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CODES, TRANSFORMS AND THE SPECTRUM
OF THE SYMMETRIC GROUP

P A U L H. E D E L M A N A N D D E N N I S W H I T E

Let Gn be the graph of permutations with edges drawn between
permutations differing by an adjacent transposition. Using the
Kazhdan-Lusztig representations of Sn and combinatorial arguments,
we show that integers frequently occur in the spectrum of Gn . That 0
and - 1 are among the integers which arise has application to finite
Radon transforms and to existence of perfect 1-codes on Gn.

1. Introduction. Let Gn denote the graph with vertices labeled by
the permutations of {1, . . . ,«} and with edges drawn between two
vertices if and only if the two permutations differ by an adjacent trans-
position. This graph is sometimes called the "permutohedron" [Be].
It is also the graph of the Hasse diagram for the weak order of the
symmetric group [Bj]. We say that a number is an eigenvalue of Gn

if it is an eigenvalue of its adjacency matrix. Similarly we refer to the
spectrum of Gn when we really mean the spectrum of the adjacency
matrix.

In this paper we investigate the occurrence of integer eigenvalues
for this graph. We were originally led to this investigation because
of a coding problem: does there exist a perfect 1-code on Gn ? That
is, is there a collection of vertices C of Gn such that the sets Pυ =
{w\w = υ or w adjacent to υ}, for each υ e C , partition all the
vertices of Gn ? Such a code exists for n = 3 (see Figure 1), but not
for any other n < 12. We will show that if such a code exists, then
- 1 must be an eigenvalue of Gn . We will also show that - 1 is always
an eigenvalue of Gn .

Questions about the spectrum of Gn also arise in other settings. In
a later section we will define a finite Radon transform on Sn whose
invertibility is dependent on the existence (or non-existence) of certain
eigenvalues of Gn . The spectrum of Gn is also relevant in analyzing
the behavior of certain shuffling problems [DS]. While most of these
applications involve knowing only whether 0 or 1 is in the spectrum,
the more general problem of what integers appear in the spectrum
leads to better techniques in resolving these specific cases and is a more
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appropriate level of generality. In fact the integer spectrum seems to
be very structured and we make a number of conjectures concerning
its behavior in the final section.

Our techniques are combinatorial and algebraic. We will search for
integer eigenvalues in the irreducible subspaces corresponding to hook
shapes. Surprisingly, this seems to be where these eigenvalues occur
most frequently. We will use the Kazhdan-Lusztig representations (see
[KL]) for Sn to restate our eigenvalue problem in terms of the Hasse
diagram of Young's lattice on a rectangle.

This paper is organized as follows: In the next section we discuss the
coding problem that motivates this research and show how it relates
to the spectrum of Gn . Section 3 will discuss some elementary facts
about this spectrum. In §4 we assemble the relevant results of the
Kazhdan-Lusztig theory of representations, which we then apply in §5.
Section 6 contains an explicit computation of a class of eigenvectors
for Gn. The eigenvalues we produce have a particularly nice form
and allow us to construct types of codes for Gn , although they are not
perfect 1-codes. This is followed by an application of our results to
the invertibility of a Radon transform on Sn, and, finally, in §8 we
make a number of conjectures concerning the spectrum of Gn .

We close this section by setting some of our notation. For n and
k positive integers, 1 < k < n, let [n] = {1, 2, . . . , n}, [k, n] =
[n] - [k - 1]. If σ e Sn then we will let σ, = σ(i). If A c [n] let σ\A

be the ordering on A induced by σ, i.e.,

σ\A = cF/tj^ O[k where i\ < 12 < < ίk and (cτ(//)} = A.

For 1 < / < n - 1 we reserve τι for the adjacent transposition (/, /+
1) e Sn . Our multiplication in Sn will be from right to left.

If G is a graph with two adjacent vertices v and w then we say
that v ~ w. Let A(G) be the (vertex) adjacency matrix of G, i.e.,
the matrix whose rows and columns are indexed by the vertices of
G, with an entry 1 if two vertices are adjacent and 0 otherwise.
Entries on the diagonal are always 0. As noted before, we will abuse
terminology somewhat and say that G has certain matrix properties
when we really mean that its adjacency matrix does. If v e G, the
closed neighborhood of υ is the set of vertices adjacent to v with v
itself.

