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ON THE FIX-POINTS OF COMPOSITE FUNCTIONS

WALTER BERGWEILER

Gross has conjectured that a composite transcendental entire func-
tion has infinitely many fix-points. We show that the conjecture is
true if one of the two components has finite order.

1. Introduction and results. Let f and g be two nonlinear entire
functions, at least one of them transcendental. Gross [4] has conjec-
tured that the composite function fog has infinitely many fix-points.

Gross and Osgood [5] have proved that the conjecture is true, if one
of the functions f and g is of finite order while the other one is of
finite lower order. The conjecture has also been proved under various
other conditions on f and g (cf. [6], [9], [13], [14]).

We shall prove

THEOREM 1. Let f and g be nonlinear entire functions, at least
one of them transcendental. If one of the functions f and g is of finite
order, then f o g has infinitely many fix-points.

As a consequence of Theorem 1 we obtain

THEOREM 2. Let f and g be nonlinear entire functions, at least
one of them transcendental. If

lim sup logloglog M(r, fog)
F—00 logr

<00,
then f o g has infinitely many fix-points.

These two theorems contain and generalize many of the results re-
ferred to above.

2. Lemmas. Our proofs will be based partially on Nevanlinna the-
ory (for notations see [7]), but mainly on Wiman-Valiron theory. We
denote the maximum term of an entire function 4 by u(r, ) and
the central index by N = N(r, h). By F we denote an exceptional
set of finite logarithmic measure, not necessarily the same at each oc-
currence. For the convenience of the reader we state the results of
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Wiman-Valiron theory that we need. In fact Hayman [8] has obtained
much more precise estimations, but the following results suffice for
our purposes.

LEMMA 1([8], see also [12]). Let h be entire, k > 0, y > 1/2,
0<n<1 and ¢ > 0. Assume that |zo| = r, |h(zo)| > nM(r, h) and
|t| <kN~7. Then

(2.1) h(zoe®) ~ h(zp)e™*  (r¢F),

22) H(z0e%) ~ Zh(zo)e™ (g F),

(2.3) logu(r, h) ~logM(r, h) ~logM(r, h') (r¢ F),
(2.4) N < (logu(r, h))'*e  (r¢ F),

(2.5) logu(r, h) < Nlogr+ O(1).

LEMMA 2. Let h be entire, K >0, 0 <n <1 and ¢ > 0. If
lo| < K, |h(zo)| > nM(r, h) and if |zo| = r ¢ F is large enough,
then there exists 1, such that |Nt,—oy| <& and h(zpe™) = h(zp)e .
If e <2m and if r ¢ F is large enough, then t, is unique.

Proof. Put w; = h(zp)e? and consider fi(7) = h(zpe®) and f>(1)
= h(zp)eN® = w;exp(Nt —ay). If [Nt~ ay| =¢, then

fi(t) ~ h(z0)e™™ = fa(7)
by (2.1) and therefore
(2.6)  |(/i(7) —wi) = (fo(7) —w)| = [/i(7) = 2(D)] = o(| f2(7))).
On the other hand, we have for |[Nt—0a,|=¢

(2.7) |/2(7) —w| = |wi(exp(NT - g1) — 1)
> d1|wy| = 82| /2(7)]

for some J; > d, > 0, if 0 < & < 2n. The conclusion follows from
(2.6) and (2.7) by Rouché’s theorem.

Clunie [3] has given the following application.

LEMMA 3. If f and g are entire, then

(2.8) M(r, fog)=M((1+o(1)M(r,g), f) (r¢&F).
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Next we note that if f o g has only a finite number of fix-points,
then
(2.9) f(&(2)) = P(z)e"?) + z,

where « is an entire function and P is a polynomial. A consequence
of Lemma 3 is

LEMMA 4. If(2.9) holds, then
(2.10) M(r, a) ~logM((1 +o(1))M(r, g), f)  (r ¢ F).

The following lemma is implicit in the work of Gross and Osgood
[S].

