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ON THE FIX-POINTS OF COMPOSITE FUNCTIONS

WALTER BERGWEILER

Gross has conjectured that a composite transcendental entire func-
tion has infinitely many fix-points. We show that the conjecture is
true if one of the two components has finite order.

1. Introduction and results. Let / and g be two nonlinear entire
functions, at least one of them transcendental. Gross [4] has conjec-
tured that the composite function fog has infinitely many fix-points.

Gross and Osgood [5] have proved that the conjecture is true, if one
of the functions / and g is of finite order while the other one is of
finite lower order. The conjecture has also been proved under various
other conditions on / and g (cf. [6], [9], [13], [14]).

We shall prove

THEOREM 1. Let f and g be nonlinear entire functions, at least
one of them transcendental If one of the functions f and g is of finite
order, then fog has infinitely many fix-points.

As a consequence of Theorem 1 we obtain

THEOREM 2. Let f and g be nonlinear entire functions, at least
one of them transcendental If

Λ. log log log M(r, fog)
hm sup — - — - — I — ^ — ^ — — < oo,

r-+oo log r

then fog has infinitely many fix-points.

These two theorems contain and generalize many of the results re-
ferred to above.

2. Lemmas. Our proofs will be based partially on Nevanlinna the-
ory (for notations see [7]), but mainly on Wiman-Valiron theory. We
denote the maximum term of an entire function h by μ(r, h) and
the central index by N = N(r, h). By F we denote an exceptional
set of finite logarithmic measure, not necessarily the same at each oc-
currence. For the convenience of the reader we state the results of
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Wiman-Valiron theory that we need. In fact Hayman [8] has obtained
much more precise estimations, but the following results suffice for
our purposes.

LEMMA 1([8], see also [12]). Let h be entire, k > 0, γ > 1/2,
0 < η < 1 and ε > 0. Assume that |z o | = r, \h(zo)\ > ηM(r, h) and
\τ\ <kN~y. Then

(2.1) h(zoe
τ) ~ h(zo)eNτ (r £ F),

(2.2) h'(zoe
τ) ~ - ^ Λ ( z o ) e " τ (r £ F ) ,

(2.3) log/i(r, h) - logM(r, A) - logM(r, /z;) (r ^ F),

(2.4) 7V<(lo g ;α(r ?A)) 1 + ε ( r ^ F ) ,

(2.5) logμ(r, h) < Nlogr + 0(1).

LEMMA 2. L ^ h be entire, K > 0, 0 < η < 1 αrcd ε > 0. If
\σ\\ < K, |Λ(zo)| > ηM(r, A) αnrf if |z o | = r <£ F is large enough,
then there exists τ\ such that \Nτ\ —o\\ < ε and h(zoe

τή = h(zo)eσ^.
If ε < 2π and ifrφF is large enough, then τ\ is unique.

Proof. Put w\ — h(zo)eσ\ and consider f(τ) = h{zoe
τ) and /2(τ)

= h(zo)eNτ = K I exp(7Vτ - σi). If |iVτ — σ\\ = ε, then

by (2.1) and therefore

(2.6) |(/i(τ) - wx) -

On the other hand, we have for \Nτ — σ\ \ = ε

(2.7)

for some δ\ > δι > 0, if 0 < ε < 2π. The conclusion follows from
(2.6) and (2.7) by Rouche's theorem.

Clunie [3] has given the following application.

LEMMA 3. If f and g are entire, then

(2.8) M(r, fog) = M((l+o(l))M(r, g), f) (r £ F).
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Next we note that if / o g has only a finite number of fix-points,
then

(2.9) f(g(z)) = P(z)eaM + z,

where a is an entire function and P is a polynomial. A consequence
of Lemma 3 is

LEMMA 4. 7/(2.9) holds, then

(2.10) M{r,a)~\o%M{(\+o{\))M{r9g)9f) (r £ F).

The following lemma is implicit in the work of Gross and Osgood
[5].

LEMMA 5. If'(2.9) holds, then

(2.11) Γ(r, g) = o(T(r, a )) (r φ E) 9

where E has finite linear measure.

In fact, if Γ(r, a!) < KT(r, #) for a constant AΓ on a set of infinite
measure, then a modification of a theorem of Steinmetz [11] (cf. [5])
yields that / satisfies a certain differential equation. As shown in [5],
this leads to a contradiction.

We remark that for our purposes the weaker inequality

(2.12) T(r, g) = O(T(r, a')) (r £ E)

will be sufficient. This inequality is easier to obtain than (2.11), in
fact the method used in [2] for the Riccati equation applies also to the
linear equation

d_

dz

which is a consequence of (2.9).
We also need

LEMMA 6 [1]. Let h{x) and k(x) be non-negative, non-decreasing
and convex for x > 0. Let K > 1 and suppose that h(x) < k(x) for
all x > 0. Then hf(x) < Kk'(x) on a set of lower density at least
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A consequence is

LEMMA 7. Let a and g be entire functions, c > 0, K > 1 and
assume that

log M{r, a) < clogM(r, g) (r £ F).

Then
N(r,a)<KcN(r,g)

on a set of positive lower logarithmic density.

Proof. Let ε > 0 and put x = logr, h(x) = max{0, logμ(r, α)},
fc(jc) = max{/z(x), (c + ε) log//(r, <g

r)} . The conclusion follows from
(2.3) and Lemma 6, since

(2.13)

for an entire function h , except for the discontinuities of N(r, h).

