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THE STRUCTURE OF PURE
COMPLETELY BOUNDED AND COMPLETELY POSITIVE

MULTILINEAR OPERATORS

ZHONG-JIN RUAN

Let A be a C*-algebra and B(H) the algebra of all bounded
linear operators on a Hubert space H. We study the structure of
pure completely bounded and completely positive multilinear operators
from Ak = A x x A into B{H).

1 . Introduction. The definition of completely bounded (resp. com-
pletely positive) multilinear operators from one C*-algebra into an-
other was introduced by Christensen and Sinclair [4]. We begin by
recalling these definitions for our convenience.

Throughout this paper, we assume that C*-algebras are unital.
Let A and B be C*-algebras. We denote Mn(A) = {[0,7]: #/, e A}
(resp. Mn(B)) the C*-algebraof nxn matrices over A (resp. B). If
φ: Ak = A x •• x A —• B is a Λ -linear operator, the A:-linear operator
φn: Mn(A)k -+ Mn(B) is defined by

φn(A\, A2, ... , Ak) = Σ di i , . . . , CLi

for all Aj = [α, t ] e Mn(A) (1 < j < k). We define the norm of φn

by

M ! 9A2,...,Ak)\\: Aj e Mn{A)

with \\Aj\\ <\ϊor\<j<k}

and define the completely bounded norm of φ by

A /:-linear operator φ is called completely bounded (resp. com-
pletely contractive) if the completely bounded norm \\φ\\cb is finite
(resp. \\φ\\cb < 1). We denote CB(Ak, B) the complex Banach space
of all completely bounded k-linear operators from Ak into B. If
φ: Ak —> 5 is a /:-linear operator, the adjoint A:-linear operator φ*
from ^ into B is defined by
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for all a\, . . . , ak e A. If φ e CB(Ak, B), then so is φ* with
\\Φ*\\cb = WΦWcb - This gives an involution on the complex Banach space
CB(Ak, B). A completely bounded Λ -linear operator φ e CB(Ak , B)
is called symmetric if φ = φ*. We denote CBs{Ak, B) the set
of all completely bounded symmetric Λ -linear operators from Ak

into B . Then CBs(Ak , 5) is just the real space of all selfadjoint ele-
ments in CB(Ak, B). A /:-linear operator φ: Ak -> B is called α?m-
pletely positive if:

(i) A: = 2/-1 odd. Wehave φn(A%... , ^ , ^ / M / - i , . . . , Λi)
> 0 for all ^ , . . . , Λ/_! e A/,,(i4), At € Afrt(;4)+ and all n e N, or

(ii) fc = 2/ even. We have φn{A\, . . . , Λ*, ^/, . . . , Ax) > 0 for
all ^ i , . . . , Aι e Mn{A) and all n e N.

We denote CB+(Ak,B) the set of all completely bounded
and completely positive /c-linear operators from Ak into B. Then
CB+(Ak, B) is a proper positive cone in the real Banach space
CBs(Ak, B). It is known from [18], [10], [12] and [4] that CBs(Ak , 5)
= CB+(Λ*, B) - CB+(Ak ,B)iϊB is an injective C*-algebra. This
gives a natural partial ordering on CBs(Ak , 5) defined by ψ < φ if

REMARK. The above definition of completely bounded (resp. com-
pletely bounded symmetric, completely positive) ^-linear operators
from Ak into B is a natural generalization of the usual definition
of completely bounded (resp. completely bounded self-adjoint, com-
pletely positive) linear operators from C*-algebra A into C*-algebra
B. In the case of k = 1, we know that every completely positive lin-
ear operator between C*-algebras is already completely bounded with
\\φ\\Cb = WΦW Unfortunately, this is not true for completely positive
A:-linear operators when k > 2 (see [4], page 155).

DEFINITION 1.1. A completely bounded and completely positive λ -
linear operator φ e CB+{Ak , B) is pure if, for every ψ e CB+(Ak , £) ,
ψ < φ implies ψ = λφ for some λ > 0.

From the above definition, φ e CB+(Ak, B) is pure if and only
if the ray Rψ = {λφ: λ > 0} determined by φ is an extreme ray in
CB+(Ak, B) (cf. G. Choquet [2], Volume II).