2. Codes. We will let Sn denote the elements of the symmetric
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group. If A c Sn , denote by

ECSn,
σeA

the corresponding element of the group algebra of Sn . Let

T = {(t, t+ 1)|1 < t < n- 1}

and
Γj-Γuid.

We may now state the coding problem: Does there exist a subset

CcSn

such that
Cfx = SnΊ

If such a C exists, we say a code exists for Sn . For example, if n = 3,

1 2 3 W 1 2 3 \ |
1 2 3J ' V3 2 1y/

This is a variation of the coding problem of Rothaus and Thompson
[RT] who replace Γ, with T[ with

then

C =

Working with T[ has certain technical advantages, since T[ is a con-
jugacy class and hence f[ lies in the center of CSn . This allows the
use of character theory to analyze the behavior of T[. We know of
no way to apply character theory in a similar way to our problem.

Let Gn be the graph described in § 1. That is, the vertex set of Gn

is Sn and two permutations are adjacent if they differ by an adjacent
transposition ( (73 is pictured in Figure 1). Then the adjacency matrix
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of Gn is the same as the image of T under the right-regular repre-
sentation of Sn . A code for Sn will correspond to a set of vertices
C c Sn such that the closed neighborhoods of C exactly partition
the vertices of Gn . Such a partitioning is sometimes called a perfect
I-code.

Now suppose χ is a representation of Sn . Let Aχ = χ{A).
Suppose G c Sn is a subgroup of Sn. Then the natural action of

Sn on the cosets Sn/G gives rise to a permutation representation of
Sn which we call χo .

PROPOSITION 2.1. Let G be a subgroup of Sn and XQ the permu-
tation representation of Sn on the cosets Sn/G. If the equation

MT*(1 = Sχ

n

G

has no integral solution matrix M, then no code exists.

Proof. Suppose a code C exists. Then projecting into the represen-
tation XG we get

But C is a subset of Sn and therefore Cχc is integral. D

The following theorem generalizes an observation of Stanley [St].

THEOREM 2.2. Let G be a subgroup of Sn and XQ the permutation
representation of Sn on cosets Sn/G. If Tf(i is invertible and n\\G\,
then no code exists.

Proof. Suppose a code C exists. By Proposition 2.1, the unique
solution matrix

must be integral. But all of the entries of this matrix are \G\jn . D

Theorem 2.2 has some important corollaries.

COROLLARY 2.3. If T\ is invertible then no code exists for Sn .

Proof. Let G = {id}. Then XQ is exactly the right-regular repre-
sentation of Sn and T*G = T\ . D
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C O R O L L A R Y 2 .4. No code exists for Sn if n \ ( n - 1) ! and n > 3 .
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COROLLARY 2.5. No code exists for Sn if n = 4 or n is prime > 5.

Proof. This follows from Corollary 2.4. D

THEOREM 2.6. No code exists for Sn if 3 < n < 12.

Proof. Corollary 2.5 eliminates n = 4, 5, 7, 11. We have used a
computer to verify the hypothesis of Theorem 2.2 for n = 8 (G =
S3xS3xS{x Si), for n = 9 (G = S5 x S2 x S2), and for n = 10
(G = S4 x S4 x S2). Finally, although we did not find a subgroup G
which satisfied the hypothesis of Theorem 2.2 for n = 6, the subgroup
S2 x S2 x S2 does satisfy the hypothesis of Proposition 2.1. D

Note that we did not apply Corollary 2.3 to any n. The reason is
that the hypothesis of this corollary is never satisfied. We shall prove
in §5 (Corollary 5.5) the following theorem.

THEOREM 2.7. T\ is singular for n>2. D

The difficult part of applying Theorem 2.2 is knowing when T*G is
invertible. As noted in the proof of Theorem 2.6, even if this transfor-
mation is not invertible, that does not guarantee the existence of the
code. For n = 6, we checked all the Young subgroups which satisfied
the non-divisibility condition, and we checked a number of other ob-
vious subgroups (e.g., the 2- and 3-Sylow subgroups). In every case,
the projection of T\ was singular. In spite of this, no code exists for
n = 6.

