ON THE FIX-POINTS OF COMPOSITE FUNCTIONS

Walter Bergweiler

Abstract

Gross has conjectured that a composite transcendental entire function has infinitely many fix-points. We show that the conjecture is true if one of the two components has finite order.

1. Introduction and results. Let f and g be two nonlinear entire functions, at least one of them transcendental. Gross [4] has conjectured that the composite function $f \circ g$ has infinitely many fix-points.

Gross and Osgood [5] have proved that the conjecture is true, if one of the functions f and g is of finite order while the other one is of finite lower order. The conjecture has also been proved under various other conditions on f and g (cf. [6], [9], [13], [14]).

We shall prove
Theorem 1. Let f and g be nonlinear entire functions, at least one of them transcendental. If one of the functions f and g is of finite order, then $f \circ g$ has infinitely many fix-points.

As a consequence of Theorem 1 we obtain
Theorem 2. Let f and g be nonlinear entire functions, at least one of them transcendental. If

$$
\limsup _{r \rightarrow \infty} \frac{\log \log \log M(r, f \circ g)}{\log r}<\infty
$$

then $f \circ g$ has infinitely many fix-points.
These two theorems contain and generalize many of the results referred to above.
2. Lemmas. Our proofs will be based partially on Nevanlinna theory (for notations see [7]), but mainly on Wiman-Valiron theory. We denote the maximum term of an entire function h by $\mu(r, h)$ and the central index by $N=N(r, h)$. By F we denote an exceptional set of finite logarithmic measure, not necessarily the same at each occurrence. For the convenience of the reader we state the results of

Wiman-Valiron theory that we need. In fact Hayman [8] has obtained much more precise estimations, but the following results suffice for our purposes.

Lemma $1([8]$, see also [12]). Let h be entire, $k>0, \gamma>1 / 2$, $0<\eta<1$ and $\varepsilon>0$. Assume that $\left|z_{0}\right|=r,\left|h\left(z_{0}\right)\right| \geq \eta M(r, h)$ and $|\tau| \leq k N^{-\gamma}$. Then

$$
\begin{gather*}
h\left(z_{0} e^{\tau}\right) \sim h\left(z_{0}\right) e^{N \tau} \quad(r \notin F), \tag{2.1}\\
h^{\prime}\left(z_{0} e^{\tau}\right) \sim \frac{N}{z_{0} e^{\tau}} h\left(z_{0}\right) e^{N \tau} \quad(r \notin F), \tag{2.2}\\
\log \mu(r, h) \sim \log M(r, h) \sim \log M\left(r, h^{\prime}\right) \quad(r \notin F), \tag{2.3}\\
N \leq(\log \mu(r, h))^{1+\varepsilon} \quad(r \notin F), \tag{2.4}\\
\log \mu(r, h) \leq N \log r+O(1) . \tag{2.5}
\end{gather*}
$$

Lemma 2. Let h be entire, $K>0,0<\eta<1$ and $\varepsilon>0$. If $\left|\sigma_{1}\right|<K,\left|h\left(z_{0}\right)\right| \geq \eta M(r, h)$ and if $\left|z_{0}\right|=r \notin F$ is large enough, then there exists τ_{1} such that $\left|N \tau_{1}-\sigma_{1}\right|<\varepsilon$ and $h\left(z_{0} e^{\tau_{1}}\right)=h\left(z_{0}\right) e^{\sigma_{1}}$. If $\varepsilon<2 \pi$ and if $r \notin F$ is large enough, then τ_{1} is unique.

Proof. Put $w_{1}=h\left(z_{0}\right) e^{\sigma_{1}}$ and consider $f_{1}(\tau)=h\left(z_{0} e^{\tau}\right)$ and $f_{2}(\tau)$ $=h\left(z_{0}\right) e^{N \tau}=w_{1} \exp \left(N \tau-\sigma_{1}\right)$. If $\left|N \tau-\sigma_{1}\right|=\varepsilon$, then

$$
f_{1}(\tau) \sim h\left(z_{0}\right) e^{N \tau}=f_{2}(\tau)
$$

by (2.1) and therefore

$$
\begin{equation*}
\left|\left(f_{1}(\tau)-w_{1}\right)-\left(f_{2}(\tau)-w_{1}\right)\right|=\left|f_{1}(\tau)-f_{2}(\tau)\right|=o\left(\left|f_{2}(\tau)\right|\right) \tag{2.6}
\end{equation*}
$$