Now we consider B = B(H), the algebra of all bounded linear op-
erators on a Hubert space H. If k = 1 and B(H) = C, it is well
known that every pure element in CB+(Ak , C) = (A*)+ is just a pos-
itive linear functional on A whose GNS representation is irreducible
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(cf. Takesaki [17] Chapter I). The pure elements in CB+(A, B{H))
were studied by Arveson [1].

In this paper, we study the structure of pure elements in
CB+(Ak, B(H)) for k = 21. In particular, we give a detailed dis-
cussion for pure completely bounded and completely positive bilinear
operators from A2 into the matrix algebra Mn(C). Applying [4],
Theorem 4.1, we show, in §2, a representation theorem for pure com-
pletely bounded and completely positive k-linear operators from Ak

into B(H). We show, in Theorem 3.2 and Theorem 3.3, that a com-
pletely bounded and completely positive bilinear operator φ e
CB+(A2, Mn(C)) is pure if and only if there are bounded linear func-
tionals f\9 ... , fn on A such that φ = F* ©F , where

Ά ••• fn

F= o ... o
0 ••• 0

Such a linear operator F is unique up to multiplication by a complex
number of module one. We generalize Theorem 3.2 and Theorem 3.3
to completely bounded and completely positive 2/-linear operators
from A21 into Mn(C) in Theorem 3.4. In §4, we discuss the normal
version of the above results. In §5, we apply the results in §3 (resp.
in §4) to study the pure elements in multivariable Fourier-Stieltjes
algebras (resp. in multivariable Fourier algebras).

To close this section, we state a result of [4].

THEOREM 1.2 ([4], Lemma 3.1 and Corollary 4.2). Let H be a
Hilbert space, let A be a C*-algebra, and let φ e CBs(Ak, B(H))
with k>2. Let ψ\ A -> B(H) be a completely positive linear operator
given by φ = V*πV, where π is a ^representation of A on a Hilbert
space K and V e B(H, K) is a bounded linear operator with K =
[π(A)VH]. If we have

-φn(X*X) < Φn(X* ,A29...,Ak_l9X)< <pn(X*X)

for all X e Mn(A) and all (A2, ... , Ak_x) = {A*k_χ9 ... , A*2) e
Mn(A)k~2 with \\Aj\\ < 1 (2 < j < k - 1), then there is a ψ e
CBs{Ak~2, B{K)) with \\ψ\\cb < 1 (when k = 2, ψ is just a fixed
self adjoint linear operator in B(K)) such that

φ(aΪ9 ...,ak) = V*π(ax)ψ{a2, . . . , ak_x)π(ak)V
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for all a\, ... , ak E A. If, in addition, φ is completely positive, then
so is ψ.

REMARK. In Theorem 1.2, we considered a given representation
{π,V,K} of <p with K = [π(A)VH] the norm closure of π(A)VH,
which is called a minimal representation of φ in [1]. If A is a unital
C*-algebra, the representation of φ obtained from the Stinespring
construction (cf. [1] and [16]) is minimal. Since any two minimal
representations of φ are unitarily equivalent, the result in Theorem
1.2 is essentially the same as that in [4] Lemma 3.1.

2. A representation theorem for pure completely bounded and com-
pletely positive fc-Iinear operators. Let A be a C*-algebra, let K and
H be Hubert spaces, let π be a ^representation of A on K and let
V G B{H,K) with K = [π(A)VH]. For any integer k > 2, we can
define a map Γ: CB(Ak'2, B{K)) -> CB{Ak , B{H)) by

T(ψ)(ax, ..., ak) = V*π(aι)ψ(a2,..., ak_x)π{ak)V

for all a{,..., ak e A. Here we denote B{K) = CB(A°, B{K)).
It is clear that Γ is a well-defined bounded linear operator from
CB{Ak~2, B{K)) into CB(Ak, B{H)), which maps CBs{Ak~2, B{K))
into CBs(Ak, B{H)) and CB+(Ak~2, B(K)) into CB+(Ak, B{H)).
It follows from K = [π(A)VH] that Γ is a linear injection. If
V € B(H, K) is a contraction then so is Γ.

LEMMA 2.1. The linear operator Γ is a linear order isomorphism
from CBs(Ak~2, B{K)) onto its image Γ(CBs(Ak-2, B{K))).

