THE STRUCTURE OF PURE COMPLETELY BOUNDED AND COMPLETELY POSITIVE MULTILINEAR OPERATORS

Zhong-Jin Ruan

Abstract

Let A be a C^{*}-algebra and $B(H)$ the algebra of all bounded linear operators on a Hilbert space H. We study the structure of pure completely bounded and completely positive multilinear operators from $A^{k}=A \times \cdots \times A$ into $B(H)$.

1. Introduction. The definition of completely bounded (resp. completely positive) multilinear operators from one C^{*}-algebra into another was introduced by Christensen and Sinclair [4]. We begin by recalling these definitions for our convenience.

Throughout this paper, we assume that C^{*}-algebras are unital. Let A and B be C^{*}-algebras. We denote $M_{n}(A)=\left\{\left[a_{i j}\right]: a_{i j} \in A\right\}$ (resp. $M_{n}(B)$) the C^{*}-algebra of $n \times n$ matrices over A (resp. B). If $\phi: A^{k}=A \times \cdots \times A \rightarrow B$ is a k-linear operator, the k-linear operator $\phi_{n}: M_{n}(A)^{k} \rightarrow M_{n}(B)$ is defined by

$$
\phi_{n}\left(A_{1}, A_{2}, \ldots, A_{k}\right)=\left[\sum_{i_{2}, \ldots, i_{k}=1}^{n} \phi\left(a_{i_{1} i_{2}}, a_{i_{2} i_{3}}, \ldots, a_{i_{k} i_{k+1}}\right)\right]
$$

for all $A_{j}=\left[a_{i, i_{j+1}}\right] \in M_{n}(A) \quad(1 \leq j \leq k)$. We define the norm of ϕ_{n} by

$$
\begin{aligned}
\left\|\phi_{n}\right\|=\sup \left\{\left\|\phi_{n}\left(A_{1}, A_{2}, \ldots, A_{k}\right)\right\|:\right. & A_{j} \in M_{n}(A) \\
& \text { with } \left.\left\|A_{j}\right\| \leq 1 \text { for } 1 \leq j \leq k\right\}
\end{aligned}
$$

and define the completely bounded norm of ϕ by

$$
\|\phi\|_{c b}=\sup \left\{\left\|\phi_{n}\right\|: n \in N\right\} .
$$

A k-linear operator ϕ is called completely bounded (resp. completely contractive) if the completely bounded norm $\|\phi\|_{c b}$ is finite (resp. $\|\phi\|_{c b} \leq 1$). We denote $C B\left(A^{k}, B\right)$ the complex Banach space of all completely bounded k-linear operators from A^{k} into B. If $\phi: A^{k} \rightarrow B$ is a k-linear operator, the adjoint k-linear operator ϕ^{*} from A^{k} into B is defined by

$$
\phi^{*}\left(a_{1}, \ldots, a_{k}\right)=\phi\left(a_{k}^{*}, \ldots, a_{1}^{*}\right)^{*}
$$

for all $a_{1}, \ldots, a_{k} \in A$. If $\phi \in C B\left(A^{k}, B\right)$, then so is ϕ^{*} with $\left\|\phi^{*}\right\|_{c b}=\|\phi\|_{c b}$. This gives an involution on the complex Banach space $C B\left(A^{k}, B\right)$. A completely bounded k-linear operator $\phi \in C B\left(A^{k}, B\right)$ is called symmetric if $\phi=\phi^{*}$. We denote $C B_{s}\left(A^{k}, B\right)$ the set of all completely bounded symmetric k-linear operators from A^{k} into B. Then $C B_{s}\left(A^{k}, B\right)$ is just the real space of all selfadjoint elements in $C B\left(A^{k}, B\right)$. $A \quad k$-linear operator $\phi: A^{k} \rightarrow B$ is called completely positive if:
(i) $k=2 l-1$ odd. We have $\phi_{n}\left(A_{1}^{*}, \ldots, A_{l-1}^{*}, A_{l}, A_{l-1}, \ldots, A_{1}\right)$ ≥ 0 for all $A_{1}, \ldots, A_{l-1} \in M_{n}(A), A_{l} \in M_{n}(A)^{+}$and all $n \in N$, or
(ii) $k=2 l$ even. We have $\phi_{n}\left(A_{1}^{*}, \ldots, A_{l}^{*}, A_{l}, \ldots, A_{1}\right) \geq 0$ for all $A_{1}, \ldots, A_{l} \in M_{n}(A)$ and all $n \in N$.

We denote $C B^{+}\left(A^{k}, B\right)$ the set of all completely bounded and completely positive k-linear operators from A^{k} into B. Then $C B^{+}\left(A^{k}, B\right)$ is a proper positive cone in the real Banach space $C B_{s}\left(A^{k}, B\right)$. It is known from [18], [10], [12] and [4] that $C B_{s}\left(A^{k}, B\right)$ $=C B^{+}\left(A^{k}, B\right)-C B^{+}\left(A^{k}, B\right)$ if B is an injective C^{*}-algebra. This gives a natural partial ordering on $C B_{s}\left(A^{k}, B\right)$ defined by $\psi \leq \phi$ if $\phi-\psi \in C B^{+}\left(A^{k}, B\right)$.

Remark. The above definition of completely bounded (resp. completely bounded symmetric, completely positive) k-linear operators from A^{k} into B is a natural generalization of the usual definition of completely bounded (resp. completely bounded self-adjoint, completely positive) linear operators from C^{*}-algebra A into C^{*}-algebra B. In the case of $k=1$, we know that every completely positive linear operator between C^{*}-algebras is already completely bounded with $\|\phi\|_{c b}=\|\phi\|$. Unfortunately, this is not true for completely positive k-linear operators when $k \geq 2$ (see [4], page 155).

Definition 1.1. A completely bounded and completely positive k linear operator $\phi \in C B^{+}\left(A^{k}, B\right)$ is pure if, for every $\psi \in C B^{+}\left(A^{k}, B\right)$, $\psi \leq \phi$ implies $\psi=\lambda \phi$ for some $\lambda \geq 0$.

From the above definition, $\phi \in C B^{+}\left(A^{k}, B\right)$ is pure if and only if the ray $R_{\phi}=\{\lambda \phi: \lambda \geq 0\}$ determined by ϕ is an extreme ray in $C B^{+}\left(A^{k}, B\right)$ (cf. G. Choquet [2], Volume II).

Now we consider $B=B(H)$, the algebra of all bounded linear operators on a Hilbert space H. If $k=1$ and $B(H)=C$, it is well known that every pure element in $C B^{+}\left(A^{k}, C\right)=\left(A^{*}\right)^{+}$is just a positive linear functional on A whose GNS representation is irreducible
(cf. Takesaki [17] Chapter I). The pure elements in $C B^{+}(A, B(H))$ were studied by Arveson [1].

In this paper, we study the structure of pure elements in $C B^{+}\left(A^{k}, B(H)\right)$ for $k=2 l$. In particular, we give a detailed discussion for pure completely bounded and completely positive bilinear operators from A^{2} into the matrix algebra $M_{n}(C)$. Applying [4], Theorem 4.1, we show, in $\S 2$, a representation theorem for pure completely bounded and completely positive k-linear operators from A^{k} into $B(H)$. We show, in Theorem 3.2 and Theorem 3.3, that a completely bounded and completely positive bilinear operator $\phi \in$ $C B^{+}\left(A^{2}, M_{n}(C)\right)$ is pure if and only if there are bounded linear functionals f_{1}, \ldots, f_{n} on A such that $\phi=F^{*} \odot F$, where

$$
F=\left[\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
0 & \cdots & 0 \\
. & \cdots & . \\
0 & \cdots & 0
\end{array}\right] .
$$

Such a linear operator F is unique up to multiplication by a complex number of module one. We generalize Theorem 3.2 and Theorem 3.3 to completely bounded and completely positive $2 l$-linear operators from $A^{2 l}$ into $M_{n}(C)$ in Theorem 3.4. In $\S 4$, we discuss the normal version of the above results. In $\S 5$, we apply the results in $\S 3$ (resp. in $\S 4$) to study the pure elements in multivariable Fourier-Stieltjes algebras (resp. in multivariable Fourier algebras).