CONJECTURE 2.8. No code exists for Sn for all n > 3. D

3. The spectrum of Sn. Recall our observation that the adjacency
matrix of Gn is the action of the right-regular representation of Sn

on T. The following theorem follows immediately:
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FIGURE 2

PROPOSITION 3.1. T is singular if and only if 0 is an eigenvalue of
Gn and T\ is singular if and only if - 1 is an eigenvalue of Gn. D

This motivates us to study the spectrum of Gn in general, and to
seek other integer eigenvalues in particular. Let

Spec(Γ) = {integer eigenvalues of Γ} .

Since Gn is regular of degree n - 1 and is bipartite, we have

PROPOSITION 3.2. If j e Spec(Γ), then -j e Spec(Γ). Also, n-l,
-(n - 1) e S p e c ( Γ ) and if j e S p e c ( Γ ) , then \j\<n-\.

It is well known that the irreducible representations of Sn are in-
dexed by integer partitions [JK]. Integer partitions are sometimes re-
ferred to as shapes, particularly when viewed as Ferrers diagrams, that
is arrangements of rows of cells, left-justified and non-increasing in
length. For example, Figure 2 gives the Ferrers diagram for the par-
tition 422 = 42 2 . The conjugate partition of the partition λ, de-
noted λ', is obtained by transposing the Ferrers diagram. For ex-
ample, 422 = 3 2 1 2 . A hook shape or hook partition is a partition
of the form m\k . Two degenerate hook shapes are (n) and \n . We
shall use λ to denote either the shape or the corresponding irreducible
representation of Sn.

For each irreducible representation λ of Sn , let

Spec(ΓA) = {integer eigenvalues of Tλ }.

We have

PROPOSITION 3.3. If j e Sρec(Γ*), then -j e Spec(ΓA'), where λ'
is the conjugate partition ofλ. Also, n-l GSpec(Γ(A2)) and -(n-l)e
Spec(Γ1/;).

Proof. This follows from a result of Babai [Ba, Theorem 3.1]. D

In the following sections, we shall find that Spec(Tλ) is frequently
non-empty when λ is a hook shape. Also, for hook shapes it is quite
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easy to write down a combinatorial description of the entries of Tλ

using either Young's natural representation [GM] or the Kazhdan-
Lusztig representations [GM]. We shall use the Kazhdan-Lusztig rep-
resentations, although many of the theorems we state could also be
proved using Young's natural representation.

4. The Kazhdan-Lusztig representations. Let A = [n — k] and B =
[n — k + 1, n] and consider the set of all permutations σ G Sn with
the properties that

(1) σ\A = 12...n-k,
(2) σ\B = nn — \ n-k+\,
(3) σ{n) = n-k. Call this set Pk^-k- Equivalently Pk,n-k *s

the set of shuffles of the permutations a = 1 2 n - k and β =
nn-\ - n-k+\ with the property that n-k appears last. It is
clear that \Pk,n-k\ = CV) Another less obvious definition of Pk,n-k
is the set of permutations σ e Sn such that under the Schensted
correspondence [Kn, Section 5.1.4]

1 2- n-k
n-k+ 1

P{σ) =

Partially order Pk,n-k by using the induced order from the weak
order of Sn, i.e., say that σ < τ if τ can be gotten from σ by a
sequence of adjacent transpositions each moving the larger number
to the left. We may think of Pk,n-k a s a graph by using the cover
relations of this order to be the edges. Thus we say that σ ~ τ if σ
differs from τ by an adjacent transposition.

Associated with each σ e Pk,n-k there is a set

D(σ) = {τ'lστ'* < σ}

where τι = (/ ,/+ 1). The Kazhdan-Lusztig theory of representations
allows us to use the graph Pk,n-k a n d the sets {D(σ)} to produce an
irreducible representation of Sn associated with the shape n-k, \k

as follows:
For each τ1', 1 < / < n - 1, define Λf/ to be transformation on the

formal vector space spanned by {σ e Pk,n-k} where

-σ ifτ<e£>(σ),

σ ι

τ'eD(σ')
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The next theorem follows from the work of Kazhdan and Lusztig [KL].
For an exposition of this material from a combinatorial perspective
see [GM].