Proof. We only need to show that, for any φ e CB+(Ak ,B(H))Π
Γ(CBS(AK~2, B(K))), there is a ψ e CB+{AK~2, B{K)) such that
T{ψ) = φ.

Given φ e CB+(Ak , B(H)) n Γ(CBs(Ak-2, B(K))), there is a ψ e
CBs(Ak~2, B(K)) such that Γ(^) = φ. For each n e N, and all
(A2,...,Ak_ι) = (A*k_ι,...,A*2)eMn(A)k-2 with Am > 0 if k is
odd, where m = (k+\)/2, and for all ηn = πn{X)(V <g> iάn)ξn, when
X e Mn(A) and ξneH", we have

= ((V*®idn)πn(X*)ψn(A2,... , ^ _ ! ) π n ( Z ) ( F ® i d n ) ^ , ξn)

= (φn(X*, A2, ... , Ak^, X)ξn,ζn) >0.

Thus ^ e CB+(Ak'2,B(K)) since π(A)VH is dense in ϋΓ. D
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Let φ e CB+{Ak, B). The order interval [0, φ] is defined by

[0, φ] = {φ e CB+{Ak ,B):Q<φ< φ}.

LEMMA 2.2. If φ = T{ψ) for some ψ e CB+(Ak~2, B{K)), then
the order interval [0, φ] is contained in Γ(CB+{Ak-2, B(K)) and Γ
is an affine isomorphism from [0, ψ] onto [0, φ].

Proof. Without loss of generality, we assume that φ = Γ(ψ) for
some ψ e CB+(Ak-2,B(K)) with \\ψ\\cb = 1. Let ψ = V*πV.
Since

we have

-φn(X*X) < φn(X* ,A2,...,Ak_i,X)< <pn(X*X)

for all XeMa{A)aad(A2,... , Ak_x) = {A*k_λ, . . . , A*2) e Mn(A)k~2

with \\Aj\\ < 1 (2 < j < k - 1). We need to show that, for any
φ G [0, φ], there is ψ G [0, ψ] such that T(ψ) = φ.

Given φ e [0, φ], we claim that

-φn(X*X) < Φn(X* ,A2,...,Ak_ι,X)< φn(X*X)

and (A2,..., Ak.x) = {A*k_χ, . . . , A*2) e Mn(A)k~2

with H ŷll < 1 (2 < j < k - 1), and all n e N.
To see this, if k = 2/ + 1, we have

(A2,...,Ak^) = (B*2,...,Bf,Bι+ί,Bι,...,Bι)

for some Bj e Mn(A) with | |£/ | | < 1 (j = 2, ... ,1+ 1) and Bι+X

selfadjoint. Hence we can write B[+x = Bf+ι - Bj+χ, where Bf+χ and
Bf χ are positive in Mn(A) with the norms less than or equal to 1.
Since

0 < φ n ( X * , B$, ... , Bf, Bf+ι, Bι, ... , B2, X)

<φn(X\B*2,...,Bf,Bf+χ,Bι,...,B2,X)

<Φn{X*X)

we have

-φ»(X*X) < φn(X* ,B*2,...,Bf, B*ι+X ,Bt,...,B2,X)< φ n ( X * X ) .
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If k = 2/, we have

f o r s o m e Bj e Mn(A) w i t h \\Bj\\ < 1 (2<j<l); t h e n w e h a v e

-φn(X*X) <0 <Φn{X*, B}9 ... 9 Bf 9 Bl9 ... 9 B2, X)

<φn{X*9BΪ9...9Bΐ9Bl9...9B2,X)

< Φn(X*X)

By Theorem 1.2, there exists a completely bounded and completely
positive (fc-2)-linear operator ψ e CB+(Ak~2, B(K)) such that Y(ψ)
= V*πψπV = φ. Since φ < φ and, by Lemma 2.1, Γ is a linear order
isomorphism from CBs{Ak~2, £ ( # ) ) onto Γ(CB5(Λ*-2, # ( # ) ) ) , we
have ψ G [0, ψ]. D

LEMMA 2.3. >4 completely bounded and completely positive k-linear
operator ψ e CB+(Ak~2, JS(ΛΓ)) w /?wr̂  z/αnrf only if its image φ =
Γ(ψ) is pure in CB+(Ak , B(H)).