3. Proof of Theorems.

Proof of Theorem 1. Since fog has infinitely many fix-points if and
only if g o f does [6, p. 214, proof of Theorem 2], we may assume
that the order of / is finite. The conclusion follows from the result
of Gross and Osgood [5] mentioned in the introduction, if the lower
order of g is finite. Hence we may assume that the lower order of g
is infinite. What we need, however, is only that g has non-zero lower
order.

Suppose that fog has only a finite number of fix-points, so that
(2.9) holds. Lemma 4 shows that logM(r, a) = O(\ogM(r, g)) for
r £ F and Lemma 7 implies that there exists a positive constant c
such that

(3.1) N(r,a)<cN(r,g) (r e H)

where H has positive lower logarithmic density. It follows easily from
a classical lemma due to Borel [7, Lemma 2.4] that for β > 0

(3.2) logM(r, g) < T(r9 g)uβ (r £ E),

where E has finite linear measure. Combining (2.3), (2.4), (2.5),
(2.12) and (3.2), we get for ε > 0 and r £ F

(3.3) N(r9 g) < [logμ(r, g)]ι+£ < [logM(r9 g)]ι+£

< T(r, g)u2ε < T(r, α ' ) 1 + 3 ε < [logM(r, α')

< [logμ(r, α) ] 1 + 4 ε < [N(r, α)
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From the assumption that the lower order of g is positive (or infinite)
we can deduce that

(3.4) logr<N(r,gy,

if r is large enough. If 1/2 < γ < 1 and if ε > 0 is suitably chosen,
then (3.3) and (3.4) imply that

(3.5) N(r,gγ<N(r9a) (r φ F).

Now choose z0 such that \f(g(zo))\ = M(r9 fog), where r = |z o | .
It follows from Lemma 3 that

(3.6) \g(zQ)\ = (l-o(l))M(r,g) {r £ F)

and that

(3.7) M{r, ea) = exp((l - o(l))M(r, a)) (r £ F).

If we put m(r, P) = min{\P(z)\ \z\ = r} , where P is the polynomial
from the representation (2.9), then

M(r, P) {zΔ 2rM(r, P) {zΔ

~ m{rPy 'm(r,P) ~ m{r,Py ' m(r,P)

= ( l + o ( l ))exρ(Reα(zo))

Combining (3.7) and (3.8) we get

(3.9) |α(*o)l>Reα(z o )>(l .-σ(l)μ/(r,α) (r $ F).

Lemma 2 implies that there exists τ\ satisfying |τiiV(r, g) — 2πi\ =
o(l) such that g(zQeτ<) = g(zo), provided r ̂  F. Let Z\ =
and

figi^g^y-j.
[ ) ~ f(g{z))-z •

Then

m m ίί£il g(z') £ί£il-i
1 j /(z) ~ g'(zo) ~ g(z0)

by (3.6) and Lemma 1. On the other hand we have
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by (2.9). Since

2π + o(l) 2πc + o{\) ( r ( = m F λ

Tl S —ΓF7 Γ — "~A77 Γ~ {r £ li\Γ )

N(r,g) N(r, a)

by (3.1), we have

by (3.9) and Lemma 1. It follows from (3.10) and (3.11) that
τ\N(r, a) = 2πik + o{\) for some integer k = k(r), provided r e
H\F . Hence we have

(3.12) * | £ i | ) ~ *(r) € Z (reH\F)

where /:(#•) < c by (3.1).
Now let T2 = iπ/N(r, a) and Z2 = zo^τ2 Lemma 1 and (3.9)

imply that a(z2) ~ (-α(zo)) and Reα(z2) ~ (-M(r, a)) for r ^ F .
It follows from (3.5) that | τ 2 | < π7V(r, g)-? forr<£F. Hence we
have

^) (r £ F)

by Lemma 1. Lemma 2 implies that there exists τ^ satisfying
\τ^N(r9 g) — 2πi\ = o(l) such that g(z2e

τή = g(z2). Let z3 = z2e
τi.

To estimate a(z$) we note that

by (3.1). Hence Lemma 1 and (3.12) imply that

α(z3) ~α(z2)exp(iV(r, α)τ3)

~ α(z2) exp((fc(r) + o(l))(2πι

~α(z2) (reH\F).

Since ^(z2) = g{zi) we have

z 2 + P(z2)ea^ = f(g(z2)) =

It follows that

for some constant K and r e H\F. On the other hand we have
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so that

ι~κ
N(r, g)>(l- o(l))2πrι~κ exp((l - o(l))M(r, a)) > exp ^

for sufficiently large r e H\F. By (3.3) we have

N(r, g) < [logμ(r, α ) ] 1 + 4 £ < flogAf(r, α)] 1 + 4 f i (r £ F) .

Altogether we find for ε = 1/4 that

e x p M^JΛ < [ i o g M ( r , α)] 2 (r G

This is an obvious contradiction and the theorem is proved.

Proof of Theorem 2. Assume that fog has only a finite number of
fix-points so that (2.9) holds. It is easy to show that

, N -. logloglogΛf(r, ea)
p(a) = lim sup —-—^—r^———-,

r->oo logr

where p(a) denotes the order of α. In fact this is a special case of
a theorem of Schόnhage [10, Satz 6]. It follows from (2.9) and the
hypothesis that p(a) < oo. Moreover, we have p(a') = p(ά) and
(2.11) or (2.12) imply that p(g) < p(a'). Hence we have p(g) < oo,
and the conclusion follows from Theorem 1.

Acknowledgment. I am thankful to Professor W. H. J. Fuchs for
some valuable discussion on the subject.
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