LEMMA 5. If (2.9) holds, then
(2.11) T(r,g)=o(T(r,d)) (r¢E),
where E has finite linear measure.

In fact, if T(r, o/) < KT(r, g) for a constant K on a set of infinite
measure, then a modification of a theorem of Steinmetz [11] (cf. [5])
yields that f satisfies a certain differential equation. As shown in [5],

this leads to a contradiction.
We remark that for our purposes the weaker inequality

(2.12) T(r,g)=0(T(r,d)) (r ¢ E)

will be sufficient. This inequality is easier to obtain than (2.11), in
fact the method used in [2] for the Riccati equation applies also to the
linear equation

e = (

which is a consequence of (2.9).
We also need

LEMMA 6 [1]. Let h(x) and k(x) be non-negative, non-decreasing
and convex for x > 0. Let K > 1 and suppose that h(x) < k(x) for
all x > 0. Then h'(x) < Kk'(x) on a set of lower density at least
(K - 1)/K.
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A consequence is

LEMMA 7. Let o and g be entire functions, ¢ > 0, K > 1 and
assume that

logM(r, a) <clogM(r, g) (r ¢ F).
Then
N(r,a) <KcN(r, g)
on a set of positive lower logarithmic density.

Proof. Let ¢ > 0 and put x = logr, A(x) = max{0, logu(r, a)},
k(x) = max{h(x), (c +¢)logu(r, g)}. The conclusion follows from
(2.3) and Lemma 6, since
du(r, h)

dlogr
for an entire function 4, except for the discontinuities of N(r, /).

(2.13) = N(r, h)

3. Proof of Theorems.

Proof of Theorem 1. Since fog has infinitely many fix-points if and
only if go f does [6, p. 214, proof of Theorem 2], we may assume
that the order of f is finite. The conclusion follows from the result
of Gross and Osgood [5] mentioned in the introduction, if the lower
order of g is finite. Hence we may assume that the lower order of g
is infinite. What we need, however, is only that g has non-zero lower
order.

Suppose that f o g has only a finite number of fix-points, so that
(2.9) holds. Lemma 4 shows that logM(r, a) = O(log M(r, g)) for
r ¢ F and Lemma 7 implies that there exists a positive constant ¢
such that

(3.1) N(r,a)<cN(r, g) (re H)

where H has positive lower logarithmic density. It follows easily from
a classical lemma due to Borel [7, Lemma 2.4] that for > 0

(3.2) logM(r, g) < T(r,g)'** (r ¢ E),

where E has finite linear measure. Combining (2.3), (2.4), (2.5),
(2.12) and (3.2), we get for ¢ >0 and r ¢ F

(3.3) N(r, g) <[logu(r, g)I'"™ < [log M(r, g)1'*
< T(r, g)l+2€ < T(r, al)l+3£ < [logM(r, al)]l+3£
< [logu(r, a)]'** < [N(r, a)logr]'*>.
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From the assumption that the lower order of g is positive (or infinite)
we can deduce that

(3.4) logr < N(r, g)°,

if r is large enough. If 1/2 <y <1 and if ¢ > O is suitably chosen,
then (3.3) and (3.4) imply that

(3.5) N(r,g) <N(r,a) (ré&F).

Now choose zg such that |f(g(zg))| = M(r, fog), where r = |zg]|.
It follows from Lemma 3 that

(3.6) lg(zo)l = (1 —0o(1))M(r,g) (r ¢ F)
and that
(3.7) M(r, e*)=exp((1 —o(1))M(r, o)) (r ¢ F).

If we put m(r, P) = min{|P(z)|; |z| = r}, where P is the polynomial
from the representation (2.9), then

(3.8)
M(r,e*")=M (r,

Pe"-l—z—z) <M(r,PeC'+z)+r

P m(r, P)
_|P(z0)e* %) + zo| + 7 _ M(r, P), .. 2r
B 0m(r,P)O < m(r,P)'e (O)H_m(r,P)
= (1 +o(1)) exp(Re a(zp)).
Combining (3.7) and (3.8) we get
(3.9) la(z0)] =2 Rea(z) = (L—o(1))M(r,a)  (r & F).