On the other hand, we have for $\left|N \tau-\sigma_{1}\right|=\varepsilon$

$$
\begin{align*}
\left|f_{2}(\tau)-w_{1}\right| & =\left|w_{1}\left(\exp \left(N \tau-\sigma_{1}\right)-1\right)\right| \tag{2.7}\\
& \geq \delta_{1}\left|w_{1}\right| \geq \delta_{2}\left|f_{2}(\tau)\right|
\end{align*}
$$

for some $\delta_{1} \geq \delta_{2}>0$, if $0<\varepsilon<2 \pi$. The conclusion follows from (2.6) and (2.7) by Rouché's theorem.

Clunie [3] has given the following application.
Lemma 3. If f and g are entire, then

$$
\begin{equation*}
M(r, f \circ g)=M((1+o(1)) M(r, g), f) \quad(r \notin F) . \tag{2.8}
\end{equation*}
$$

Next we note that if $f \circ g$ has only a finite number of fix-points, then

$$
\begin{equation*}
f(g(z))=P(z) e^{\alpha(z)}+z, \tag{2.9}
\end{equation*}
$$

where α is an entire function and P is a polynomial. A consequence of Lemma 3 is

Lemma 4. If (2.9) holds, then

$$
\begin{equation*}
M(r, \alpha) \sim \log M((1+o(1)) M(r, g), f) \quad(r \notin F) \tag{2.10}
\end{equation*}
$$

The following lemma is implicit in the work of Gross and Osgood [5].

Lemma 5. If (2.9) holds, then

$$
\begin{equation*}
T(r, g)=o\left(T\left(r, \alpha^{\prime}\right)\right) \quad(r \notin E) \tag{2.11}
\end{equation*}
$$

where E has finite linear measure.
In fact, if $T\left(r, \alpha^{\prime}\right) \leq K T(r, g)$ for a constant K on a set of infinite measure, then a modification of a theorem of Steinmetz [11] (cf. [5]) yields that f satisfies a certain differential equation. As shown in [5], this leads to a contradiction.

We remark that for our purposes the weaker inequality

$$
\begin{equation*}
T(r, g)=O\left(T\left(r, \alpha^{\prime}\right)\right) \quad(r \notin E) \tag{2.12}
\end{equation*}
$$

will be sufficient. This inequality is easier to obtain than (2.11), in fact the method used in [2] for the Riccati equation applies also to the linear equation

$$
\begin{aligned}
\frac{d}{d z}(f(g(z)))= & \left(\frac{P^{\prime}(z)}{P(z)}+\alpha^{\prime}(z)\right) f(g(z)) \\
& -\left(\frac{P^{\prime}(z)}{P(z)}+\alpha^{\prime}(z)\right) z+1
\end{aligned}
$$

which is a consequence of (2.9).
We also need
Lemma 6 [1]. Let $h(x)$ and $k(x)$ be non-negative, non-decreasing and convex for $x \geq 0$. Let $K>1$ and suppose that $h(x) \leq k(x)$ for all $x \geq 0$. Then $h^{\prime}(x) \leq K k^{\prime}(x)$ on a set of lower density at least $(K-1) / K$.

A consequence is
Lemma 7. Let α and g be entire functions, $c>0, K>1$ and assume that

$$
\log M(r, \alpha)<c \log M(r, g) \quad(r \notin F) .
$$

Then

$$
N(r, \alpha) \leq K c N(r, g)
$$

on a set of positive lower logarithmic density.
Proof. Let $\varepsilon>0$ and put $x=\log r, h(x)=\max \{0, \log \mu(r, \alpha)\}$, $k(x)=\max \{h(x),(c+\varepsilon) \log \mu(r, g)\}$. The conclusion follows from (2.3) and Lemma 6, since

$$
\begin{equation*}
\frac{d \mu(r, h)}{d \log r}=N(r, h) \tag{2.13}
\end{equation*}
$$

for an entire function h, except for the discontinuities of $N(r, h)$.

3. Proof of Theorems.

Proof of Theorem 1. Since $f \circ g$ has infinitely many fix-points if and only if $g \circ f$ does [6, p. 214, proof of Theorem 2], we may assume that the order of f is finite. The conclusion follows from the result of Gross and Osgood [5] mentioned in the introduction, if the lower order of g is finite. Hence we may assume that the lower order of g is infinite. What we need, however, is only that g has non-zero lower order.