THEOREM 4.1 [KL, Theorem 1.4] [GM, Fact 14]. The set of ma-
trices {Mi\\ < i < n - 1} are representing matrices for the adjacent
transpositions of Sn in the irreducible representation corresponding to
the shape n — k, \k . D

Before proceeding to the main theorem in this section we require
two lemmas:

LEMMA 4.2. For σ e Pk,n-k > ^ Ξ D{σ) if and only if

Oi e[n - k + 1, ή\.

Proof. This follows immediately from the fact that σ e Pk,n-k
means that σ is the shuffle of the two permutations a and β . D

LEMMA 4.3. Let σ, τ e Pk,n-k- V στJ = τ ^ e n either {τJ} =
D(σ)-D(τ) or {τ^+1} = D{σ) - D{τ).

Proof. From Lemma 4.2 it follows that if σ, τ e Pk,n-k a n d σ ~ τ
then D(σ) - D(τ) can have cardinality at most 1. If σ < τ and
στJ = τ then σ7 e [n - k] and θj+\ E [n - k + 1, n] and hence by
Lemma 4.2 {τj+{} = D(σ) - D(τ). Similarly if τ < σ and στJ = τ
then τ7 E £)(σ) and hence a} e [n — k + 1, «] and σ7+i E [« - k].
Thus τ7 ^ D(τ) and the lemma is complete. D

THEOREM 4.4 [St]. For λ = n-k, \k, Tλ can be represented by the
matrix A + {n — 2k— 1)/ where A is the adjacency matrix of' Pk,n-k

Proof. By Theorem 4.1 we have that T = Σ!}=\ Mι - T h e n

?

 f o r

τ Φ a, the entry

( Γ ) τ , σ = \{j G [n - l]\τJ e D(σ) - D(τ), σ ^ τ } | .

From Lemma 4.3 it is clear that {T)Tt<T is 1 or 0. If σ / τ then
( Γ ) τ σ zzr 0 . If σ ~ τ then from Lemma 4.3 we have that (T)τ^σ = 1.
From Lemma 4.2 we conclude that {T)σσ — n-2k-\. This finishes
the proof. D
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FIGURE 3

There is another way to think of the poset Pk,n-k which will be
very useful in what follows. For σ e Pk,n-h l e t Kσ) be the partition

λ(σ) = {2n-k-t- σ~\t)\n >t>n-k+l}.

It is easy to check that this map is an order-preserving bijection be-
tween Pk n_k and the set of partitions which fit into a kx(n-k-l)
rectangle ordered by containment. This latter poset is called Young's
lattice [SW, Section 2.1] on a kx(n-k-l) rectangle and will be de-
noted Yk9n-/c-i We will see in subsequent sections the advantages of
working with partitions instead of permutations. The Hasse diagram
of 1*2,3 i s shown in Figure 3.

COROLLARY 4.5. If j e Spec(ΓA), λ = n-k, \k, then 2{n-2k-\)

Proof. This follows from Theorem 4.4 and the fact that Yk^n-k-\
is bipartite. D

5. The eigenvalues of Young's lattice. As we have shown in the
previous section, information regarding the eigenvalues of Sn can be
obtained from the eigenvalues of Young's lattice on a rectangle. We
exploit this connection in this section.

THEOREM 5.1. // λ = n - 1, 1, then n-2,n- 4 e Spec(ΓA) if
n = 0 mod 3 and n - 3 e Sρec(Tλ) if n = 0 mod 2. Furthermore,
these are the only members of Spec(Γλ).

Proof. This result can be gotten directly from the matrix in the proof
of Corollary 2.4. That representation will have one copy of λ and one
copy of the irreducible representation (n), which will contribute the
eigenvalue n - 1.
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However, this theorem also follows easily from Theorem 4.4. Since
Y\ ?rt_2 is a chain, A is tridiagonal with 0 's on the main diagonal and
1 's along the super- and sub-diagonals. The characteristic polynomial
of this matrix is a Chebyschev polynomial (see [CDS, Section 2.6]).
The eigenvalues are well known to be 2 cos kπ/n, / c = l , . . . , / ? — l .D

COROLLARY 5.2. // λ = 2, ln~2, then -{n - 2), -{n - 4) e
Spec(Tλ) if n = 0 mod 3 and -(n - 3) e Spec(ΓA) if n = 0 mod 2.
Furthermore, these are the only members of Spec(7^). D

THEOREM 5.3. If λ= [n/2\ + 1, lL(«-U/2J t h e n + 1 6 Spec(ΓA).

