x_{i}$, where x_{i} are the roots of f, for any $t \in \mathbf{C}^{*}$. Then, using [5], p.137, we get $R(t \cdot f, t \cdot g)=\prod_{i, j}\left(t x_{i}-t y_{j}\right)=$ $t^{p q} \prod_{i, j}\left(x_{i}-y_{j}\right)=t^{p q} R(f, g)$, where y_{j} are the roots of g.

The key remark in the proof is that the resultant hypersurface has a smooth normalization ν which can be described explicitly as follows:

$$
\nu=\mathbf{C} \times \mathbf{C}^{p-1} \times \mathbf{C}^{q-1} \rightarrow R_{p, q} \subset \mathbf{C}^{p+q}
$$

$\nu(t, \alpha, \beta)=\left((x-t) f_{\alpha},(x-t) g_{\beta}\right)$, where $f_{\alpha}=x^{p-1}+\alpha_{1} x^{p-2}+\cdots+\alpha_{p-1}$, $g_{\beta}=x^{q-1}+\beta_{1} x^{q-2}+\beta_{1} x^{q-2}+\cdots+\beta_{q-1}$. Then ν is clearly surjective onto $R_{p, q}$ and the cardinal of a fiber $\nu^{-1}(f, g)$ is equal to the number of common roots of the equations $f=0, g=0$, counted without taking their multiplicities into account. Hence ν is a finite morphism which is generically one-to-one so that ν is indeed a normalization for $R_{p, q}$.

We use ν to investigate the singularities of the hypersurface $R_{p, q}$. To do this, we first compute the differential of ν at a point $\left(t_{0}, \alpha_{0}, \beta_{0}\right)$:

$$
\begin{aligned}
& d \nu\left(t_{0}, \alpha_{0}, \beta_{0}\right)(t, \alpha, \beta) \\
& \quad=\left(\left(x-t_{0}\right)\left(f_{\alpha}-x^{p-1}\right)-t f_{\alpha_{0}},\left(x-t_{0}\right)\left(g_{\beta}-x^{q-1}\right)-\operatorname{tg}_{\beta_{0}}\right) .
\end{aligned}
$$

Assume that t_{0} is not a root for $f_{\alpha_{0}}$ and $g_{\beta_{0}}$ simultaneously. Then it follows that $d \nu\left(t_{0}, \alpha_{0}, \beta_{0}\right)$ is an injective linear map and its image (which is a hyperplane in the vector space V of all the pairs (A, B), with $A, B \in \mathbf{C}[x], \operatorname{deg} A \leq p-1, \operatorname{deg} B \leq q-1)$ is given by the equation

$$
f_{\alpha_{0}}\left(t_{0}\right) B\left(t_{0}\right)-g_{\beta_{0}}\left(t_{0}\right) A\left(t_{0}\right)=0 .
$$

Let $d(f, g)$ be the greatest common divisor of the polynomials f and g. The above computation gives us the next

Corollary 2. The point (f, g) is nonsingular on the hypersurface $R_{p, q}$ if and only if $\operatorname{deg} d(f, g)=1$.

Proof. Use the fact that a point $(f, g) \in R_{p, q}$ is nonsingular if and only if $\nu^{-1}(f, g)$ consists of one point, say y, and the corresponding germ $\nu:\left(\mathbf{C}^{p+q}, y\right) \rightarrow\left(R_{p, q},(f, g)\right)$ is an isomorphism.

We have also the more general result.
Proposition 3. Assume that $d(f, g)=\left(x-t_{1}\right) \ldots\left(x-t_{s}\right)$ is a product of s linear distinct factors. Then the germ $\left(R_{p, q},(f, g)\right)$ consists of s smooth hypersurface germs passing through (f, g) with normal crossings.

Proof. In this case the fiber $\nu^{-1}(f, g)$ consists of s points, say y_{k} with $k=1, \ldots, s$. Moreover, the germs $\nu_{i}:\left(\mathbf{C}^{p+q-1}, y_{i}\right) \rightarrow\left(R_{p, q},(f, g)\right) \subset$ $\left(\mathbf{C}^{p+q},(f, g)\right)$ induced by ν are all imbeddings and $H_{i}=\operatorname{im}\left(\nu_{i}\right)$ are pre-
cisely the (smooth) irreducible components of the germ $\left(R_{p, q},(f, g)\right)$. The corresponding tangent spaces are $T_{k}=T_{(f, g)} H_{k}: \bar{f}\left(t_{k}\right) B\left(t_{k}\right)-$ $\bar{g}\left(t_{k}\right) A\left(t_{k}\right)=0$ for $K-1, \ldots, s$ and $\bar{f}=f / d(f, g), \bar{g}=g / d(f, g)$. The condition of normal crossing in this case means that $\operatorname{codim}\left(\bigcap_{k=1, s} T_{k}\right)$ $=s$.

But this intersection corresponds to the kernel of the following linear map. $\quad T: V \simeq \mathbf{C}^{p+q} \rightarrow \mathbf{C}[x] /(d(f, g)) \simeq \mathbf{C}^{s}$ such that the k th component of $T(A, B)$ is just the evaluation on t_{k} of $(\bar{f} \cdot B-\bar{g} \cdot A)$, for $k=1, \ldots, s$. It is easy to check that T is a surjective map and hence $\operatorname{codim}\left(\bigcap_{k=1, s} T_{k}\right)=\operatorname{codim}(\operatorname{ker} T)=s$.