To close this section, we state a result of [4].
Theorem 1.2 ([4], Lemma 3.1 and Corollary 4.2). Let H be a Hilbert space, let A be a C^{*}-algebra, and let $\phi \in C B_{s}\left(A^{k}, B(H)\right)$ with $k \geq 2$. Let $\varphi: A \rightarrow B(H)$ be a completely positive linear operator given by $\varphi=V^{*} \pi V$, where π is a *-representation of A on a Hilbert space K and $V \in B(H, K)$ is a bounded linear operator with $K=$ [$\pi(A) V H]$. If we have

$$
-\varphi_{n}\left(X^{*} X\right) \leq \phi_{n}\left(X^{*}, A_{2}, \ldots, A_{k-1}, X\right) \leq \varphi_{n}\left(X^{*} X\right)
$$

for all $X \in M_{n}(A)$ and all $\left(A_{2}, \ldots, A_{k-1}\right)=\left(A_{k-1}^{*}, \ldots, A_{2}^{*}\right) \in$ $M_{n}(A)^{k-2}$ with $\left\|A_{j}\right\| \leq 1 \quad(2 \leq j \leq k-1)$, then there is a $\psi \in$ $C B_{s}\left(A^{k-2}, B(K)\right)$ with $\|\psi\|_{c b} \leq 1$ (when $k=2, \psi$ is just a fixed selfadjoint linear operator in $B(K)$) such that

$$
\phi\left(a_{1}, \ldots, a_{k}\right)=V^{*} \pi\left(a_{1}\right) \psi\left(a_{2}, \ldots, a_{k-1}\right) \pi\left(a_{k}\right) V
$$

for all $a_{1}, \ldots, a_{k} \in A$. If, in addition, ϕ is completely positive, then so is ψ.

REMARK. In Theorem 1.2, we considered a given representation $\{\pi, V, K\}$ of φ with $K=[\pi(A) V H]$ the norm closure of $\pi(A) V H$, which is called a minimal representation of φ in [1]. If A is a unital C^{*}-algebra, the representation of φ obtained from the Stinespring construction (cf. [1] and [16]) is minimal. Since any two minimal representations of φ are unitarily equivalent, the result in Theorem 1.2 is essentially the same as that in [4] Lemma 3.1.
2. A representation theorem for pure completely bounded and completely positive k-linear operators. Let A be a C^{*}-algebra, let K and H be Hilbert spaces, let π be a *-representation of A on K and let $V \in B(H, K)$ with $K=[\pi(A) V H]$. For any integer $k \geq 2$, we can define a map $\Gamma: C B\left(A^{k-2}, B(K)\right) \rightarrow C B\left(A^{k}, B(H)\right)$ by

$$
\Gamma(\psi)\left(a_{1}, \ldots, a_{k}\right)=V^{*} \pi\left(a_{1}\right) \psi\left(a_{2}, \ldots, a_{k-1}\right) \pi\left(a_{k}\right) V
$$

for all $a_{1}, \ldots, a_{k} \in A$. Here we denote $B(K)=C B\left(A^{0}, B(K)\right)$. It is clear that Γ is a well-defined bounded linear operator from $C B\left(A^{k-2}, B(K)\right)$ into $C B\left(A^{k}, B(H)\right)$, which maps $C B_{s}\left(A^{k-2}, B(K)\right)$ into $C B_{s}\left(A^{k}, B(H)\right)$ and $C B^{+}\left(A^{k-2}, B(K)\right)$ into $C B^{+}\left(A^{k}, B(H)\right)$. It follows from $K=[\pi(A) V H]$ that Γ is a linear injection. If $V \in B(H, K)$ is a contraction then so is Γ.

Lemma 2.1. The linear operator Γ is a linear order isomorphism from $C B_{s}\left(A^{k-2}, B(K)\right)$ onto its image $\Gamma\left(C B_{s}\left(A^{k-2}, B(K)\right)\right)$.

Proof. We only need to show that, for any $\phi \in C B^{+}\left(A^{k}, B(H)\right) \cap$ $\Gamma\left(C B_{s}\left(A^{K-2}, B(K)\right)\right)$, there is a $\psi \in C B^{+}\left(A^{K-2}, B(K)\right)$ such that $\Gamma(\psi)=\phi$.

Given $\phi \in C B^{+}\left(A^{k}, B(H)\right) \cap \Gamma\left(C B_{s}\left(A^{k-2}, B(K)\right)\right)$, there is a $\psi \in$ $C B_{s}\left(A^{k-2}, B(K)\right)$ such that $\Gamma(\psi)=\phi$. For each $n \in N$, and all $\left(A_{2}, \ldots, A_{k-1}\right)=\left(A_{k-1}^{*}, \ldots, A_{2}^{*}\right) \in M_{n}(A)^{k-2}$ with $A_{m} \geq 0$ if k is odd, where $m=(k+1) / 2$, and for all $\eta_{n}=\pi_{n}(X)\left(V \otimes \mathrm{id}_{n}\right) \xi_{n}$, when $X \in M_{n}(A)$ and $\xi_{n} \in H^{n}$, we have

$$
\begin{aligned}
& \left\langle\psi_{n}\left(A_{2}, \ldots, A_{k-1}\right) \eta_{n}, \eta_{n}\right\rangle \\
& \quad=\left\langle\left(V^{*} \otimes \mathrm{id}_{n}\right) \pi_{n}\left(X^{*}\right) \psi_{n}\left(A_{2}, \ldots, A_{k-1}\right) \pi_{n}(X)\left(V \otimes \mathrm{id}_{n}\right) \xi_{n}, \xi_{n}\right\rangle \\
& \quad=\left\langle\phi_{n}\left(X^{*}, A_{2}, \ldots, A_{k-1}, X\right) \xi_{n}, \xi_{n}\right\rangle \geq 0
\end{aligned}
$$

Thus $\psi \in C B^{+}\left(A^{k-2}, B(K)\right)$ since $\pi(A) V H$ is dense in K.

Let $\phi \in C B^{+}\left(A^{k}, B\right)$. The order interval $[0, \phi]$ is defined by

$$
[0, \phi]=\left\{\hat{\phi} \in C B^{+}\left(A^{k}, B\right): 0 \leq \hat{\phi} \leq \phi\right\} .
$$

Lemma 2.2. If $\phi=\Gamma(\psi)$ for some $\psi \in C B^{+}\left(A^{k-2}, B(K)\right)$, then the order interval $[0, \phi]$ is contained in $\Gamma\left(C B^{+}\left(A^{k-2}, B(K)\right)\right.$ and Γ is an affine isomorphism from $[0, \psi]$ onto $[0, \phi]$.

Proof. Without loss of generality, we assume that $\phi=\Gamma(\psi)$ for some $\psi \in C B^{+}\left(A^{k-2}, B(K)\right)$ with $\|\psi\|_{c b}=1$. Let $\varphi=V^{*} \pi V$. Since

$$
-I \leq \psi_{n}\left(A_{2}, \ldots, A_{k-1}\right) \leq I,
$$

we have

$$
-\varphi_{n}\left(X^{*} X\right) \leq \phi_{n}\left(X^{*}, A_{2}, \ldots, A_{k-1}, X\right) \leq \varphi_{n}\left(X^{*} X\right)
$$

for all $X \in M_{n}(A)$ and $\left(A_{2}, \ldots, A_{k-1}\right)=\left(A_{k-1}^{*}, \ldots, A_{2}^{*}\right) \in M_{n}(A)^{k-2}$ with $\left\|A_{j}\right\| \leq 1 \quad(2 \leq j \leq k-1)$. We need to show that, for any $\hat{\phi} \in[0, \phi]$, there is $\hat{\psi} \in[0, \psi]$ such that $\Gamma(\hat{\psi})=\hat{\phi}$.