Suppose that $f \circ g$ has only a finite number of fix-points, so that (2.9) holds. Lemma 4 shows that $\log M(r, \alpha)=O(\log M(r, g))$ for $r \notin F$ and Lemma 7 implies that there exists a positive constant c such that

$$
\begin{equation*}
N(r, \alpha) \leq c N(r, g) \quad(r \in H) \tag{3.1}
\end{equation*}
$$

where H has positive lower logarithmic density. It follows easily from a classical lemma due to Borel [7, Lemma 2.4] that for $\beta>0$

$$
\begin{equation*}
\log M(r, g) \leq T(r, g)^{1+\beta} \quad(r \notin E), \tag{3.2}
\end{equation*}
$$

where E has finite linear measure. Combining (2.3), (2.4), (2.5), (2.12) and (3.2), we get for $\varepsilon>0$ and $r \notin F$
(3.3) $N(r, g) \leq[\log \mu(r, g)]^{1+\varepsilon} \leq[\log M(r, g)]^{1+\varepsilon}$

$$
\begin{aligned}
& \leq T(r, g)^{1+2 \varepsilon} \leq T\left(r, \alpha^{\prime}\right)^{1+3 \varepsilon} \leq\left[\log M\left(r, \alpha^{\prime}\right)\right]^{1+3 \varepsilon} \\
& \leq[\log \mu(r, \alpha)]^{1+4 \varepsilon} \leq[N(r, \alpha) \log r]^{1+5 \varepsilon} .
\end{aligned}
$$

From the assumption that the lower order of g is positive (or infinite) we can deduce that

$$
\begin{equation*}
\log r \leq N(r, g)^{\varepsilon}, \tag{3.4}
\end{equation*}
$$

if r is large enough. If $1 / 2<\gamma<1$ and if $\varepsilon>0$ is suitably chosen, then (3.3) and (3.4) imply that

$$
\begin{equation*}
N(r, g)^{\gamma} \leq N(r, \alpha) \quad(r \notin F) . \tag{3.5}
\end{equation*}
$$

Now choose z_{0} such that $\left|f\left(g\left(z_{0}\right)\right)\right|=M(r, f \circ g)$, where $r=\left|z_{0}\right|$. It follows from Lemma 3 that

$$
\begin{equation*}
\left|g\left(z_{0}\right)\right|=(1-o(1)) M(r, g) \quad(r \notin F) \tag{3.6}
\end{equation*}
$$

and that

$$
\begin{equation*}
M\left(r, e^{\alpha}\right)=\exp ((1-o(1)) M(r, \alpha)) \quad(r \notin F) \tag{3.7}
\end{equation*}
$$

If we put $m(r, P)=\min \{|P(z)| ;|z|=r\}$, where P is the polynomial from the representation (2.9), then

$$
\begin{align*}
M\left(r, e^{\alpha}\right) & =M\left(r, \frac{P e^{\alpha}+z-z}{P}\right) \leq \frac{M\left(r, P e^{\alpha}+z\right)+r}{m(r, P)} \tag{3.8}\\
& =\frac{\left|P\left(z_{0}\right) e^{\alpha\left(z_{0}\right)}+z_{0}\right|+r}{m(r, P)} \leq \frac{M(r, P)}{m(r, P)}\left|e^{\alpha\left(z_{0}\right)}\right|+\frac{2 r}{m(r, P)} \\
& =(1+o(1)) \exp \left(\operatorname{Re} \alpha\left(z_{0}\right)\right)
\end{align*}
$$

Combining (3.7) and (3.8) we get

$$
\begin{equation*}
\left|\alpha\left(z_{0}\right)\right| \geq \operatorname{Re} \alpha\left(z_{0}\right) \geq(1-o(1)) M(r, \alpha) \quad(r \notin F) . \tag{3.9}
\end{equation*}
$$