Proof. We will prove this theorem by explicitly producing an eigen-
vector for the adjacency matrix of Y\n/i\, L(Λ-I)/2J W ^

 t ϊ l e appropri-
ate eigenvalue. The proof then follows from Theorem 4.4. Consider
first the case where n is odd. We are then considering the graph

Y(n-\)/2,(n-\)/2.

Let v be the vector in the formal vector space spanned by the el-
ements of Y(n-\)/2,{n-\)/2 whose coefficient in the λ coordinate is
given by

O iίλφλ',

where |A| is the number of cells in λ, d(λ) is the size of the Durfee
square of λ (the number of cells along the main diagonal), and λf is
the conjugate of λ. We leave it as an exercise for the reader to check
that this is an eigenvector of eigenvalue 1.

Now suppose n is even. Then we consider the graph of Y(n/2)-ι,n/2
and we must find an eigenvector with eigenvalue 0 for its adjacen-
cy matrix. Define a partition to be quasi-self conjugate (qsc) if its
(d + l)st column has size d and its removal results in a self-
conjugate partition, where d = d{λ). Define a vector v by

0 if λ is not qsc,

Again we leave it as an exercise to check that this is an eigenvector

for </4(/i/2)-i,Λ/2 with eigenvalue 0. D

COROLLARY 5.4. If λ = L(/i-l)/2J + l , 1L" / 2 J, then - 1 e Spec(Tλ).

C O R O L L A R Y 5 .5 (Theorem 2 . 7 ) . T\ is singular for n>2.

Proof. This is immediate from Corollary 5.4 and Proposition
3.1. D
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FIGURE 4

At this point we give an alternative proof of Theorem 5.3, which
lends itself to generalization in different ways than our previous one
(see for instance §6).

Let Wab be the set of words of length a + b which use only the
alphabet {0, 1} , with exactly a 1 's. Then it is clear that the graph
Yab is isomorphic to the graph on Wa^b where two words are adjacent
if they differ by a transposition of an adjacent 0 and 1. For this next
proof, we will think of Yab as this graph on Wa ? b.

Alternative proof for Theorem 5.3. Consider first the case where n
is odd. Then a = b = (n - l)/2. Let / = (n + l)/2 and

E = {u e Wa^b\Ui + ua+b-i = 1 , 1 < / < / } .

Partition E into

£+ = [u e E\uι+2 + ^/+4 H is even}

and

E~ = {ue E\uι+2 + Uι+4 H is odd}.

Figure 4 gives an example of an element of E~ for n — 9. Now
define the vector v so that

if u G E+ ,

if u e E- ,

otherwise.

If w ^ £ is adjacent to an element of E, then w is adjacent to
exactly one element of E+ and one element of E~ . If u £ J?, then
w is adjacent to exactly one other u1 G E and w G ̂ "^ if and only if
u'eE~.

Thus v is an eigenvector corresponding to the eigenvalue +1 for
the graph Wab. Now suppose n is even. Then b = a 4- 1 = ft/2.
Let / = n/2 and

E = {ue Wa^b\ui + ttfl+δ_/ = 1, 1 < i < / and K/ = 1 }.
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Partition E into

E+ = {u G E\U[+\ + W/+3 H is even}

and
E~ = {ue E\uι+χ + W/+3 H is odd}.

Figure 5 gives an example of an element of E~ for ΛZ = 10. Define
the vector v as before.

Again, if u φ E is adjacent to an element of E, then u is adjacent
to exactly one element of E+ and one element of E~ . If u G E, then
u is not adjacent to any other element of E.

Thus v is an eigenvector corresponding to the eigenvalue 0 for the
graph WΛib. D

THEOREM 5.5. If λ = n - k, \k and n is even, then n - 1 - 2k G
Spec(Tλ) for k= 1, . . . , n-2. If n isodd, then n-\-2k G Spec(ΓA)
for k = 2, 4, ... , n-2.