Given $\hat{\phi} \in[0, \phi]$, we claim that

$$
-\phi_{n}\left(X^{*} X\right) \leq \hat{\phi}_{n}\left(X^{*}, A_{2}, \ldots, A_{k-1}, X\right) \leq \phi_{n}\left(X^{*} X\right)
$$

for all $X \in M_{n}(A)$ and $\left(A_{2}, \ldots, A_{k-1}\right)=\left(A_{k-1}^{*}, \ldots, A_{2}^{*}\right) \in M_{n}(A)^{k-2}$ with $\left\|A_{j}\right\| \leq 1 \quad(2 \leq j \leq k-1)$, and all $n \in N$.

To see this, if $k=2 l+1$, we have

$$
\left(A_{2}, \ldots, A_{k-1}\right)=\left(B_{2}^{*}, \ldots, B_{l}^{*}, B_{l+1}, B_{l}, \ldots, B_{1}\right)
$$

for some $B_{j} \in M_{n}(A)$ with $\left\|B_{j}\right\| \leq 1 \quad(j=2, \ldots, l+1)$ and B_{l+1} selfadjoint. Hence we can write $B_{l+1}=B_{l+1}^{+}-B_{l+1}^{-}$, where B_{l+1}^{+}and B_{l+1}^{-}are positive in $M_{n}(A)$ with the norms less than or equal to 1 . Since

$$
\begin{aligned}
0 & \leq \hat{\phi}_{n}\left(X^{*}, B_{2}^{*}, \ldots, B_{l}^{*}, B_{l+1}^{ \pm}, B_{l}, \ldots, B_{2}, X\right) \\
& \leq \phi_{n}\left(X^{*}, B_{2}^{*}, \ldots, B_{l}^{*}, B_{l+1}^{ \pm}, B_{l}, \ldots, B_{2}, X\right) \\
& \leq \phi_{n}\left(X^{*} X\right)
\end{aligned}
$$

we have

$$
-\phi_{n}\left(X^{*} X\right) \leq \hat{\phi}_{n}\left(X^{*}, B_{2}^{*}, \ldots, B_{l}^{*}, B_{l+1}^{*}, B_{l}, \ldots, B_{2}, X\right) \leq \phi_{n}\left(X^{*} X\right) .
$$

If $k=2 l$, we have

$$
\left(A_{2}, \ldots, A_{k-1}\right)=\left(B_{2}^{*}, \ldots, B_{l}^{*}, B_{l}, \ldots, B_{2}\right)
$$

for some $B_{j} \in M_{n}(A)$ with $\left\|B_{j}\right\| \leq 1 \quad(2 \leq j \leq l)$; then we have

$$
\begin{aligned}
-\phi_{n}\left(X^{*} X\right) \leq 0 & \leq \hat{\phi}_{n}\left(X^{*}, B_{2}^{*}, \ldots, B_{l}^{*}, B_{l}, \ldots, B_{2}, X\right) \\
& \leq \phi_{n}\left(X^{*}, B_{2}^{*}, \ldots, B_{l}^{*}, B_{l}, \ldots, B_{2}, X\right) \\
& \leq \phi_{n}\left(X^{*} X\right)
\end{aligned}
$$

By Theorem 1.2, there exists a completely bounded and completely positive $(k-2)$-linear operator $\hat{\psi} \in C B^{+}\left(A^{k-2}, B(K)\right)$ such that $\Gamma(\hat{\psi})$ $=V^{*} \pi \hat{\psi} \pi V=\hat{\phi}$. Since $\hat{\phi} \leq \phi$ and, by Lemma $2.1, \Gamma$ is a linear order isomorphism from $C B_{s}\left(A^{\bar{k}-2}, B(K)\right)$ onto $\Gamma\left(C B_{s}\left(A^{k-2}, B(K)\right)\right)$, we have $\hat{\psi} \in[0, \psi]$.

Lemma 2.3. A completely bounded and completely positive k-linear operator $\psi \in C B^{+}\left(A^{k-2}, B(K)\right)$ is pure if and only if its image $\phi=$ $\Gamma(\psi)$ is pure in $C B^{+}\left(A^{k}, B(H)\right)$.

Proof. From the definition, we know that ψ (resp. ϕ) is pure if and only if $[0, \psi]=\{\lambda \psi: 0 \leq \lambda \leq 1\}$ (resp. $[0, \phi]=\{\lambda \phi ; 0 \leq \lambda \leq 1\}$). The conclusion follows easily from Lemma 2.2

Theorem 2.4. Let A be a C^{*}-algebra, let H be a Hilbert space and let $\phi \in C B^{+}\left(A^{k}, B(H)\right)$ with $k \geq 2$. Then ϕ is pure if and only if
(i) $k=2 l+1$ odd. There are *-representations $\pi_{1}, \ldots, \pi_{l+1}$ of A on Hilbert spaces K_{1}, \ldots, K_{l+1} with π_{l+1} irreducible on K_{l+1} and linear operators $V_{j} \in B\left(K_{j-1}, K_{j}\right)$ for $1 \leq j \leq l+1$, where $K_{0}=H$, $K_{j}=\left[\pi_{j}(A) V_{j} K_{j-1}\right]$ for all $1 \leq j \leq l+1$ and

$$
\left\|V_{1}\right\| \cdots\left\|V_{l+1}\right\|=\|\phi\|_{c b}^{1 / 2}
$$

such that

$$
\begin{aligned}
& \phi\left(a_{1}, \ldots, a_{k}\right) \\
& \quad=V_{1}^{*} \pi_{1}\left(a_{1}\right) \cdots \pi_{l}\left(a_{l}\right) V_{l+1}^{*} \pi_{l+1}\left(a_{l+1}\right) V_{l+1} \pi_{l}\left(a_{l+2}\right) \cdots \pi_{1}\left(a_{k}\right) V_{1}
\end{aligned}
$$

for all $a_{1}, \ldots, a_{k} \in A$.
(ii) $k=2 l$ even. There are ${ }^{*}$-representations π_{1}, \ldots, π_{l} of A on Hilbert spaces K_{1}, \ldots, K_{l}, linear operators $V_{j} \in B\left(K_{j-1}, K_{j}\right)$, where $K_{0}=H, K_{j}=\left[\pi_{j}(A) V_{j} K_{j-1}\right]$ for $1 \leq j \leq l$ and

$$
\left\|V_{1}\right\| \cdots\left\|V_{l}\right\|=\|\phi\|_{c b}^{1 / 2}
$$

and a rank one projection T in $B\left(K_{l}\right)^{+}$such that

$$
\begin{aligned}
& \phi\left(a_{1}, \ldots, a_{k}\right) \\
& \quad=V_{1}^{*} \pi\left(a_{1}\right) V_{2}^{*} \pi_{2}\left(a_{2}\right) \cdots \pi_{l}\left(a_{l}\right) T \pi_{l}\left(a_{l+1}\right) \cdots \pi_{2}\left(a_{k-1}\right) V_{2} \pi_{1}\left(a_{k}\right) V_{1}
\end{aligned}
$$

for all $a_{1}, \ldots, a_{k} \in A$.
Proof. Applying [4], Theorem 4.1, we have
(i) $k=2 l+1$ odd. There are ${ }^{*}$-representations $\pi_{1}, \ldots, \pi_{l+1}$ of A on Hilbert spaces K_{1}, \ldots, K_{l+1} and linear operators $V_{j} \in$ $B\left(K_{j-1}, K_{j}\right)$, where $K_{0}=H, K_{j}=\left[\pi_{j}(A) V_{j} K_{j-1}\right]$ for all $1 \leq j \leq$ $l+1$ and

$$
\left\|V_{1}\right\| \cdots\left\|V_{l+1}\right\|=\|\phi\|_{c b}^{1 / 2}
$$

such that

$$
\begin{aligned}
& \phi\left(a_{1}, \ldots, a_{k}\right) \\
& \quad=V_{1}^{*} \pi_{1}\left(a_{1}\right) \cdots \pi_{l}\left(a_{l}\right) V_{l+1}^{*} \pi_{l+1}\left(a_{l+1}\right) V_{l+1} \pi_{l}\left(a_{l+2}\right) \cdots \pi_{1}\left(a_{k}\right) V_{1}
\end{aligned}
$$