Proof. From the definition, we know that ψ (resp. φ) is pure if and
only if [0, ψ] = {λψ: 0 < λ < 1} (resp. [0, φ] = (λ^; 0 < λ < 1}).
The conclusion follows easily from Lemma 2.2 α

THEOREM 2.4. Let A be a C*-algebra, let H be a Hubert space and
let φ e CB+(Ak , B(H)) with k>2. Then φ is pure if and only if

(i) k = 2/ + 1 odd. There are ^representations π\, . . . , π/+1 of
A on Hilbert spaces K\9 . . . , ΛΓ/+1 wzYΛ π / + 1 irreducible on Kί+ι and
linear operators Vj e B(Kj-\, A}) /or 1 < j < I + 1, w/zere Ko = H,
Kj = [πj(A)VjKj-ι] for all I < j < I + I and

such that

Φ(a\, •••, ak)
= Vx*nx(a{) • • • π/(α/)F/^,π/+1(α/+1)F/+,π/(Λ/+2) n{(ak)Vx

forallax,...,akeA.
(ii) k = 21 even. There are ^representations π\, ..., πj of A on

Hilbert spaces K\, ... , K/, linear operators Vj € B(Kj_\, Kj), where
Ko = H, Kj = [πj(A)VjKj^] for \<j<l and
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and a rank one projection T in B(K[)+ such that

φ{a\, ... , ak)

= Vι*π(aι)V2*π2{a2) π /(α /)Γπ /(α / + 1) π2(ak_ι)V2πι{ak)Vι

for all a\, . . . , ak e A.

Proof, Applying [4], Theorem 4.1, we have

(i) k — 2/ + 1 odd. There are ^representations π\, . . . , π / + 1

of A on Hubert spaces K\, . . . , Kι+γ and linear operators V) G
B(Kj-{, # y ) , where Ko = H, Kjr = [ π J ( ^ ) F / ^ _ 1 ] for all 1 < y <
/ + 1 and

such that

, ... , d k )

for all # i , . . . , α^ G A . By Lemma 2.3 and induction on /, we have
φ G CB+(Ak , B(H)) is pure if and only if ^ = F£_1π/+1 ^/+i is pure
in CB+(A, B{Kι)) if and only if π is an irreducible representation
on K[+ι (see Arveson [1]).

(ii) k — 21 even. There are ^representations %\, . . . , π/ of 4̂
on Hubert spaces K\, ... , K[, linear operators FJ G B(Kj-\, AΓ7),
where Ko = H, Kj = [πy ( ^ ) ^ 7 _i] for \<j<l and

and a positive linear operator T e B(Kι)+ with | |Γ| | = 1 such that

for all 0i, . . . , ak G ̂ 4. By Lemma 2.3 and induction on /, we have
φ G CB+{Ak , £(//)) is pure if and only if T is pure in £(#/)+ , the
set of all positive linear operators on K\, with | |Γ| | = 1 if and only
if T is a rank one projection. D

3. The structure of pure completely bounded and completely positive
multlinear operators. In this section, we study the structure of pure
completely bounded and completely positive 2/-linear operators from
A21 into Mn{C). Let / and g be /-linear functional from A1 into
C. We define a 2/-linear function f ® g\ A21 -+ C by
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for all d\, . . . , α2/ G A. Let F = [f^] and G = [g/7] be /-linear oper-
ators from A1 into Mn(C). Then we can define a 2/-linear operator
F G:A2l^Mn(C) by

For an /-linear operator i 7 = [/},•]: A1 —• Mn{C), the adjoint /-
linear operator F* of F can be written as f * = [///]• The /-
linear operator F is completely bounded if and only if each fy is
a completely bounded /-linear functional on A1. If F is completely
bounded, then so is F* with \\F*\\cb = | | F | | C ^ .

Let F = [fij]: A1 -> Mn(C) be a completely bounded /-linear op-
erator. For all Aj = \a\ / ] € Mm(A) (1 < j < 2/), we have

in Afm(C)®AίΛ(C). Since

for all yli, . . . , A\ G Mm{A), we have

... ,Ai)Y

This implies that F* QF: A21 —> Mn(C) is completely positive.