Proof. Consider Yk,n-k-\ It is a bipartite graph, so we can par-
tition it into two disjoint independent sets, Γ^>π_^_i = U U V. Fur-
thermore,

But is is easy to see that

V* J-,=°
if and only if k and n - k - 1 are both odd.

Therefore, if n is even or if n is odd and k is even, the graph
Yk,n-k-\ wiU b e unbalanced bipartite. The adjacency matrix of such
a graph is singular [CDS, Theorem 8.2]. D

We conclude this section with one final theorem.
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THEOREM 5.6. // λ = n - 2, I 2 , then n - 4, n - 6 e Spec(Tλ) for
n = 0 mod 5 and for n = 0 mod 6.

Proof. We consider first n = 0 mod 6. Figure 6 gives an eigenvector
for the graph Y2,3 for the eigenvalue 1. We will call this eigenvector
a tile. This particular eigenvector is called a positive tile. The negative
of this eigenvector will be called a negative tile. We will call the values
assigned to a vertex by the eigenvector the vertex value.

To indicate the general picture, we show the eigenvector for the
graph >2,i5 f°Γ eigenvalue 1 in Figure 7. We have marked off re-
gions of the graph which are separated by vertices with value 0. Each
of these regions is a positive or negative tile. Since each tile is an
eigenvector for eigenvalue 1, within a tile the eigenvector condition
is maintained. It is easy to verify that each tile can be made positive or
negative in a manner such that negative tiles share borders only with
positive tiles and vice versa. We call such a tiling a consistent tiling.
It is also easy to check that for a consistent tiling, the sum of vertex
values about a boundary vertex must be zero. In Figures 8 and 9 we
indicate graphically the tiling of Y2 33 and Yi,39 .

For n = 0 mod 5 we use the eigenvector of the graph Y2 2 for
eigenvalue 1 given in Figure 10 as our positive tile. Then the argument
proceeds as above.

The n — 6 case follows from Corollary 4.5. D

6. Eigenvectors for Gn . In the previous section we proved the exis-
tence of certain eigenvalues for T by projecting it into an irreducible
representation and computing an eigenvector within that representa-
tion. In this section we will work with the adjacency matrix of Gn ,
i.e., with the projection of T into the right-regular representation and
produce a class of eigenvectors. The eigenvalues of the eigenvectors
we produce are known to be in the spectrum of Gn by Theorem 5.5.
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However, we do not know that the eigenvectors we construct do in fact
project solely into the representation indicated by Theorem 5.5. The
eigenvectors we produce also have a particularly nice structure which
allows us to prove some interesting corollaries.

Suppose π e Sn and 1 < k < n is an odd number. Let W E Wkn_k

be the word defined by

1 if π / e { l , . . . , fc},

0 if Γ/ e {k+ 1, . . . , n}.

If w7 = 0, define

1j = \ { i < j \ * i = I l l -
L e t

sgn(w)= f ] (-1)^/2J.
j : W / = 0

Finally, let π = π\{\^^^} and define

a(π) = sgn(w)sgn(π).
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FIGURE 9

THEOREM 6.1. a is an eigenvector corresponding to the eigenvalue
n-2k+\.

Note that this is an explicit construction of the eigenvectors for
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eigenvalues n - 4/ - 1 for / = 0, 1, ... , (n - l)/2 for n odd and for
the eigenvalues n -21 - 1 for / = 0, 1, ... , n — 1 for n even.

Proof. Let Adj(π) denote the elements of Sn which are adjacent
to π in Gn. Write πz e Adj(π) to denote the permutation gotten
from π by switching π, and π, + i . Write w7 to denote the word
corresponding to πι. We will show

(1) £ a(πi) = (n-2k+l)a(π).
π'GAdj(π)

First, partition Adj(π) into

and

V(π) = Adj(π) - U(π).

Note that for πι G C/(π), sgn(wz) = sgn(w), but sgn(π) and sgn(πz)
may differ; while for πι G V{n), sgn(π/) = sgn(π), but sgn(wz) and
sgn(w) may differ.