for all $a_{1}, \ldots, a_{k} \in A$. By Lemma 2.3 and induction on l, we have $\phi \in C B^{+}\left(A^{k}, B(H)\right)$ is pure if and only if $\psi=V_{l+1}^{*} \pi_{l+1} V_{l+1}$ is pure in $C B^{+}\left(A, B\left(K_{l}\right)\right)$ if and only if π is an irreducible representation on K_{l+1} (see Arveson [1]).
(ii) $k=2 l$ even. There are ${ }^{*}$-representations π_{1}, \ldots, π_{l} of A on Hilbert spaces K_{1}, \ldots, K_{l}, linear operators $V_{j} \in B\left(K_{j-1}, K_{j}\right)$, where $K_{0}=H, K_{j}=\left[\pi_{j}(A) V_{j} K_{j-1}\right]$ for $1 \leq j \leq l$ and

$$
\left\|V_{1}\right\| \cdots\left\|V_{l}\right\|=\|\phi\|_{c b}^{1 / 2}
$$

and a positive linear operator $T \in B\left(K_{l}\right)^{+}$with $\|T\|=1$ such that

$$
\begin{aligned}
& \phi\left(a_{1}, \ldots, a_{k}\right) \\
& \quad=V_{1}^{*} \pi\left(a_{1}\right) V_{2}^{*} \pi_{2}\left(a_{2}\right) \cdots \pi_{l}\left(a_{l}\right) T \pi_{l}\left(a_{l+1}\right) \cdots \pi_{2}\left(a_{k-1}\right) V_{2} \pi_{1}\left(a_{k}\right) V_{1}
\end{aligned}
$$

for all $a_{1}, \ldots, a_{k} \in A$. By Lemma 2.3 and induction on l, we have $\phi \in C B^{+}\left(A^{k}, B(H)\right)$ is pure if and only if T is pure in $B\left(K_{l}\right)^{+}$, the set of all positive linear operators on K_{l}, with $\|T\|=1$ if and only if T is a rank one projection.
3. The structure of pure completely bounded and completely positive multlinear operators. In this section, we study the structure of pure completely bounded and completely positive $2 l$-linear operators from $A^{2 l}$ into $M_{n}(C)$. Let f and g be l-linear functionals from A^{l} into C. We define a $2 l$-linear function $f \otimes g: A^{2 l} \rightarrow C$ by

$$
(f \otimes g)\left(a_{1}, \ldots, a_{2 l}\right)=f\left(a_{1}, \ldots, a_{l}\right) g\left(a_{l+1}, \ldots, a_{2 l}\right)
$$

for all $a_{1}, \ldots, a_{2 l} \in A$. Let $F=\left[f_{i j}\right]$ and $G=\left[g_{i j}\right]$ be l-linear operators from A^{l} into $M_{n}(C)$. Then we can define a $2 l$-linear operator $F \cdot G: A^{2 l} \rightarrow M_{n}(C)$ by

$$
F \odot G=\left[\sum_{k=1}^{n} f_{i k} \otimes g_{k j}\right] .
$$

For an l-linear operator $F=\left[f_{i j}\right]: A^{l} \rightarrow M_{n}(C)$, the adjoint l linear operator F^{*} of F can be written as $F^{*}=\left[f_{j i}^{*}\right]$. The l linear operator F is completely bounded if and only if each $f_{i j}$ is a completely bounded l-linear functional on A^{l}. If F is completely bounded, then so is F^{*} with $\left\|F^{*}\right\|_{c b}=\|F\|_{c b}$.

Let $F=\left[f_{i j}\right]: A^{l} \rightarrow M_{n}(C)$ be a completely bounded l-linear operator. For all $A_{j}=\left[a_{i, j_{j+1}}\right] \in M_{m}(A) \quad(1 \leq j \leq 2 l)$, we have

$$
\begin{aligned}
& \left(F^{*} \odot F\right)_{m}\left(A_{1}, \ldots, A_{2 l}\right) \\
& =\left[\sum_{i_{2}, \ldots, i_{2 l}=1}^{m}\left(F^{*} \odot F\right)\left(a_{i_{1} i_{2}}, \ldots, a_{i_{2 l} i_{2 l+1}}\right)\right] \\
& = \\
& =\left[\sum_{i_{l+1}=1}^{m}\left(\sum_{i_{2}, \ldots, i_{l}=1}^{m} F^{*}\left(a_{i_{1} i_{2}}, \ldots, a_{i_{l} i_{l+1}}\right)\right)\right. \\
& \\
& \left.\quad \cdot\left(\sum_{i_{l+}, \ldots, i_{2 l}}^{m} F\left(a_{i_{l+1} i_{l+2}}, \ldots, a_{i_{2 l} i_{2 l+1}}\right)\right)\right] \\
& = \\
& =F_{m}^{*}\left(A_{1}, \ldots, A_{l}\right) F_{m}\left(A_{l+1}, \ldots, A_{2 l}\right)
\end{aligned}
$$

in $M_{m}(C) \otimes M_{n}(C)$. Since

$$
F_{m}^{*}\left(A_{1}^{*}, \ldots, A_{l}^{*}\right)=\left(F_{m}\left(A_{l}, \ldots, A_{1}\right)\right)^{*}
$$

for all $A_{1}, \ldots, A_{l} \in M_{m}(A)$, we have

$$
\begin{aligned}
& \left(F^{*} \odot F\right)_{m}\left(A_{1}^{*}, \ldots, A_{l}^{*}, A_{l}, \ldots, A_{1}\right) \\
& \quad=F_{m}^{*}\left(A_{1}^{*}, \ldots, A_{l}^{*}\right) F_{m}\left(A_{l}, \ldots, A_{1}\right) \\
& \quad=\left(F_{m}\left(A_{l}, \ldots, A_{1}\right)\right)^{*} F_{m}\left(A_{l}, \ldots, A_{1}\right) .
\end{aligned}
$$

This implies that $F^{*} \odot F: A^{2 l} \rightarrow M_{n}(C)$ is completely positive.
Lemma 3.1. Let $F=\left[f_{i j}\right]: A^{l} \rightarrow M_{n}(C)$ be an l-linear operator. Then the corresponding $2 l$-linear operator $\phi=F^{*} \odot F: A^{2 l} \rightarrow M_{n}(C)$ is completely positive. The l-linear operator F is completely bounded
if and only if the 2l-linear operator $\phi=F^{*} \odot F$ is completely bounded. In this case, we have $\|\phi\|_{c b}=\left\|\phi_{n}\right\|=\|F\|_{c b}^{2}$.

Proof. The first statement is obvious. For the rest of the proof, we consider the case $l=1$ without loss of the generality. If F is completely bounded, we have

$$
\begin{aligned}
&\|\phi\|_{c b}=\sup \left\{\left\|\phi_{m}(X, Y)\right\|: X, Y \in M_{m}(A)\right. \\
&\text { with }\|X\|,\|Y\| \leq 1, m \in N\} \\
&= \sup \left\{\left\|F_{m}^{*}(X) F_{m}(Y)\right\|: X, Y \in M_{m}(A)\right. \\
&\quad \text { with }\|X\|,\|Y\| \leq 1, m \in N\} \\
& \leq\left\|F^{*}\right\|_{c b}\|F\|_{c b}=\|F\|_{c b}^{2} .
\end{aligned}
$$

Hence ϕ is completely bounded. On the other hand, if ϕ is completely bounded, we have

$$
\begin{aligned}
\|F\|_{c b}^{2} & =\left\|F_{n}\right\|^{2} \quad(\text { by }[15]) \\
& =\sup \left\{\left\|F_{n}(X)\right\|^{2}: X \in M_{n}(A),\|X\| \leq 1\right\} \\
& =\sup \left\{\left\|\left(F_{n}(X)\right)^{*} F_{n}(X)\right\|: X \in M_{n}(A),\|X\| \leq 1\right\} \\
& =\sup \left\{\left\|\phi_{n}\left(X^{*}, X\right)\right\|: X \in M_{n}(A),\|X\| \leq 1\right\} \\
& \leq\left\|\phi_{n}\right\| \leq\|\phi\|_{c b} .
\end{aligned}
$$

Hence F is completely bounded and we have $\|F\|_{c b}^{2}=\left\|F_{n}\right\|^{2}=$ $\left\|\phi_{n}\right\|=\|\phi\|_{c b}$.