Lemma 2 implies that there exists τ_{1} satisfying $\left|\tau_{1} N(r, g)-2 \pi i\right|=$ $o(1)$ such that $g\left(z_{0} e^{\tau_{1}}\right)=g\left(z_{0}\right)$, provided $r \notin F$. Let $z_{1}=z_{0} e^{\tau_{1}}$ and

$$
l(z)=\frac{f^{\prime}(g(z)) g^{\prime}(z)-1}{f(g(z))-z}
$$

Then

$$
\begin{equation*}
\frac{l\left(z_{1}\right)}{l\left(z_{0}\right)} \sim \frac{g^{\prime}\left(z_{1}\right)}{g^{\prime}\left(z_{0}\right)} \sim \frac{g\left(z_{1}\right)}{g\left(z_{0}\right)}=1 \tag{3.10}
\end{equation*}
$$

by (3.6) and Lemma 1 . On the other hand we have

$$
l(z)=\frac{P^{\prime}(z)}{P(z)}+\alpha^{\prime}(z)
$$

by (2.9). Since

$$
\left|\tau_{1}\right| \leq \frac{2 \pi+o(1)}{N(r, g)} \leq \frac{2 \pi c+o(1)}{N(r, \alpha)} \quad(r \in H \backslash F)
$$

by (3.1), we have

$$
\begin{equation*}
\frac{l\left(z_{1}\right)}{l\left(z_{0}\right)} \sim \frac{\alpha^{\prime}\left(z_{1}\right)}{\alpha^{\prime}\left(z_{0}\right)} \sim \frac{\alpha\left(z_{1}\right)}{\alpha\left(z_{0}\right)} \sim \exp \left(\tau_{1} N(r, \alpha)\right) \quad(r \in H \backslash F) \tag{3.11}
\end{equation*}
$$

by (3.9) and Lemma 1. It follows from (3.10) and (3.11) that $\tau_{1} N(r, \alpha)=2 \pi i k+o(1)$ for some integer $k=k(r)$, provided $r \in$ $H \backslash F$. Hence we have

$$
\begin{equation*}
\frac{N(r, \alpha)}{N(r, g)} \sim k(r) \in \mathbf{Z} \quad(r \in H \backslash F) \tag{3.12}
\end{equation*}
$$

where $k(r) \leq c$ by (3.1).
Now let $\tau_{2}=i \pi / N(r, \alpha)$ and $z_{2}=z_{0} e^{\tau_{2}}$. Lemma 1 and (3.9) imply that $\alpha\left(z_{2}\right) \sim\left(-\alpha\left(z_{0}\right)\right)$ and $\operatorname{Re} \alpha\left(z_{2}\right) \sim(-M(r, \alpha))$ for $r \notin F$. It follows from (3.5) that $\left|\tau_{2}\right| \leq \pi N(r, g)^{-\gamma}$ for $r \notin F$. Hence we have

$$
\left|g\left(z_{2}\right)\right| \sim\left|g\left(z_{0}\right) \exp \left(N(r, g) \tau_{2}\right)\right| \sim\left|g\left(z_{0}\right)\right| \sim M(r, g) \quad(r \notin F)
$$

by Lemma 1. Lemma 2 implies that there exists τ_{3} satisfying $\left|\tau_{3} N(r, g)-2 \pi i\right|=o(1)$ such that $g\left(z_{2} e^{\tau_{3}}\right)=g\left(z_{2}\right)$. Let $z_{3}=z_{2} e^{\tau_{3}}$. To estimate $\alpha\left(z_{3}\right)$ we note that

$$
\left|\tau_{3}\right| \leq \frac{2 \pi c+o(1)}{N(r, \alpha)} \quad(r \in H \backslash F)
$$

by (3.1). Hence Lemma 1 and (3.12) imply that

$$
\begin{aligned}
\alpha\left(z_{3}\right) & \sim \alpha\left(z_{2}\right) \exp \left(N(r, \alpha) \tau_{3}\right) \\
& \sim \alpha\left(z_{2}\right) \exp ((k(r)+o(1))(2 \pi i+o(1))) \\
& \sim \alpha\left(z_{2}\right) \quad(r \in H \backslash F)
\end{aligned}
$$

Since $g\left(z_{2}\right)=g\left(z_{3}\right)$ we have

$$
z_{2}+P\left(z_{2}\right) e^{\alpha\left(z_{2}\right)}=f\left(g\left(z_{2}\right)\right)=f\left(g\left(z_{3}\right)\right)=z_{3}+P\left(z_{3}\right) e^{\alpha\left(z_{3}\right)}
$$