LEMMA 3.1. Let F — [fij]: A1 —> Mn(C) be an l-linear operator.
Then the corresponding 21-linear operator φ = F* QF: A21 —• Mn{C)
is completely positive. The l-linear operator F is completely bounded
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if and only if the 2l-linear operator φ = F*QF is completely bounded.
In this case, we have \\φ\\cb = \\φn\\ = \\F\\2

b.

Proof. The first statement is obvious. For the rest of the proof,
we consider the case / = 1 without loss of the generality. If F is
completely bounded, we have

\\φ\\cb=snp{\\φm{X, Y)\\:X,YeMm(A)

with jjXIl, | | F | | < 1, meTV}

= sup{\\F^(X)Fm(Y)\\:X,YeMm(A)

w i t h | | X | | , | | r U < l , m e i V }

Hence φ is completely bounded. On the other hand, if φ is com-
pletely bounded, we have

\\F\\2

cb = \\Fn\\2 (by [15])

= sup{\\Fn(X)\\2:XeMn(A), \\X\\ < 1}

= sup{\\(Fn(X)yFn(X)\\:XeMn(A), \\X\\ < 1}

= snp{\\φn(X*, X)\\: XeMn(A), \\X\\ < 1}

< llά.11 < WΦWa
Hence F is completely bounded and we have \\F\\2

cb = \\Fn\\2 =

\\Φn\\ = WΦWcb U

Now we are ready to study the structure of pure completely bounded
and completely positive multilinear operators. For our convenience,
we first consider the bilinear case.

THEOREM 3.2. If φ e CB+{A2, Mn(C)) is pure, then there are
bounded linear functionals f\, ... , fn on A such that φ = F* Θ F,
where μ - u

F= o ... o
0 ••• 0 _

The linear operator F is completely bounded with \\F\\2

b = \\φ\\cb
Furthermore, if

' g \ ••• 8 n ^
0 ••• 0

0 0
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is another completely bounded linear operator from A into Mn{C)
such that φ = G* Θ G, then there is a complex number λ with \λ\ = 1
such that F = λG.

Proof. To avoid technical complications, we only discuss the case
n = 2. The calculations are in the same spirit for general n e N.

Let φφOe CB+(A2, M2(C)) be a pure element. By Theorem 2.4,
there is a ^representation π of A on a Hubert space K, a bounded
linear operator V:C2^K with K = [π{A)aVC2] and ||K|| = \\φ\\ιJb

2

and a rank one projection T in 5(ΛΓ) such that

y) = V*π(x)Tπ(y)V

for all x , y e ^4. Let £o be a unit vector in K such that TK =
[Tπ(A)VC2] = span{£0} and let {^ = [ J ] , e2 = [?]} be the standard
basis for C 2 . For / = 1,2, there are linear functional f on yl such
that

fi(x)ξ0 = Tπ(x)Vei

for all X G ^ . Then we have

β])= Σβ2])= Σ

2 _

= Σ ?i<*jfiiy)Mx*)

_ f\f*(x) 01 Γ/i(j;) /2(y)l [

\[/2*(x) oj L o o J μ 2 j ' [β2

for all JC, y € 4̂ and for all α, , ff, G C (/ = 1, 2). This implies

that φ = F*ΘF, where i 7 = [^ ^ ] . It follows from Lemma 3.1 that

F: A -* M2{C) is completely bounded with | | . F | | ^ = | |^| | c A .

Suppose that G = [ Q1 Q2 ] : A —• Mi{C) is another completely bounded

linear operator such that φ = G* Θ G. Since ||-F*||C^ = ||-F||C^ =

l 2 φ 0, we may assume that f\ Φ 0. Then there is an element
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G A such that f*(xo) φ 0. Thus for all x G A , we have

[fΐ(xo)fj(x)] = (F* Θ F)(x0, x) = φ(x0 , x)

If we let λ = gι(xo)/fι(xo), then we get fj{x) = λgj(x) for all x 6 A

(7 = 1 , 2 ) , i.e. we get F = λG. Since \\G\\cb = \\φ\\ιJb

2 = \\F\\cb =

μ|| |G|U,then |Λ| = 1. D

THEOREM 3.3. Let

A ••• fn
0 •" ° :A-+Mn(C)

0 ••• 0

be a completely bounded linear operator. Then φ = F* © F is a
pure completely bounded and completely positive bilinear operator in
CB+(A2,Mn(Q) with \\φ\\cb = \\F\\2

cb.