Now we are ready to study the structure of pure completely bounded and completely positive multilinear operators. For our convenience, we first consider the bilinear case.

Theorem 3.2. If $\phi \in C B^{+}\left(A^{2}, M_{n}(C)\right)$ is pure, then there are bounded linear functionals f_{1}, \ldots, f_{n} on A such that $\phi=F^{*} \odot F$, where

$$
F=\left[\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
0 & \cdots & 0 \\
. & \cdots & . \\
0 & \cdots & 0
\end{array}\right] .
$$

The linear operator F is completely bounded with $\|F\|_{c b}^{2}=\|\phi\|_{c b}$.
Furthermore, if

$$
G=\left[\begin{array}{ccc}
g_{1} & \cdots & g_{n} \\
0 & \cdots & 0 \\
\dot{0} & \cdots & . \\
0 & \cdots & 0
\end{array}\right]
$$

is another completely bounded linear operator from A into $M_{n}(C)$ such that $\phi=G^{*} \odot G$, then there is a complex number λ with $|\lambda|=1$ such that $F=\lambda G$.

Proof. To avoid technical complications, we only discuss the case $n=2$. The calculations are in the same spirit for general $n \in N$.

Let $\phi \neq 0 \in C B^{+}\left(A^{2}, M_{2}(C)\right)$ be a pure element. By Theorem 2.4, there is a *-representation π of A on a Hilbert space K, a bounded linear operator $V: C^{2} \rightarrow K$ with $K=\left[\pi(A) a V C^{2}\right]$ and $\|V\|=\|\phi\|_{c b}^{1 / 2}$ and a rank one projection T in $B(K)$ such that

$$
\phi(x, y)=V^{*} \pi(x) T \pi(y) V
$$

for all $x, y \in A$. Let ξ_{0} be a unit vector in K such that $T K=$ $\left[T \pi(A) V C^{2}\right]=\operatorname{span}\left\{\xi_{0}\right\}$ and let $\left\{e_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], e_{2}=\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ be the standard basis for C^{2}. For $i=1,2$, there are linear functionals f_{i} on A such that

$$
f_{i}(x) \xi_{0}=T \pi(x) V e_{i}
$$

for all $x \in A$. Then we have

$$
\begin{aligned}
& \left\langle\phi(x, y)\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right],\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]\right\rangle=\sum_{i, j=1}^{2} \bar{\beta}_{i} \alpha_{j}\left\langle\phi(x, y) e_{j}, e_{i}\right\rangle \\
& \quad=\sum_{i, j=1}^{2} \bar{\beta}_{i} \alpha_{j}\left\langle T \pi(y) V e_{j}, T \pi\left(x^{*}\right) V e_{i}\right\rangle \\
& \quad=\sum_{i, j=1}^{2} \bar{\beta}_{i} \alpha_{j}\left\langle f_{j}(y) \xi_{0}, f_{i}\left(x^{*}\right) \xi_{0}\right\rangle \\
& \quad=\sum_{i, j=1}^{2} \bar{\beta}_{i} \alpha_{j} f_{j}(y) \overline{f_{i}\left(x^{*}\right)} \\
& \quad=\left\langle\left[\begin{array}{ll}
f_{1}^{*}(x) & 0 \\
f_{2}^{*}(x) & 0
\end{array}\right]\left[\begin{array}{cc}
f_{1}(y) & f_{2}(y) \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\alpha_{1} \\
\alpha_{2}
\end{array}\right],\left[\begin{array}{l}
\beta_{1} \\
\beta_{2}
\end{array}\right]\right\rangle
\end{aligned}
$$

for all $x, y \in A$ and for all $\alpha_{i}, \beta_{i} \in C \quad(i=1,2)$. This implies that $\phi=F^{*} \odot F$, where $F=\left[\begin{array}{cc}f_{1} & f_{2} \\ 0 & 0\end{array}\right]$. It follows from Lemma 3.1 that $F: A \rightarrow M_{2}(C)$ is completely bounded with $\|F\|_{c b}^{2}=\|\phi\|_{c b}$.

Suppose that $G=\left[\begin{array}{ccc}g_{1} & g_{2} \\ 0 & 0\end{array}\right]: A \rightarrow M_{2}(C)$ is another completely bounded linear operator such that $\phi=G^{*} \odot G$. Since $\left\|F^{*}\right\|_{c b}=\|F\|_{c b}=$ $\|\phi\|_{c b}^{1 / 2} \neq 0$, we may assume that $f_{1}^{*} \neq 0$. Then there is an element
$x_{0} \in A$ such that $f_{1}^{*}\left(x_{0}\right) \neq 0$. Thus for all $x \in A$, we have

$$
\begin{aligned}
{\left[f_{i}^{*}\left(x_{0}\right) f_{j}(x)\right] } & =\left(F^{*} \odot F\right)\left(x_{0}, x\right)=\phi\left(x_{0}, x\right) \\
& =\left(G^{*} \odot G\right)\left(x_{0}, x\right)=\left[g_{i}^{*}\left(x_{0}\right) g_{j}(x)\right] .
\end{aligned}
$$

If we let $\lambda=g_{1}^{*}\left(x_{0}\right) / f_{1}^{*}\left(x_{0}\right)$, then we get $f_{j}(x)=\lambda g_{j}(x)$ for all $x \in A$ $(j=1,2)$, i.e. we get $F=\lambda G$. Since $\|G\|_{c b}=\|\phi\|_{c b}^{1 / 2}=\|F\|_{c b}=$ $|\lambda|\|G\|_{c b}$, then $|\lambda|=1$.

Theorem 3.3. Let

$$
\left[\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
0 & \cdots & 0 \\
. & \cdots & \cdot \\
0 & \cdots & 0
\end{array}\right]: A \rightarrow M_{n}(C)
$$

be a completely bounded linear operator. Then $\phi=F^{*} \odot F$ is a pure completely bounded and completely positive bilinear operator in $C B^{+}\left(A^{2}, M_{n}(C)\right)$ with $\|\phi\|_{c b}=\|F\|_{c b}^{2}$.

Proof. It follows, from Lemma 3.1, that ϕ is a completely bounded and completely positive bilinear operator from A into $M_{n}(C)$ with $\|\phi\|_{c b}=\|F\|_{c b}^{2}$. It suffices to show that ϕ is pure in $C B^{+}\left(A^{2}, M_{n}(C)\right)$. Here we only prove the case $n=2$ as in Theorem 3.2.

Since $\phi=F^{*} \odot F \in C B^{+}\left(A^{2}, M_{2}(C)\right)$, by [4] Theorem 4.1, there is a *-representation π of A on a Hilbert space K, a bounded linear operator $V: C^{2} \rightarrow K$ with $K=\left[\pi(A) V C^{2}\right]$ and $\|V\|=\|\phi\|_{c b}^{1 / 2}$, and a positive linear operator T in $B(K)$ with $\|T\|=1$ such that

$$
\phi(x, y)=V^{*} \pi(x) T \pi(y) V
$$

for all $x, y \in A$. From Theorem 2.4, it suffices to show that T is a rank one projection.