It follows that

$$
\begin{aligned}
\left|z_{3}-z_{2}\right| & \leq\left|P\left(z_{2}\right) e^{\alpha\left(z_{2}\right)}\right|+\left|P\left(z_{3}\right) e^{\alpha\left(z_{3}\right)}\right| \\
& \leq r^{K} \exp (-(1-o(1)) M(r, \alpha))
\end{aligned}
$$

for some constant K and $r \in H \backslash F$. On the other hand we have

$$
\left|z_{3}-z_{2}\right|=\left|z_{2}\left(e^{\tau_{3}}-1\right)\right| \sim r\left|\tau_{3}\right| \sim \frac{2 \pi r}{N(r, g)}
$$

so that

$$
N(r, g) \geq(1-o(1)) 2 \pi r^{1-K} \exp ((1-o(1)) M(r, \alpha)) \geq \exp \frac{M(r, \alpha)}{2}
$$

for sufficiently large $r \in H \backslash F$. By (3.3) we have

$$
N(r, g) \leq[\log \mu(r, \alpha)]^{1+4 \varepsilon} \leq[\log M(r, \alpha)]^{1+4 \varepsilon} \quad(r \notin F)
$$

Altogether we find for $\varepsilon=1 / 4$ that

$$
\exp \frac{M(r, \alpha)}{2} \leq[\log M(r, \alpha)]^{2} \quad(r \in H \backslash F)
$$

This is an obvious contradiction and the theorem is proved.
Proof of Theorem 2. Assume that $f \circ g$ has only a finite number of fix-points so that (2.9) holds. It is easy to show that

$$
\rho(\alpha)=\limsup _{r \rightarrow \infty} \frac{\log \log \log M\left(r, e^{\alpha}\right)}{\log r}
$$

where $\rho(\alpha)$ denotes the order of α. In fact this is a special case of a theorem of Schönhage [10, Satz 6]. It follows from (2.9) and the hypothesis that $\rho(\alpha)<\infty$. Moreover, we have $\rho\left(\alpha^{\prime}\right)=\rho(\alpha)$ and (2.11) or (2.12) imply that $\rho(g) \leq \rho\left(\alpha^{\prime}\right)$. Hence we have $\rho(g)<\infty$, and the conclusion follows from Theorem 1.

Acknowledgment. I am thankful to Professor W. H. J. Fuchs for some valuable discussion on the subject.

References

[1] W. Bergweiler, An inequality for real functions with applications to function theory, Bull. London Math. Soc., 21 (1989), 171-175.
[2] W. Bergweiler, G. Jank and L. Volkmann, Über faktorisierbare Lösungen Riccatischer Differentialgleichungen, Resultate Math., 10 (1986), 40-53.
[3] J. Clunie, The Composition of Entire and Meromorphic Functions, Math. Essays Dedicated to A. J. Macintyre (1970), 75-92, Ohio Univ. Press.
[4] F. Gross, Factorization of Meromorphic Functions, U.S. Government Printing Office, Washington, D.C., 1972.
[5] F. Gross and C. F. Osgood, On fixed points of composite entire functions, J. London Math. Soc., (2) 28 (1983), 57-61.
[6] F. Gross and C. C. Yang, The fix-points and factorization of meromorphic functions, Trans. Amer. Math. Soc., 168 (1972), 211-219.
[7] W. K. Hayman, Meromorphic functions, Oxford Mathematical Monographs (1964), Clarendon Press, Oxford.
[8] _, The local growth of power series: A survey of the Wiman-Valiron method, Canad. Math. Bull., (3) 17 (1974), 317-358.
[9] P. C. Rosenbloom, The fix-points of Entire Functions, Medd. Lunds Univ. Mat. Sem. Suppl.-Bd. M. Riesz, (1952), 187-192.
[10] A. Schönhage, Über das Wachstum zusammengesetzter Funktionen, Math. Z., 73 (1960), 22-44.
[11] N. Steinmetz, Über die faktorisierbaren Lösungen gewöhnlicher Differentialgleichungen, Math. Z., 170 (1980), 169-180.
[12] G. Valiron, Lectures on the General Theory of Integral Functions, Edouard Privat, Toulouse, 1923.
[13] C. C. Yang, Further results on the fix-points of composite transcendental functions, J. Math. Anal. Appl., 90 (1982), 259-269.
[14] _, On the fix-points of composite transcendental entire functions, J. Math. Anal. Appl., 108 (1985), 366-370.

Received May 31, 1988 and in revised form November 11, 1988. Research performed as a Feodor Lynen Research Fellow of the Alexander von Humboldt Foundation.

Cornell University
Ithaca, NY 14853
Current address: Technical University of Aachen
Lehrstuhl II für Mathematik
D-5100 Aachen, Federal Republic of Germany