Let

FΊatfl(w) = |{i|w,- = w/+1 = g}\,

for q = 0, 1. That is Flat^(w) is the number of adjacent pairs of q 's
in w. Let

FlatDif(w) = Flato(w) - Flati(w).

We rewrite the left-hand side of (1) as

(2) ]Γ a(πi)+ Σ a{n%
π'eU(π) π'eV(π)

The first sum is

] Γ a{nl) = a(π) FlatDif(w).

π'eϋ(π)
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Suppose w has a subword of 0 's with no intervening 1. That is,
suppose / > 1 and j < n are such that w/+1 = w/+2 = = w,- = 0
and w/ = w7+1 = 1. It is easy to see from the definition of sgn(w)
that sgn(w') = - sgn(wJ).

Therefore in the second sum of (2) almost all terms will pair off
and cancel. We are left only with a (perhaps empty) leading string of
0 's and a (perhaps empty) trailing string of 0 's. Let us write T2 for
this second sum. We now consider four cases.

Case 1. w has no leading or trailing string of O's. Clearly, then
T2 = 0. Also, it is easy to see that FlatDif = n - 2k + 1 .

Case 2. w has a leading string of O's but no trailing string of
0 's. Let s be the location of the last 0 in the leading string. Then
sgn(w^) = sgn(w). Thus T2 — a(π). We also have FlatDif = n — 2k .

Case 3. w has a trailing string of 0 's but no leading string of 0 's.
Again, FlatDif = n - 2k . Let / be the location of the last 1. Since
k is odd, sgn(w^) = sgn(w). Thus, T2 = a(π).

Case 4. w has a trailing string of 0 's and a leading string of 0 's.
Then both w5 from Case 2 and w^ from Case 3 arise. Thus, T2 =
2α(π). Furthermore, FlatDif =n — 2k—\.

Equation (1) follows in each of the four cases. D

As an example of this construction, let n = 12 and k = 5 . Let

π = 5 1 10 3 11 6 9 8 4 12 2 7.

Then
w= 1 10100001010.

Then π — 5 1342, sgn(w) = — 1, and a(π) = — 1. Then U(π) has
four elements, one with a = +1 and three with a = — 1. Further-
more, V{π) has seven elements. These will have corresponding wz 's:

101100001010 sgn = +l,

111000001010 sgn = -l,

110010001010 sgn = -l,

110100010010 sgn = +l,

110100000110 sgn = +l,

110100001100 sgn = -l,

1 10100001001 sgn=-l.

The first six of these pair off. The last has the same sign as w.
Thus, the left-hand side of (1) sums to - 3 , which is -\(n-2k+\).

Theorem 6.1 has some interesting special cases.
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COROLLARY 6.2. For n=\ mod 4, 0 e Spec(Γ). π

C O R O L L A R Y 6 . 3 . For n even, — ( w — 1 ) , — ( w — 3 ) , . . . , — 1 , 1 , 3 , . . . ,
/i - 1 € S p e c ( Γ ) . F o r n odd, - ( n - 9 ) , - ( n - 5 ) , ... , n - 5 9 n - 9 e

Spec(Γ). D

Because of the special form of the eigenvectors computed in Theo-
rem 6.1, we can produce an interesting vertex cover of Gn , although
not a code. Call a set C of vertices of Gn a k-cover-code if every
vertex of Gn is contained in exactly k of the closed neighborhoods
of C.

COROLLARY 6.4. If n is even then Gn has an n/2-cover-code.

Proof. If n is even then using the construction of Theorem 6.1 one
can produce an eigenvector a with eigenvalue - 1 all of whose entries
are ± 1 . If we let

Ca = Σ a(σ)σ
σesn

then CaT\ = 0 by Proposition 3.1. The sum

has only coefficients of 1 and 0 and

CT\ = —Sn

so the permutations in the support of C form an τz/2-cover-code. D

7. Radon transforms. In this section we define a Radon transform
on the group Sn and discuss its invertibility. A similar question has
previously been studied by Diaconis and Graham [DG]; however their
definition is based on using all transpositions of Sn , while ours uses
only the adjacent transpositions. As noted before, working with ad-
jacent transpositions, which do not form a conjugacy class, presents
different technical problems.