Since very element $\eta \in \pi(A) V C^{2}$ can be written as

$$
\eta=\sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}
$$

for some $x_{i} \in A \quad(i=1,2)$, we define a linear functional $\hat{f}: \pi(A) V C^{2}$ $\rightarrow C$ by

$$
\hat{f}\left(\sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right)=\sum_{i=1}^{2} f_{i}\left(x_{i}\right)
$$

for all $\sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i} \in \pi(A) V C^{2}$. Since

$$
\begin{aligned}
\left|\sum_{i=1}^{2} f_{i}\left(x_{i}\right)\right|^{2} & =\sum_{i, j=1}^{2} \overline{f_{i}\left(x_{i}\right)} f_{j}\left(x_{j}\right) \\
& =\sum_{i, j=1}^{2} f_{i}^{*}\left(x_{i}^{*}\right) f_{j}\left(x_{j}\right) \\
& =\left\langle\left[\begin{array}{ll}
F^{*}\left(x_{1}^{*}\right) & 0 \\
F^{*}\left(x_{2}^{*}\right) & 0
\end{array}\right]\left[\begin{array}{cc}
F\left(x_{1}\right) & F\left(x_{2}\right) \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right],\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]\right\rangle \\
& =\left\langle\phi_{2}\left(\left[\begin{array}{ll}
x_{1}^{*} & 0 \\
x_{2}^{*} & 0
\end{array}\right],\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & 0
\end{array}\right]\right)\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right],\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]\right\rangle \\
& =\left\langle\left(T \otimes \mathrm{id}_{2}\right) \pi_{2}\left(\left[\begin{array}{cc}
x_{1} & x_{2} \\
0 & 0
\end{array}\right]\right)\left(V \otimes \mathrm{id}_{2}\right)\left[\begin{array}{l}
e_{1} \\
e_{2}
\end{array}\right]\right. \\
& =\left\langle T \sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}, \sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right\rangle
\end{aligned}
$$

it follows that \hat{f} is well-defined and we have

$$
\left|\hat{f}\left(\sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right)\right|^{2}=\left|\sum_{i=1}^{2} f_{i}\left(x_{i}\right)\right|^{2}=\left\langle T \sum_{i=1}^{2} \tau\left(x_{i}\right) V e_{i}, \sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right\rangle
$$

Therefore,

$$
\begin{aligned}
\|\hat{f}\| & =\sup \left\{\left|\hat{f}\left(\sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right)\right|:\left\|\sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right\| \leq 1\right\} \\
& =\sup \left\{\left|\left\langle T \sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}, \sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right\rangle\right|^{1 / 2}:\right. \\
& =\|T\|=1
\end{aligned}
$$

Since $\pi(A) V C^{2}$ is a dense subspace of K, there is a unique norm preserving linear extension of \hat{f} from $\pi(A) V C^{2}$ to the whole Hilbert space $K=\left[\pi(A) V C^{2}\right]$, still denoted by \hat{f}. For $x_{i}, y_{i} \in A(i=1,2)$,
the identities

$$
\begin{aligned}
& \bar{f}\left(\sum_{i=1}^{2} \pi\left(x_{i}\right) V e_{i}\right) \\
& f
\end{aligned}\left(\sum_{j=1}^{2} \pi\left(y_{j}\right) V e_{j}\right) .
$$

lead to

$$
\hat{f}(\eta) \overline{\hat{f}(\zeta)}=\langle T \eta, \zeta\rangle
$$

for all $\eta, \zeta \in K$. Since $\|\hat{f}\|=1$, there is a unit vector $\omega_{0} \in K$ such that $\hat{f}(\eta)=\left\langle\eta, \omega_{0}\right\rangle$ for all $\eta \in K$. Let $K_{1}=\operatorname{span}\left\{\omega_{0}\right\}$. Since $(\operatorname{ker} \hat{f})=K_{1}^{\perp}$, the Hilbert space K can be orthogonally decomposed into the direct sum of K_{1} and $\operatorname{ker} \hat{f}$, i.e. $K=K_{1} \oplus \operatorname{ker} \hat{f}$.

Finally we want to show that T is a projection from K onto the one dimensional subspace K_{1} of K. For every $\eta \in \operatorname{ker} \hat{f}$, we have $T \eta=0$ since $\langle T \eta, \zeta\rangle=\hat{f}(\eta) \overline{\hat{f}(\zeta)}=0$ for all $\zeta \in K$. Suppose that $T \omega_{0}=\alpha \omega_{0}+\eta_{0}$ for some $\alpha \in C$ and $\eta_{0} \in \operatorname{ker} \hat{f}$. It follows that

$$
\alpha=\left\langle T \omega_{0}, \omega_{0}\right\rangle=\hat{f}\left(\omega_{0}\right) \overline{\hat{f}\left(\omega_{0}\right)}=\left|\hat{f}\left(\omega_{0}\right)\right|^{2}=1
$$

and

$$
\left\|\eta_{0}\right\|^{2}=\left\langle T \omega_{0}, \eta_{0}\right\rangle=\hat{f}\left(\omega_{0}\right) \overline{\hat{f}\left(\eta_{0}\right)}=0
$$

Hence we have $T \omega_{0}=\omega_{0}$. This shows that T is a projection from K onto K_{1}.

Finally we generalize our results in Theorem 3.2 and Theorem 3.3 to the $2 l$-linear operators. The proof is essentially the same as those in Theorem 3.2 and Theorem 3.3.

Theorem 3.4. Let $\phi \in C B^{+}\left(A^{2 l}, M_{n}(C)\right)$. Then ϕ is pure if and only if there are completely bounded l-linear functionals f_{1}, \ldots, f_{n} on A^{l} such that $\phi=F^{*} \odot F$, where

$$
F=\left[\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
0 & \cdots & 0 \\
. & \cdots & . \\
0 & \cdots & 0
\end{array}\right]
$$

The l-linear operator F is completely bounded with $\|F\|_{c b}^{2}=\|\phi\|_{c b}$.

Furthermore, if

$$
G=\left[\begin{array}{ccc}
g_{1} & \cdots & g_{n} \\
0 & \cdots & 0 \\
. & \cdots & . \\
0 & \cdots & 0
\end{array}\right]
$$

is another completely bounded l-linear operator from A^{l} into $M_{n}(C)$ such that $\phi=G^{*} \odot G$, then there is a complex number λ with $|\lambda|=1$ such that $F=\lambda G$.
4. Pure completely bounded and completely positive normal multilinear operators. If R is a von Neumann algebra, a completely bounded k-linear operator $\phi: R^{k} \rightarrow B(H)$ is called normal if ϕ is σ-weakly continuous in each component (cf. [11] and [4]). We denote $C B^{\sigma}\left(R^{k}, B(H)\right)$ the space of all completely bounded normal k-linear operators from R^{k} into $B(H)$. We write

$$
C B_{s}^{\sigma}\left(R^{k}, B(H)\right)=C B_{s}\left(R^{k}, B(H)\right) \cap C B^{\sigma}\left(R^{k}, B(H)\right)
$$

and

$$
C B^{\sigma+}\left(R^{k}, B(H)\right)=C B^{+}\left(R^{k}, B(H)\right) \cap C B^{\sigma}\left(R^{k}, B(H)\right)
$$

In this section, we discuss the structures of pure completely bounded and completely positive normal $2 l$-linear operators from $R^{2 l}$ into $M_{n}(C)$. First we consider a normal version of Theorem 2.4.