Proof. It follows, from Lemma 3.1, that φ is a completely bounded
and completely positive bilinear operator from A into Mn(C) with
WΦWcb = WF\\2cb It suffices to show that φ is pure in CB+(A2, Mn(Q).
Here we only prove the case n = 2 as in Theorem 3.2.

Since φ = F* Θ F e CB+{A2, M2(C)), by [4] Theorem 4.1, there
is a ^representation π of A on a Hubert space AT, a bounded linear
operator F : C2 -^ K with # = [π(A)VC2] and | | F | | = | | 0 | | ^ 2 , and
a positive linear operator Γ in B{K) with | |Γ| | = 1 such that

φ(x,y) = V*π(x)Tπ(y)V

for all x, y E A . From Theorem 2.4, it suffices to show that T is a
rank one projection.

Since very element η G π(A)VC2 can be written as

for some X[ G A (i = 1, 2), we define a linear functional / : π(^) VC2

-+C by
2 \ 2

/=l / /=!
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ei e π(Λ)FC2. Since

2

Σ]
2

Σ
<*(x*) 0
<*(x*) OJ

k*
L o o J

[*1 X2]\
' [ o o j ; ei e2.

e\
e2

it follows that / is well-defined and we have

Therefore,

2 2 2 / 2

11/11 = sup

= sup

ϊ = l

Since π(A)VC2 is a dense subspace of K, there is a unique norm
preserving linear extension of / from π(A)VC2 to the whole Hubert
space K = [π(A)VC2], still denoted by / . For x,, y,e A (i = 1, 2),
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the identities

lead to

for all J; , ζ e K. Since | |/ | | = 1, there is a unit vector a>o £ K
such that /(A/) = (η, ωo) for all η e K. Let ϋq = span{ωo}. Since
(ker/) = K^ , the Hubert space AT can be orthogonally decomposed
into the direct sum of K\ and ker/, i.e. K = K\@ ker/ .

Finally we want to show that T is a projection from K onto the
one dimensional subspace K\ of K. For every // G ker/, we have
Γ>/ = 0 since {Tη, ζ) = /(ι/)7(0 = 0 for all ζ G A:. Suppose that
Ta>o = aa>o + ηo for some α e C and τ/o G ker/ . It follows that

a = (Tω0, ω0) = f(ωo)f(ωo) = \f(ωo)\2 = 1

and

\\ηo\\2 = ( T ω 0 , ι/o> = = 0.

Hence we have Γωo = ω 0 . This shows that Γ is a projection from
A: onto Kx. D

Finally we generalize our results in Theorem 3.2 and Theorem 3.3
to the 2/-linear operators. The proof is essentially the same as those
in Theorem 3.2 and Theorem 3.3.

THEOREM 3.4. Let φ e CB+(A21, Mn{C)). Then φ is pure if and
only if there are completely bounded l-linear functionals f \ , — , fn

on A1 such that φ = F* QF, where

/l fn

0 ••• 0_

The l-linear operator F is completely bounded with \\F\\2

cb = \\φ\\ct -
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Furthermore, if

~g\ ••• gn
0 ••• 0

0 ••• 0

is another completely bounded /-linear operator from A1 into Mn{C)
such that φ — G* ΘG, then there is a complex number λ with \λ\ = 1
such that F = λG.

4. Pure completely bounded and completely positive normal multilin-
ear operators. If R is a von Neumann algebra, a completely bounded
/c-linear operator φ: Rk —• #(//) is called normal if φ is σ-weakly
continuous in each component (cf. [11] and [4]). We denote
CBσ(Rk , B(H)) the space of all completely bounded normal k-linear
operators from Rk into B(H). We write

CBσ

s{Rk , B(H)) = CBs(Rk , B(H)) Π

and

CBσ+{Rk , 5(77)) = CB + (ϋ* , B(H)) Π

In this section, we discuss the structures of pure completely bounded
and completely positive normal 2/-linear operators from R21 into
Mn(C). First we consider a normal version of Theorem 2.4.