Lemma 2 implies that there exists 7, satisfying |7, N(r, g)—2ni| =
o(1) such that g(zpe™) = g(zp), provided r ¢ F. Let z; = zpe"

and Fle(2)g(2) 1
B "(g(2))g'(z) —
&= =re@n-z

Then

l(z1) &'(z1) &(z1)
3.10 ~ ~ =1
319 lz0) ™ gz0) " 8(z0)
by (3.6) and Lemma 1. On the other hand we have
_ P(2)
=)= 30

+d'(z)
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by (2.9). Since
2n + o(1) < 2nc + o(1)

SN = NG

(re H\F)

by (3.1), we have
l(z1) d(z1) ofz1)
IGo) ~ @(z0) ~ alzo) exp(T N(r, a)) (re H\F)
by (3.9) and Lemma 1. It follows from (3.10) and (3.11) that
T\N(r, a) = 2mik + o(1) for some integer k = k(r), provided r €
H\F . Hence we have
N(r, a)
N(r, g)
where k(r) <c by (3.1).
Now let 7 = in/N(r,a) and z; = zpe™. Lemma 1 and (3.9)
imply that a(z;) ~ (—a(zp)) and Rea(z;) ~ (-M(r, a)) for r ¢ F.
It follows from (3.5) that |t;| < nN(r, g)~7 for r ¢ F. Hence we
have
|g(22) ~ |&(z0) exp(N(r, &)72)| ~ |&(20)| ~M(r, g)  (r & F)

by Lemma 1. Lemma 2 implies that there exists 73 satisfying
|t3N(r, g) —2mi| = o(1) such that g(z,e%) = g(z2). Let z3 = z3e%.
To estimate a(z3) we note that

2nc +o(1)
N(r, a)
by (3.1). Hence Lemma 1 and (3.12) imply that
a(z3) ~ a(z2) exp(N(r, a)13)
~ a(z2) exp((k(r) + o(1))(27i + o(1)))
~ a(z3) (re H\F).
Since g(z;) = g(z3) we have
23+ P(22)e™®) = f(g(22)) = f(8(23)) = 23+ P(z3)e*%).
It follows that
|23 — 22| < |P(22)e*®)| + | P(z3)e*%)|
< rfexp(—(1 - o(1))M(r, a))

for some constant K and r € H\F . On the other hand we have

(3.11)

(3.12) ~k(ryeZ (reH\F)

|73 < (re H\F)

2nr
N(r, g)’

|z3 — z2| = |z2(e™ = 1)| ~ r|T3| ~
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so that
M(r, a)

N(r, 8) > (1 - o(1)2nr' K exp((1 - o(1))M(r, a)) 2 exp

for sufficiently large r € H\F . By (3.3) we have
N(r, g) <[logu(r, a)]'** <[log M(r, a)]'"**  (r ¢ F).
Altogether we find for ¢ = 1/4 that

M(r, a)
2
This is an obvious contradiction and the theorem is proved.

exp <[logM(r,a)]* (re H\F).

Proof of Theorem 2. Assume that f o g has only a finite number of
fix-points so that (2.9) holds. It is easy to show that

. logloglog M(r, e%)
pla) = hrr)lalp logr

b

where p(a) denotes the order of a. In fact this is a special case of
a theorem of Schonhage [10, Satz 6]. It follows from (2.9) and the
hypothesis that p(a) < oco. Moreover, we have p(a’) = p(a) and
(2.11) or (2.12) imply that p(g) < p(c/). Hence we have p(g) < oo,
and the conclusion follows from Theorem 1.

Acknowledgment. I am thankful to Professor W. H. J. Fuchs for
some valuable discussion on the subject.
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