Theorem 4.1. Let $\phi \in C B^{\sigma+}\left(R^{2 l}, B(H)\right)$ be a completely bounded and completely positive normal $2 l$-linear operator $R^{2 l}$ into $B(H)$ for some Hilbert space H. Then ϕ is a pure element in $C B^{\sigma+}\left(R^{2 l}, B(H)\right)$ if and only if there are normal *-representations π_{1}, \ldots, π_{l} of R on Hilbert spaces K_{1}, \ldots, K_{l}, linear operators $V_{j} \in B\left(K_{j-1}, K_{j}\right)$, where $K_{0}=H, K_{j}=\left[\pi_{j}(R) V_{j} K_{j-1}\right]$ for $1 \leq j \leq l$ and

$$
\left\|V_{1}\right\| \cdots\left\|V_{l}\right\|=\|\phi\|_{c b}^{1 / 2}
$$

and a rank one projection T in $B(K)$ such that

$$
\phi\left(a_{1}, \ldots, a_{2 l}\right)=V_{1}^{*} \pi_{1}\left(a_{1}\right) \cdots \pi_{l}\left(a_{l}\right) T \pi_{l}\left(a_{l+1}\right) \cdots \pi_{1}\left(a_{2 l}\right) V_{1}
$$

for all $a_{1}, \ldots, a_{2 l} \in R$.
Proof. Given $\phi \in C B^{\sigma+}\left(R^{2 l}, B(H)\right)$ a completely bounded and completely positive normal $2 l$-linear operator. It follows from [4],

Theorem 4.1, and the proof of Corollary 5.7 that there are normal *representations π_{1}, \ldots, π_{l} of R on Hilbert spaces K_{1}, \ldots, K_{l}, linear operators $V_{j} \in B\left(K_{j-1}, K_{j}\right)$, where $K_{0}=H, K_{j}=\left[\pi_{j}(R) V_{j} K_{j-1}\right]$ for $1 \leq j \leq l$ and

$$
\left\|V_{1}\right\| \cdots\left\|V_{l}\right\|=\|\phi\|_{c b}^{1 / 2}
$$

and a positive linear operator T in $B(K)$ with $\|T\|=1$ such that

$$
\phi\left(a_{1}, \ldots, a_{2 l}\right)=V_{1}^{*} \pi_{1}\left(a_{1}\right) \cdots \pi_{l}\left(a_{l}\right) T \pi_{l}\left(a_{l+1}\right) \cdots \pi_{1}\left(a_{2 l}\right) V_{1}
$$

for all $a_{1}, \ldots, a_{2 l} \in R$. By Lemma 2.3 and induction on l, we get that ϕ is pure if and only if T is pure in $B\left(K_{l}\right)^{+}$with $\|T\|=1$ if and only if the positive linear operator T is a rank one projection.

Theorem 4.2. Let $\phi \in C B^{+}\left(R^{2 l}, M_{n}(C)\right)$ be a completely bounded and completely positive $2 l$-linear operator. Then ϕ is pure in $C B^{\sigma+}\left(R^{2 l}, M_{n}(C)\right)$ if and only if there are completely bounded normal l-linear functionals f_{1}, \ldots, f_{n} on R^{l} such that $\phi=F^{*} \odot F$, where

$$
F=\left[\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
0 & \cdots & 0 \\
. & \cdots & . \\
0 & \cdots & 0
\end{array}\right] .
$$

The normal l-linear operator F is completely bounded with $\|F\|_{c b}^{2}=$ $\|\phi\|_{c b}$.

Furthermore, if

$$
G=\left[\begin{array}{ccc}
g_{1} & \cdots & g_{n} \\
0 & \cdots & 0 \\
\dot{0} & \cdots & . \\
0 & \cdots & 0
\end{array}\right]
$$

is another completely bounded normal l-linear operator from R^{l} into $M_{n}(C)$ such that $\phi=G^{*} \odot G$, then there is a complex number λ with $|\lambda|=1$ such that $F=\lambda G$.

Proof. The whole proof of this theorem is similar to those in Theorem 3.2 and Theorem 3.3. The only thing we need to point out here is that, if $\phi \in C B^{\sigma+}\left(R^{2 l}, M_{n}(C)\right)$ is pure, then there are completely bounded normal l-linear functionals f_{1}, \ldots, f_{n} on R^{l} such that $\phi=F^{*} \odot F$, where

$$
F=\left[\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
0 & \cdots & 0 \\
. & \cdots & . \\
0 & \cdots & 0
\end{array}\right] .
$$

We can get l-linear functionals f_{1}, \ldots, f_{n} normal on R^{l} since we can choose normal representations $\pi_{i}=R \rightarrow B\left(K_{i}\right) \quad(1 \leq i \leq l)$ in Theorem 4.1.
5. Application to multivariable Fourier-Stieltjes algebras and multivariable Fourier algebras. Throughout this section, we let G be a discrete group, $C^{*}(G)$ the full group C^{*}-algebra of G, λ the (left) regular representation of G on the Hilbert space $l^{2}(G)$ and $\nu N(G)$ the group von Neumann algebra of G. The Fourier-Stieltjes algebra $B(G)$ is the space of all coefficients of unitary representations of $G: f \in B(G)$ if and only if there exists a unitary representation π of G on a Hilbert space H and two vectors ξ and η in H such that

$$
f(t)=\langle\pi(t) \xi, \eta\rangle
$$

for all $t \in G$. The norm is given by

$$
\|f\|=\inf \{\|\xi\|\|\eta\| ; \text { where } \xi \text { and } \eta \text { as above }\} .
$$

It is known by Eymard [9] that $B(G)$ is a commutative Banach *algebra of functions on G with the pointwise multiplication and complex conjugation, and that $B(G)$ can be identified with $C^{*}(G)^{*}$ the dual space $C^{*}(G)$ as follows:

For any $\omega \in C^{*}(G)^{*}$, we have by GNS representation

$$
\omega(a)=\langle\pi(a) \xi, \eta\rangle
$$

for all $a \in C^{*}(G)$, where π is a *-representation of $C^{*}(G)$ on H and $\xi, \eta \in H$. Thus the corresponding element $f_{\omega} \in B(G)$ can be defined by

$$
f_{\omega}(t)=\langle\pi(t), \xi, \eta\rangle
$$

for all $t \in G$.
The Fourier algebra $A(G)$ is the space of all coefficients of the (left) regular representation λ of $G: f \in A(G)$ if and only if there exist ξ and $\eta \in l^{2}(G)$ such that

$$
f(t)=\langle\lambda(t) \xi, \eta\rangle
$$

for all $t \in G$. The norm is given by

$$
\|f\|=\inf \{\|\xi\|\|\eta\| ; \text { where } \xi \text { and } \eta \text { as above }\} .
$$

Then $A(G)$ is a closed ideal of $B(G)$ and $A(G)$ is isometrically isomorphic to $\nu N(G)_{*}$, the predual of $\nu N(G)$ (cf. Eymard [9]).

The multivariable Fourier-Stieltjes algebra $B^{k}(G)$ and the multivariable Fourier algebra $A^{k}(G)$ have been studied in [8], where we
identified $B^{k}(G)$ with $\left(C^{*}(G) \otimes_{h} \cdots \otimes_{h} C^{*}(G)\right)^{*}$ the dual space of the Haagerup tensor product of $C^{*}(G)$'s and we identified $A^{k}(G)$ with $\left(\nu N(G) \otimes_{h}^{\sigma} \cdots \otimes_{h}^{\sigma} \nu N(G)\right)_{*}$ the predual space of the normal Haagerup tensor product of $\nu N(G)$'s. We notice that $C^{*}(A) \otimes_{h} \cdots \otimes_{h} C^{*}(G)$ and $\nu N(G) \otimes_{h}^{\sigma} \cdots \otimes_{h}^{\sigma} \nu N(G)$ are operator space and σ-weakly closed operator space, respectively, and we denote that

$$
C B\left(C^{*}(G) \otimes_{h} \cdots \otimes_{h} C^{*}(G), B(H)\right)=C B\left(C^{*}(G)^{k}, B(H)\right)
$$

and

$$
C B^{\sigma}\left(\nu N(G) \otimes_{h}^{\sigma} \cdots \otimes_{h}^{\sigma} \nu N(G), B(H)\right)=C B^{\sigma}\left(\nu N(G)^{k}, B(H)\right) .
$$

For the detail about Haagerup tensor products, please refer to [6], [13], [14], [7] and [3].
In this section, we will restrict our attention to study the pure elements in the bi-Fourier-Stieltjes algebra $B^{2}(G)$ (resp. the bi-Fourier algebra $\left.A^{2}(G)\right)$. We recall by [8] that $f \in B^{2}(G)$ if and only if there are unitary representations π_{i} of G on Hilbert spaces $H_{i}(i=1,2)$, $T \in B\left(H_{1}, H_{2}\right)$ and $\xi \in H_{1}$ and $\eta \in H_{2}$ such that

$$
f\left(t_{2}, t_{1}\right)=\left\langle\pi_{2}\left(t_{2}\right) T \pi_{1}\left(t_{1}\right) \xi, \eta\right\rangle
$$

for all $t_{1}, t_{2} \in G$. The norm is given by

$$
\|f\|=\inf \{\|T\|\|\xi\|\|\eta\| ; \text { where } T, \xi \text { and } \eta \text { as above }\}
$$