THEOREM 4.1. Let φe CBσ+(R21, B(H)) be a completely bounded
and completely positive normal 21-linear operator R2ί into B{H) for
some Hubert space H. Then φ is a pure element in CS σ + (i? 2 / , B(H))
if and only if there are normal ^-representations π\, . . . , π/ 0/ R on
Hubert spaces K{, . . . , K{, linear operators Vj e B(Kj-\, Kj), where
Ko = H} Kj = [πjilQVjKj-i] for \<j<l and

and a rank one projection T in B(K) such that

φ(aι, . . . , α 2 / ) -

for all aΪ9 . . . , a2ί eR.

Proof Given 0 e CS σ + (i? 2 / , 5(//)) a completely bounded and
completely positive normal 2/-linear operator. It follows from [4],
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Theorem 4.1, and the proof of Corollary 5.7 that there are normal *-
representations πx, . . . , π/ of R on Hubert spaces K\, . . . , K[, lin-
ear operators Vj e B(Kj_x, J^ ), where Ko = H, Kj = [πj(R)VjKj_ι]
for 1 < j < I and

and a positive linear operator T in B(K) with | |Γ | | = 1 such that

φ(a{, . . . , a2l) = V^πx{a{) - - -πι{aι)Tπι{aM) - - -πx{a2ι)Vx

for all ai, . . . , a2ι E R. By Lemma 2.3 and induction on /, we get
that φ is pure if and only if T is pure in B{Kι)+ with | |Γ | | = 1 if
and only if the positive linear operator T is a rank one projection. D

THEOREM 4.2. Let φ e CB+{R21, Mn{C)) be a completely bound-
ed and completely positive 2l-linear operator. Then φ is pure in
CBσ+(R2ί, Mn{C)) if and only if there are completely bounded normal
I-linear functionals f\, . . . , fn on Rι such that φ = F* © F, where

Γ/l ••• fn

o ... oF =

0 0

The normal I-linear operator F is completely bounded with \\F\\2

b =

WΦWcb
Furthermore, if

'g\ ••• gn

0 ••• 0

0 ••• 0 .

is another completely bounded normal l-linear operator from R1 into
Mn(C) such that φ — G*QG, then there is a complex number λ with
\λ\ = 1 such that F = λG.

Proof. The whole proof of this theorem is similar to those in The-
orem 3.2 and Theorem 3.3. The only thing we need to point out
here is that, if φ € CBσ+(R21, Mn(C)) is pure, then there are com-
pletely bounded normal /-linear functionals f\ , . . . , / „ on Rι such
that φ = F* Θ F, where

'/I ••• A
0 ••• 0

F =

0 0
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We can get /-linear functional f\, ... 9 fn normal on Rι since we
can choose normal representations 7rf- = R -> B(Kι) (1 < i < I) in
Theorem 4.1. D

5. Application to multivariable Fourier-Stieltjes algebras and mul-
tivariable Fourier algebras. Throughout this section, we let G be a
discrete group, C*(G) the full group C*-algebra of G, λ the (left)
regular representation of G on the Hubert space 12(G) and vN{G)
the group von Neumann algebra of G. The Fourier-Stieltjes alge-
bra B(G) is the space of all coefficients of unitary representations of
G: f EB(G) if and only if there exists a unitary representation π of
G on a Hubert space H and two vectors ζ and η in H such that

At) = (π(t)ξ, η)

for all / G G. The norm is given by

11/11 = inf{||ί||||ί/|| where ξ and η as above}.

It is known by Eymard [9] that B(G) is a commutative Banach *-
algebra of functions on G with the pointwise multiplication and com-
plex conjugation, and that B(G) can be identified with C*(G)* the
dual space C*(G) as follows:

For any ω e C*(G)*, we have by GNS representation

ω(a) = (π(a)ξ, η)

for all a e C*(G), where π is a ^representation of C*(G) on 77 and
ξ, η e H. Thus the corresponding element fω EL B(G) can be defined
by

fω{t) = (π{t)9ξ,η)

for all ί e G .
The Fourier algebra A(G) is the space of all coefficients of the (left)

regular representation λ of G: f e A(G) if and only if there exist ζ
and η el2(G) such that

= (λ(t)ξ,η)

for all t eG. The norm is given by

where ζ and η as above}.

Then ^4(G) is a closed ideal of B(G) and A(G) is isometrically iso-
morphic to vN(G)*, the predual of vN(G) (cf. Eymard [9]).