COROLLARY 4. The hypersurface $R_{p, q}$ has only normal crossings singularities in codimension 1 and hence $\pi_{1}\left(\mathbf{C}^{p+q} \backslash R_{p, q}\right)=Z$.

Proof. The singularities of $R_{p, q}$ which are not normal crossings (as described in Proposition 3) lie in the image of the map

$$
\begin{gathered}
\tau: \mathbf{C} \times \mathbf{C}^{p-2} \times \mathbf{C}^{q-2} \rightarrow R_{p, q}, \\
\tau(t, \alpha, \beta)=\left((x-t)^{2} \widetilde{f}_{\alpha},(x-t)^{2} \widetilde{g}_{\beta}\right)
\end{gathered}
$$

with $\tilde{f}_{\alpha}, \widetilde{g}_{\beta}$ having a meaning similar to f_{α}, g_{β}. But $\operatorname{dim}(\operatorname{im} \tau) \leq p+q-$ $3=\operatorname{dim} R_{p, q}-2$ which proves the first assertion above. Next consider the fibration $F \rightarrow \mathbf{C}^{p+q} \backslash R_{p, q} \rightarrow \mathbf{C}^{*}$ with $F=F^{-1}(1)=\{(f, g) \in$ $\left.\mathbf{C}^{p+q} ; R(f, g)=1\right\}$. Using the weighted homogeneity of R given by Lemma 1 , we can identify this fibration with the Milnor fibration of the hypersurface singularity $\left(R_{p, q},\left(x^{p}, y^{q}\right)\right)$. It follows by [6] that $\Pi_{1}(F)=0$ and hence we get an isomorphism

$$
R_{\#}=\prod_{1}\left(\mathbf{C}^{p+q} \backslash R_{p, q}\right) \rightarrow \prod_{1}\left(\mathbf{C}^{*}\right)=Z
$$

This ends the proof of this corollary as well as giving a more precise version of our Theorem above.

Remark 5. There is a natural \mathbf{C}-action on \mathbf{C}^{p+q} leaving the resultant hypersurface $R_{p, q}$ invariant. Namely we define the translation of an element (f, g) by the complex number λ to be the element $\left(f^{\lambda}, g^{\lambda}\right)$ where

$$
f^{\lambda}=\prod_{i=1, p}\left(x-x_{i}-\lambda\right), \quad g^{\lambda}=\prod_{j=1, q}\left(x-y_{j}-\lambda\right)
$$

with x_{i} (resp. y_{j}) being the roots of f (resp. g). Since the hyperplane $a_{1}=0$ is clearly transversal to all the C-orbits, it follows that

$$
R_{p, q}=\bar{R}_{p, q} \times \mathbf{C} \quad \text { with } \bar{R}_{p, q}=R_{p, q} \cap\left\{a_{1}=0\right\}
$$

The first non-trivial case of a resultant hypersurface is for $p=q=$ 2. Then $\bar{R}_{2,2}$ is just the Whitney umbrella $W: \bar{b}_{2}^{2}-b_{1}^{2} a_{2}=s$, with $\bar{b}_{2}=b_{2}-a_{2}$, called also a D_{∞}-surface singularity for a pinch point. It follows that $\mathbf{C}^{4} \backslash R_{2,2}=\left(\mathbf{C}^{3} \backslash W\right) \times \mathbf{C}$ and the homotopy groups of $\mathbf{C}^{3} \backslash W$ can be derived from the Milnor fibration $F_{\infty} \rightarrow \mathbf{C}^{3} \backslash W \rightarrow \mathbf{C}^{*}$ associated to the D_{∞}-singularity [8]. It is known that F_{∞} has the homotopy type of the 2 -sphere S^{2} and hence

$$
\prod_{k}\left(\mathbf{C}^{4} \backslash R_{2,2}\right)=\prod_{k}\left(S^{2}\right) \quad \text { for } k \geq 2
$$

In particular $\mathbf{C}^{4} \backslash R_{2,2}$ is not a $K(Z, 1)$ space, since $\Pi_{2}\left(\mathbf{C}^{4} \backslash R_{2,2}\right)=Z$.

References

[1] E. Brieskorn Sur les groupes de tresses (d'aprés V. I. Arnold), Séminaire Bourbaki 1971/72, Exposées 400-417, p. 21-44, Lecture Notes in Mathematics 314, Springer 1973.
[2] R. Brockett, Some geometric questions in the theory of linear systems, IEEE Trans. of Automatic Control, bf21 (1976), 449-455
[3] A. Dimca and R. Rosianu, The Samuel stratification of the discriminant is Whitney regular, Geom. Dedicata, 17 (1984), 181-184.
[4] H. Hamm and D.-T. Le, Un théorème de Zariski du type de Lefschetz, Ann. Sci. Ec. Norm. Sup. 6 (1973), 317-366.
[5] S. Lang, Algebra, Addison-Wesley (1965), Reading, Massachusetts.
[6] D. T. Lê and K. Saito, The local Π_{1} of the complement of a hypersurface with normal crossings in codimension 1 is abelian, Ark. Mat., 22 (1984), 1-24.
[7] G. Segal, The topology of spaces of rational functions, Acta Math., 143 (1979), 39-72.
[8] D. Siersma, Isolated line singularities, Proc. Symp. Pure Math., 40 (1983) part 2, p. 485-496, Amer. Math. Soc., 1983.
[9] B. Teissier, The hunting of invariants in the geometry of discriminants, in Real and complex Singularities (Oslo, 1976), Sythoff and Noordhoff (1977), 566677.

Received April 29, 1988.
Central Washington University
Ellensburg, WA 98926