Identifying $B^{2}(G) \quad$ (resp. $\left.\quad B^{2}(G)^{+}\right)$with $C B\left(C^{*}(G)^{2}, \mathbb{C}\right)$ (resp. $\left.C B^{+}\left(C^{*}(G)^{2}, \mathbb{C}\right)\right)$, there is natural order structure on $B^{2}(G)$ given by the positive cone $B^{2}(G)^{+}$with $B^{2}(G)=\operatorname{span} B^{2}(G)^{+}$. It follows easily from [4], Theorem 4.1, that $f \in B^{2}(G)^{+}$if and only if there is a unitary representation π of G on a Hilbert space H, a positive linear operator $T \in B(H)$ and a vector $\xi \in H$ such that

$$
f\left(t_{2}, t_{1}\right)=\left\langle\pi\left(t_{2}\right) T \pi\left(t_{1}\right) \xi, \xi\right\rangle
$$

for all $t_{1}, t_{2} \in G$. Applying Theorem 3.2 and Theorem 3.3 to the pure elements in $B^{2}(G)^{+}$, we have

Theorem 5.1. Let $f \in B^{2}(G)$. Then f is pure if and only if there is an element $g \in B(G)$ such that

$$
f=g^{*} \otimes g .
$$

We have $\|f\|=\|g\|^{2}$ and the element g is unique up to multiplication by a complex number of module one. Therefore, the algebraic tensor product $B(G) \otimes B(G)=\operatorname{span}\left\{\right.$ all pure elements in $\left.B^{2}(G)^{+}\right\}$.

Remark. If we identify $M_{n}\left(B^{2}(G)\right)$ with $C B\left(C^{*}(G)^{2}, M_{n}(\mathbb{C})\right)$ for $n \in N$, we get an \mathscr{L}^{∞}-matricial norm over $B^{2}(G)$ so that $B^{2}(G)$ is an operator space (cf. [14] and [7]). For each $n \in \mathbb{N}$, there is a natural order on $M_{n}\left(B^{2}(G)\right)$ given by the positive cone $M_{n}\left(B^{2}(G)\right)^{+}$ $=C B^{+}\left(C^{*}(G)^{2}, M_{n}(\mathbb{C})\right)$ with $M_{n}\left(B^{2}(G)\right)=\operatorname{span} M_{n}\left(B^{2}(G)\right)^{+}$. It follows from Theorem 3.2 and Theorem 3.3 that an element $\Phi \in$ $M_{n}\left(B^{2}(G)\right)^{+}$is pure if and only if there are elements $f_{1}, \ldots, f_{n} \in$ $B(G)$ such that $\Phi=F^{*} \odot F$ and $\|\phi\|=\|F\|^{2}$, where

$$
F=\left[\begin{array}{ccc}
f_{1} & \cdots & f_{n} \\
0 & \cdots & 0 \\
. & \cdots & . \\
0 & \cdots & 0
\end{array}\right] \in M_{n}(B(G))=C B\left(B(G), M_{n}(\mathbb{C})\right) .
$$

Similar arguments apply to the pure elements in the bi-Fourier algebra $A^{2}(G)$. It follows by [4] and [8] that $f \in A^{2}(G)$ if and only if there are Hilbert spaces H_{1} and H_{2}, a linear operator $T \in$ $B\left(l^{2}(G) \otimes H_{1}, l^{2}(G) \otimes H_{2}\right)$ and vectors $\xi \in l^{2}(G) \otimes H_{1}$ and $\eta \in l^{2}(G)$ $\otimes H_{2}$ such that

$$
f\left(t_{2}, t_{1}\right)=\left\langle\left(\lambda\left(t_{2}\right) \otimes 1_{H_{2}}\right) T\left(\lambda\left(t_{1}\right) \otimes 1_{H_{1}}\right) \xi, \eta\right\rangle
$$

for all $t_{1}, t_{2} \in G$, and that $f \in A^{2}(A)^{+}=C B^{\sigma+}\left(\nu N(A)^{2}, \mathbb{C}\right)$ if and only if there is a Hilbert space H, a positive linear operator $T \in B\left(l^{2}(G) \otimes H\right)$ and $\xi \in l^{2}(G) \otimes H$ such that

$$
f\left(t_{2}, t_{1}\right)=\left\langle\left(\lambda\left(t_{2}\right) \otimes 1_{H}\right) T\left(\lambda\left(t_{1}\right) \otimes 1_{H}\right) \xi, \xi\right\rangle
$$

for all $t_{1}, t_{2} \in G$. Applying Theorem 4.2 to the pure elements in $A^{2}(G)^{+}$, we have

Theorem 5.2. Let $f \in A^{2}(G)^{+}$. Then f is pure if and only if there is an element $g \in A(G)$ such that

$$
f=g^{*} \otimes g .
$$

We have $\|f\|=\|g\|^{2}$ and the element g is unique up to multiplication by a complex number of module one. Therefore the algebraic tensor product $A(G) \otimes A(G)=\operatorname{span}\left\{\right.$ all pure elements in $\left.A^{2}(G)^{+}\right\}$.

References

[1] W. B. Arverson, Subalgebras of C^{*}-algebras, Acta Math., 123 (1969), 142-224.
[2] G. Choquet, Lectures on Analysis, W. A. Benjamin, Inc., 1969.
[3] E. Christensen, E. G. Effros and A. M. Sinclair, Completely bounded multilinear maps and C^{*}-algebraic cohomology, Invent. Math., 90 (1987), 279-296.
[4] E. Christensen and A. M. Sinclair, Representations of completely bounded multilinear operators, J. Funct. Anal., 72 (1987), 151-181.
[5] E. G. Effros and U. Haagerup, Lifting problems and local reflexivity for C^{*} algebras, Duke Math. J., 52 (1985), 103-128.
[6] E. G. Effros and A. Kishimoto, Module maps and Hochschild-Johnson cohomology, Indiana J. Math., 36 (1987), 257-276.
[7] E. G. Effros and J.-Z. Ruan, Representations of operator bimodules and their applications, J. Operator Theory, 19 (1988), 137-157.
[8] , Multivariable multipliers for groups and their operators algebras, to appear.
[9] P. Eymard, L'algèbre de Fourier d'un groupe localement compact, Bull. Soc. Math. France, 92 (1964), 181-236.
[10] U. Haagerup, Decomposition of completely bounded maps on operator algebras, unpubl. ms. 1980.
[11] _, The Grothendieck inequality for bilinear forms on C^{*}-algebras, Adv. in Math., 56 (1984), 93-116.
[12] V. I. Paulsen, Completely bounded maps on C^{*}-algebras and invariant operator ranges, Proc. Amer. Math. Soc., 86 (1982), 91-96.
[13] V. I. Paulsen and R. R. Smith, Multilinear maps and tensor norms on operator systems, J. Funct. Anal., 73 (1987), 258-276.
[14] Z.-J. Ruan, Subspaces of C^{*}-algebras, J. Funct. Anal., 76 (1988), 217-230.
[15] R. R. Smith, Completely bounded maps between C^{*}-algebras, J. London Math. Soc. (2), 27 (1983), 157-166.
[16] W. F. Stinspring, Positive functions on C^{*}-algebras, Proc. Amer. Math. Soc., 6 (1955), 211-216.
[17] M. Takesaki, Theory of Operator Algebras I, Springer-Verlag, Berlin, 1979.
[18] G. Wittstock, Ein operatorwertiger Hahn-Banach Satz, J. Funct. Anal., 40 (1981), 127-150.

Received June 28, 1988 and in revised form May 1, 1989. This research was partially supported by a grant from the National Science Foundation.

UniVersity of Illinois
Urbana, IL 61801