The multivariable Fourier-Stieltjes algebra Bk(G) and the multi-
variable Fourier algebra Ak{G) have been studied in [8], where we
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identified Bk(G) with (C*(G)®h ®A C*(G))* the dual space of the
Haagerup tensor product of C*(G)'s and we identified ^ ( G ) with
(uN(G) ®σ

h-"®σ

h vN(G))* the predual space of the normal Haagerup
tensor product of uN(G)'s. We notice that C*(A) ®h--®h C*(G)
and vN(G)®σ

h--®σ

h vN(G) are operator space and σ-weakly closed
operator space, respectively, and we denote that

CB(C*(G) ®h'"®h C\G), B{H)) = CB(C*(G)k , B(H))

and

CBσ(uN(G) ®l'" ®σ

hvN(G), B(H)) = CBσ{vN{G)k, B{H)).

For the detail about Haagerup tensor products, please refer to [6], [13],
[14], [7] and [3].

In this section, we will restrict our attention to study the pure ele-
ments in the bi-Fourier-Stieltjes algebra B2(G) (resp. the bi-Fourier
algebra A2(G)). We recall by [8] that / e B2(G) if and only if there
are unitary representations π, of G on Hubert spaces H( (/ = 1, 2),
T e B(HX, H2) and ξ <E Hx and η e H2 such that

for all t\, t2 G G. The norm is given by

11/11 = inf{||Γ||||ί||||ι/|| where Γ, ξ and η as above}.

Identifying B2(G) (resp. 52(G)+) with C5(C*(G)2,C) (resp.
CB+(C*(G)2, C)), there is natural order structure on B2(G) given
by the positive cone B2(G)+ with B2(G) = span52(G)+ . It follows
easily from [4], Theorem 4.1, that / e B2(G)+ if and only if there
is a unitary representation π of G on a Hubert space H, a positive
linear operator T e # ( # ) and a vector ξ e H such that

for all t\, t2 G G. Applying Theorem 3.2 and Theorem 3.3 to the
pure elements in B2(G)+ , we have

THEOREM 5.1. Let feB2(G). Then f is pure if and only if there
is an element g eB(G) such that

f=g*®g.

We have \\f\\ = \\g\\2 and the element g is unique up to multiplication
by a complex number of module one. Thereforef the algebraic tensor
product B(G) ® B(G) = span{α// pure elements in B2(G)+}.
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REMARK. If we identify Mn(B
2(G)) with CB(C*(G)2, Mn(C)) for

n € N, we get an ^°°-matricial norm over B2(G) so that B2(G)
is an operator space (cf. [14] and [7]). For each n G N, there is a
natural order on Mn{B2(G)) given by the positive cone Mn(B

2(G))+

= CB+(C*(G)2,Mn(C)) with Mn(B
2(G)) = spanMn(B

2(G))+.
It follows from Theorem 3.2 and Theorem 3.3 that an element Φ G
Mn(B2(G)y is pure if and only if there are elements f\, ... 9 fn £
B{G) such that Φ = F* © F and ||0|| = | | F | | 2 , where

Γ/i ••• fn

o ... o

G Mn{B{G)) = CB(B(G)

Similar arguments apply to the pure elements in the bi-Fourier
algebra A2(G). It follows by [4] and [8] that / G A2(G) if and
only if there are Hubert spaces H\ and Hi, a linear operator Γ e
B(12(G)®HΪ91

2(G)®H2) and vectors ξel2{G)®Hx and ηel2{G)
that

for all tι,t2 e G, and that / e A2(A)+ = CBσ+(uN(A)2, C) if
and only if there is a Hubert space //, a positive linear operator
T G B(12{G) ® /ί) and ί G /2(G) ® 7/ such that

for all ^1,̂ 2 ^ G. Applying Theorem 4.2 to the pure elements in
A2(G)+, we have

THEOREM 5.2. Let f eA2(G)+. ΓΛen / is pure if and only if there
is an element g eA(G) such that

f=g*®g.

We have \\f\\ = | | # | | 2 and the element g is unique up to multiplication
by a complex number of module one. Therefore the algebraic tensor
product A{G) ® A{G) = span{α//pure elements in A2{G)+}.
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