Let & be the set of functions from S« to C. We define two
transforms on &: For / G & and all σ eSn let

{τ~σ}

and

Observe that if we consider & to be a formal vector space generated
by Sn , then the transforms RQ and R\ can be considered the linear
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transformations given by the matrices A and A + / respectively. The
following theorem is then immediate from Theorem 2.7:

THEOREM 7.1 {Compare with [DG, Section 4, Theorem 5]). For n >
2 the transform R\ is never invertible. D

Unfortunately, we cannot be as conclusive in the case of the trans-
form RQ:

THEOREM 7.2 (Compare with [DG, Section 4, Corollary 2]). Ifn =
1 mod 4, or n = 6, 10, 12 then RQ is not invertible.

Proof. The case n = 1 mod 4 follows from Corollary 6.2. The other
cases were checked by computer. See the table below. D

8. Conjectures and additional remarks. We have compiled a table of
the sets Spec(ΓA) when λ is a hook. We give a portion of this table
below. A s indicates that the number is in Spec(Γ^), a indicates
that it is not, and a ? means that we do not know. When λ is not a
hook, we have found only four non-empty Spec(Tλ): when λ = 32 ,
2 G Spec(ΓA) when λ — 431, l e Spec(Γ/l) and the conjugates of
these shapes.

CONJECTURE 8.1. k e Sρec(Γ) implies k e Sρec(ΓA) for some
hook shape λ.

Using the connection established by Theorem 4.4, our data seem
to indicate that the only integer eigenvalues of Ya ^ are in the set
{ - 1 , 0 , + 1 } .

CONJECTURE 8.2. The only possible integer eigenvalues of Ya b are
- 1 , 0 , + 1 .

Note that Conjecture 8.2 will not be a consequence of some bound
on the largest eigenvalue. For F22 > the eigenvalues include \β.

Powers of 2 and primes seem to have special patterns.

CONJECTURE 8.3. If n — 2ι, then

Spec(f) = {±(2k - 1)| 1 < k < n/2}.

CONJECTURE 8.4. If n is an odd prime, then

Spec(f) = {±1} U {n - 4k - l |0 < k < (n - l)/2}.

We have already shown (Corollary 6.2) that 0 e Spec(Γ) when
n = 1 mod 4.
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Table of Spec(Γ λ) for λ = n - k, 1*

0 1 2 3 4 5 6 7 8 9 10 11

2

3

4

5

γ

8

9

10

11

L2

2

3

2

4

3

5

4

3

5

4

6

5

4

8
γ

6

5

9
8
7
β

10

8

7

6

11

10

9

8

7

6

12

11

10

9

8

7

0

0

1

0

1

0
1

2

o
1

2

Q

1

2

3

0

2
3

0
1
2
3

0

2

3

4

0

1

2

3

4

5

0

1

2

3

4

5

•

•

•

•

•

•
•

•

•

•

•

•
•

•

•

•
•

•

•
•

•

•

•
•

•

•

•
•

•
•

•

Y

yf

•

V

•

•
•

• 1

/

•

f

f

•
•

f

•
•• •

•
•
• yf

yf yf

••• «• «
• yf

V «

• «

• «

• 4

• *f

yf Ί

yf

•

•

•

•

•

•

•

•

•

•

•

•

yί

•

•

•

•

•

•

•

•

•

•

•

?

yf

m

m

yf

•

•

•

•

•

•

yf

yf

•

•

•

•

•

•

•

•

•

•

•

V

•

•

•

•

•

yf

•

•

•

yf

•

•

•

•

•

•

•

•

•

•

•

•
'!

Y

•
•

•

•
•

•

yf

•

•

•

•

yf

•

•

•

•

•

•
'!
V

•

yf

m

m

•

•
•

•

•

•
•

•

•
•

•
•

m

'!

CONJECTURE 8.5. If n = 0 mod 6,

More generally,

CONJECTURE 8.6. If n = 0 mod 6,

Spec(f ) = { - ( / i - l ) , - ( / i - 2 ) , .

0 e Sρec(f).

, - 1 , 0 , l , . . . , / ι - 1 } .
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